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BAYESIAN ESTIMATION UNDER ESTIMATION

CONSTRAINT

PHAM GIA THU AND TRAN LOC HUNG

Abstract. We suppose that a constraint is imposed on the value of the es-
timator in Bayesian Estimation Theory and study the distribution of this
estimator under various hypotheses, using the two main loss functions: the
absolute value and the quadratic.

1. Introduction

In classical Bayesian Estimation Theory the prior distribution f(θ) provides
the first information on the parameter to be estimated. With the loss function
considered, L(θ,w), the estimator is the value that would minimize the average
loss or

∫

<
L(θ,w)f(θ)dθ.

Considering the statistical model h(x|θ), let ~x be the observations obtained on
the model and f(θ|~x) the posterior distribution of θ. The optimal estimation is
now the value that would minimize the average posterior loss.

In the case of a quadratic loss (Pham-Gia and Tukkan [7]) that estimation is
the posterior mean, with the corresponding average loss equal the posterior vari-
ance. For the absolute value loss function, the corresponding quantities are the
posterior median and the posterior mean absolute deviation (Pham-Gia, Duong
and Tukkan, [6]).

In this article we suppose that the estimator is subject to a certain constraint,
as it is often in real applications, and cannot take the optimal value which is
either the mean or the median. That constraint could be a fixed interval [a,b],
for example. Alternately, we can also suppose that the estimator itself is subject
to a family of probability distributions, and will look for estimation optimality
under this constraint. The behavior of the model under this non-optimal (in the
classical sense) estimation will also be studied... We consider the two common
loss functions Li(θ,w) = Ki|θ − w|i; (i = 1, 2) only since difficulties associated
with cases i > 2, as presented in Bar-Lev et al. (see [1]), do not allow the
deviation of the associated solutions.
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In Section 2 we will recall the main properties of the two dispersion functions
that will play fundamental roles in the study of the above problem: the mean
absolute deviation and the variance, both taken about an arbitrary point in <
and considered as functions of this point. In Section 3 results on the optimal
estimator, the posterior risk and the Bayes risk, are presented according to two
hypothesis: the constraint is a fixed interval [a, b] within which the estimation
must lie, and a finite set of distributions {Wj} from which to choose the best
distribution of the estimator.

2. The mean absolute deviation and

the variance functions

Let Θ be a random variable defined on <, with distibution FΘ(w) and finite
mean µ. We defined the absolute deviation function of Θ at a point w ∈ <, also
known as the dispersion function of Θ at w, as δΘ(w) = E(|Θ − w|). According
to [6], we have

δΘ(w) = µ − w + 2[wFΘ(w) − µφ(w)],(2.1)

where φ is the incomplete first moment of Θ, defined by

φ(w) = µ−1

w
∫

−∞

tdFΘ(t).

On the other hand, Munoz-Perez and Sanchez-Gomez (see for details in [4])
have given the expression of the distrbution FΘ(w) of Θ, in terms of the derivative
of δΘ(w) as follows

FΘ(w) =
1

2
[δ

′

Θ(w) + 1],(2.2)

which can also be obtained from (2.1).

It is worth pointing out that the formula (2.1) can be as follows (see for instance
[12])

δΘ(w) = w − µ + 2

∫

x≥w

(x − w)dFΘ(x)

= µ − w + 2

∫

x<w

(w − x)dFΘ(x).(2.3)

or, if X be a discrete random variable with distributions pn = P (X = xn), n ≥ 0,
then
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δΘ(w) =
∑

n

| xn − w | pn

= w − µ + 2
∑

n:xn≥w

(xn − w)pn

= µ − w + 2
∑

n:xn<w

(w − xn)pn.(2.4)

The δΘ(w) is shown to have the following properties:

a. It is continuously differentiable a.e. and convex on <,
b. lim

w→+∞
δ
′

θ(w) = 1 and lim
w→−∞

δ
′

θ(w) = −1.

c. It is the L1 distance (with respect to the Lebesgue measure on <) between
FΘ and Fw, where Fw is the distribution of the degenerate variable at the
point w. We have

∫

<

|FΘ(x) − Fw(x)|dx = δΘ(w).(2.5)

d. The L1 norm (with respect to the Lebesgue measure) of the difference
(δΘ(w) − δΘ(µ)) is the variance σ2

Θ of Θ, where δΘ(µ) = |µ − w| is the
dispersion function of the degenerate variable at E(Θ) = µ, i.e. we have

∫

<

|δΘ(w) − δΘ(µ)|dw = σ2
Θ.(2.6)

It is to be noticed that according to (2.6) some results related to upper bounds
of the L1 distances of two dispresion functions have been established in [18].

When µ and Md exist and are unique, the value of δΘ(w) at w = µ and
at w = Md play particular roles in Applied Statistics and Economics, being
denoted respectively by δ1(µ) and δ2(Θ) = δΘ(Md). Pham-Gia and Tukkan [7],
used these measures in the study of income distributions associated with the beta
distribution, while Gastwirth [2] studied the statistical properties of the standard
measure of relative uniformity in tax assessments which is based on δ2(Θ).

Furthermore, Munoz-Perez and Sanchez-Gomez [5] have proved that δX(w) −

µX ≤ δY (w)−µY is equivalent to dilation ordering, by which X
dil
≤ Y if E[Φ(X −

µX)] ≤ E[Φ(Y − µY ], for any convex function Φ.

Some interesting results concerning the connection of the weak convergence of
the random variables with the convergence of the dispersion functions have been
investigated in [17]. The results obtained in [17] can be applied to some problems
of theory of limit theorems for sum of independent random variables.
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On the other hand, the variance of a random variable Θ, with distribution
FΘ(θ), about any point w, denoted VΘ(w) is defined as

Vθ(w) =

∫

<

(θ − w)2dFΘ(θ) = σ2
Θ + (w − µ)2,(2.7)

where σ2
Θ is the variance of Θ about its mean µ. Although both δΘ and VΘ(w)

are convex functions, VΘ(w) displays a symmetry about w = µ whereas δΘ(w) is
asymmetric, with minimum value of δ2(Θ) at w = Md. For values k1, k2 within
some ranges, we then have 2 distinct values c1, c2 and d1, d2 such that

δΘ(c1) = δΘ(c2) = k1

and

VΘ(d1) = VΘ(d2) = k2.

3. Estimation under constraint of the estimator

3.1. Let us consider the simple case where the estimator of θ belongs to an
interval on <, say [a,b] and let L(Θ, w) be the loss function. The posterior risk
is then

∫

<
L(Θ, w)f(θ|~x)dθ and let θ0 be the value that would minimize that risk

inside [a,b], i.e. lim
w∈[a,b]

∫

<
L(Θ, w)f(θ|~x)dθ is attained for w = w0.

We then take Θ̂ = w0. The posterior risk is
∫

<
L(Θ, w0)f(θ|~x)dθ and the Bayes

risk is
∫

<
Ψn(x)dx =

∫

<
L(Θ, w0)f(θ|~x)dθ, where Ψn is the predictive distribuiton

of x, based on ~x, a vector of observations of size n.

Consider the following loss functions: the absolute value one of the form

L1(Θ, w) = K1|w − θ|, K1 > 0,

and the quadratic one of the form

L2(Θ, w) = K2|w − θ|2, K2 > 0.

Without loss of generality, we can take K1 = K2 = 1. The associated loss
functions are then called unit loss functions and results for the cases K1 6= 1 can
be deduced from these cases by multiplication by appropriate constants.

For a fixed Θ, δΘ(w0) represents the average loss (also called risk) that results
from taking w0 as the estimate of Θ, using the L1 loss function. A similar
conclusion holds for VΘ(w0) and L2.

3.2. The problem of building a normed linear space structure on a subset of
probability distributions has not found a satisfactory answer yet. The dispersion
measure δ2(Θ) can provide a solution to that problem.

Let us consider the class of infinitely divisible distributions on < with the
following operations on its independent members: convolution product F1 ∗ F2,

inverse function F−1(a) = inf{x : F (x) > a}, with Md(F ) = F−1
(1

2

)

, and

degenerate distributions at any point are all identified to the neutral element.
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Theorem 1. Let Ξ be the class of infinitely divisible distributions. The Ξ is a

closed normed linear space, with ‖F‖ = δ2(F ).

Proof. We know that Ξ is closed under convolution and passage to the limit.
Moreover, for independent X,F1 and F2 in Ξ, such that F1 ∗X = F2 ∗X, we have
F1 = F2. Hence Ξ is a linear space. Moreover, defining the norm of F as above,
we have ‖F‖ = 0 iff F is degenerate. Also, for a ∈ <, we have ‖aF‖ = δ2(aX) =
aδ2(X) = a‖F‖ since δ2(X) is a measure of dispersion. Then

‖F1 ∗ F2‖ = δ2(X1 + X2) ≤ δ2(X1) + δ2(X2) = ‖F1‖ + ‖F2‖.

The first part of the double inequality

δ2(X1) ≤ δ2(X1 + X2) ≤ δ2(X1) + δ2(X2)

is given by the dilation ordering (see [5]). For the second part, we note that

Pr(X + Y ≤ Md(X) + Md(Y )) ≥ Pr(X ≤ Md(X))) + Pr(Y ≤ Md(Y )).

Hence

Md(X + Y ) ≤ Md(X) + Md(Y )

and

E(|X + Y − Md(X + Y )|) ≤ E(|X − Md(X)|) + E(|Y − Md(Y )|).

3.3. There are several possible constraints that could be imposed on an estimator
in real applications and they could be of deterministic or stochastic types. In the
following section we will consider the simple deterministic constraint that the
value of the estimations is to be within a fixed interval [a, b], with a < b.

Theorem 2. Let Θ be the parameter of interest in the statistical model ϕ(x|θ)
and let f(θ) be its prior. If the estimation of Θ must be in [a, b] then it can only

take the value a, or b, or Md(Θ).

Proof. Under the unit absolute value loss function, we have to consider the pos-
terior distribution of Θ, and find the value of the estimation that minimizes the
posterior risk: min

w∈[a,b]
(δθ(w)) ≥ δ2(θ). Hence, due to the convexity of the function

δΘ(w), which has a minimum at Mdpost, with the corresponding posterior risk
as δ2,post(Θ) or, for the second case, b (if Mdpost > b), with as posterior risk
δΘpost

(b), or a (Mdpost < a), with as posterior risk δΘpost
(a).

Let Ψ =
∫

<
f(θ)h(x|θ)dθ be the predictive distribution of X. The Bayes risk

is hence EX(δΘpost
(.)), with . = a or b, or Mdpost.

Similarly, for the quadratic loss function, we have min
w∈[a,b]

(VΘ(w)) ≥ σ2(Θ),

where the convex function VΘ(w) attains its minimum σ2(Θ) at w = µpost. The
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distributions of the corresponding errors U = |Θ−w| and V = (Θ−w)2, for the
estimated values determined above, have their means and variances given by

E(U) = δΘ(w), V ar(U) = σ2
Θ − δ2

Θ(w) + (µΘ − w)2,

while

E(V ) = σ2
Θ − (µΘ − w)2 and V ar(V ) = E[(Θ − w)4] + (σ2

Θ + (µΘ − w)2)2,

with, in both cases, w = a or b, or µpost.

3.4. For a constraint of stochastic type, we now consider the case when W

itself could be a random variable with domain Ω. In this case, we are often
in presence of a family of random estimators {Wj}, j = 1, 2, . . . , n and would
like to identify the best distribution of the family. In the posterior distribution,
the estimation of Θ now follows the distribution of W , does not depend on the
pointwise minimization of the posterior risk, but depends rather on the global
minimization.

Theorem 3. Let {Wj}, j = 1, 2, . . . , n be a family of distributions of the es-

timator of Θ. We have, for the absolute value loss function, the worst random

decision distribution given by max
1≤j≤n

{δΘ(E(Wj))}, and under the square-error loss

function, by max
1≤j≤n

{VΘ(E(Wj))}.

Proof. As shown by Munoz-Perez and Sanchez-Gomez in [4], δΘ(w) is a convex
function of w. Hence we have EWj(δΘ(wj)) ≥ δΘ(E(Wj)), for j = j0 identifies
Wj0 as the worst distribution. By step-to-step elimination, we can obtain the
best distribution W ∗.

Under the square error loss function, we have EW (VΘ(w)) ≥ VΘ(E(W )), and
a similar conclusion is valid.

Thus, for the corresponding error variables U∗ = |Θ−W ∗| and V ∗ = (Θ−W ∗)2

with Θ∗ and W ∗ being random variables, we have

E(U∗) =

∫∫

<2

|θ − w|dF (w)dF (θ),

V ar(U∗) =

∫∫

<2

|θ − w|2dF (w)dG(θ) − [E(U∗)]2

while

E(V ∗) =

∫∫

<2

|θ − w|dF (w)dG(θ),

V ar(V ∗) =

∫∫

<2

|θ − w|4dF (w)dG(θ) − [E(V ∗)]2.
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