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HYPER-GROUPS OF ORTHOGONAL POLYNOMIALS

NGUYEN VAN THU

Dedicated to Professor Nguyen Duy Tien on his 60th birth day

Abstract. In the present paper we give a new condition for existence of dual
weak hypergroups of hypergroups generated by orthogonal polynomials. In
the case of Jacobi polynomials we prove a representation theorem for Lévy
type processes in terms of their infinitesimal operators.

1. Notations and Preliminaries

Throughout the paper we shall preserve the notation and terminology in Lasser
[9, 10, 11] and Thu [15]. In particular, given a locally compact Hausdorff totolog-
ical space E let P (E) denote the class of p.m.’s on E with the weak convergence.
Let Cb(E) denote the Banach space of all bounded continuous complex valued
functions on E with the usual supremum norm.

Let τx, x ∈ E, denote a generalized translation operator on Cb(E) as defined
in [15] (see also Levitan [12]).

Let ◦ be a stochastic convolution on P (E) in the sense of Vol’kovich [18] such
that the pair (P (E), ◦) stands for a commutative hypergroup (cf. Lasser [8, 9, 10,
11], Heyer [7], Thu [15], Vol’kovich [18] for the concept of hypergroup).

Suppose that an, bn, cn, n ∈ N , are real numbers satisfying an, cn > 0, bn ≥ 0
and an + bn + cn = 1.

Let Pn(x), n ∈ N0 = N ∪ {0}, be a sequence of polynomials on R such that
each Pn(x) is of degree n and the following recurrence relation is satisfied

P0(x) = 1, P−1(x) = 0,

xPn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), n ∈ N0.(1.1)

Favard’s theorem says that the polynomials Pn(x) are orthogonal on an infinite
subset K of R w.r. to a positive measure π if and only if an−1cn > 0 for n ∈ N .
The measure π is called the Plancherel measure of {Pn(x)}.
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The product Pn(x)Pm(x) is of the form

Pn(x)Pm(x) =
2m∑

k=0

A(n,m, k)Pn+m−k(x).(1.2)

The coefficients in (1.2) are called the linearization coefficients of the polynomi-
als Pn(x). If all linearization coefficients are nonnegative then we say that the
polynomials Pn(x) have the property (P) (cf. Lasser [8, 9, 10, 11]). Such a prop-
erty (P) together with the above mentioned properties guarantees the hypergroup
structure on N0.

In what follows we fix (an), (bn), (cn) such that (P) implies that the polynomials
(Pn) are orthogonal on K w.r. to a Plancherel measure π.

Following Lasser [8] we define a convolution operation, say t , on N0 by

δ0tδn = δntδ0 = δn for n ∈ N0

and

δntδm =
2m∑

k=0

A(n,m, n + m − k)δn+m−k(1.3)

for n,m ∈ N .

It should be noted that δntδm is a p.m. on N0 with δ0 as unit element. Thus
(N0,t) becomes a hypergroup (cf. Lasser [8, 9]).

Following Lasser [9] we define, for z ∈ C,

αz(n) = Pn(n)

and let

D = {z ∈ C : (Pn) is bounded} and Ds = D ∩ R.

It has been proved in [9] that both D and Ds are compact, Ds ⊆ [1 − 2a0, 1]
and the map z ⇒ αz is a homeomorphism. Therefore, Ds can be regarded as
the dual object to the hypergroup (N0,t). Moreover, for the Plancherel measure
(orthogonal measure) π we have

suppπ ⊆ Ds.

2. A condition for the existence of

the dual hypergroup of (N0,t)

Given x, y ∈ Ds define a linear functional ω(x, y) on H = spand {Pn : n ∈ N0)}
by

(ω(x, y)Pn = Pn(x)Pn(y)(2.1)

for n ∈ N0. Obviously,

ω(x, y)P0 = ω(x, y)1 = 1(2.2)
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and ω(x, y) is continuous in C(Ds)-norm if and only if there exists a constant
Kx,y > 0 such that for any f ∈ H,

|ω(x, y)f | ≤ Kx,y‖f‖(2.3)

which together with the property (P) and (2.2) implies the existence of a unique
probability measure µx,y on Ds such that for each n ∈ N0,∫

Ds

Pn(u)µx,y(du) = Pn(x)Pn(y).

Putting

µx,y = δx ◦ δy(2.4)

and taking into account (2.1), (2.2), (2.3) we get a binary operation ◦ on P (Ds)
such that each δx ◦ δy is a p.m and ◦ is commutative with δ1 as the unit element.
Note that in such a case the constant Kx,y in (2.3) can be 1. Thus, (P (Ds), ◦) is
a weak hypergroup and we have proved the following theorem.

Theorem 2.1. Suppose that (P) holds. Then there exists a convolution operation

◦ such that (P (Ds), ◦) is a weak hypergroup if and only if for any λ0, λ1, ..., λn ∈ R

and x, y ∈ Ds

∣∣∣
n∑

j=0

λjPj(x)Pj(y)
∣∣∣ ≤ sup

u∈Ds

∣∣∣
n∑

j=0

λjPj(u)
∣∣∣.(2.5)

Remark 2.1. If there exists convolution ◦ with the property (2.4) then the
associated generalized translation operators τx, x ∈ Ds, satisfy the following
equation:

τxPn(y) = Pn(x)Pn(y).(2.6)

3. Jacobi Polynomials

Let us consider the Jacobi polynomials P
(α,β)
n (x), where α ≥ β > −1, α + β +

1 ≥ 0. For the defining sequences (an), (bn), (cn) we have

an =
2(n + α + β + 1)(n + α + 1)(α + β + 2)

(2n + α + β + 2)(2n + α + β + 1)2(α + 1)
,

bn =
α − β

2(α + 1)

[
1 −

(α + β + 2)(α + β)

(2n + α + β + 2)(2n + α + β)

]
,

cn =
2n(n + β)(α + β + 2)

(2n + α + β + 1)(2n + α + β)2(α + 1)
·

One can check that an > 0, cn > 0, bn ≥ 0 and an + bn + cn = 1.

It was proved in [9] (see also [1]) that property (P) holds. Moreover, in this case

N̂0 is a hypergroup and can be identified with [−1, 1]. The Plancherel measure π

is given on [−1, 1] by

dπ(x) = (1 − x)α(1 + x)βdx.(3.1)
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Thus [−1, 1] = suppπ ⊆ [1 − 2a0, 1].

Let ⊗ = ◦α,β denote the stochastic convolution on Ds = [−1, 1] such that

P(Ds, ◦α,β) stands for the dual hypergroup of N̂0. In particular, for any x, y ∈
[−1, 1]

P (α,β)
n (x) P (α,β)

n (y) =

1∫

−1

P (α,β)
n (u)δx ◦α,β δy(du).(3.2)

Let τx, x ∈ [−1, 1], denote the generalized translation operator associated to
◦α,β. By a similar way as in Thu ([15], formula 3.1) we define

D⊗f(x) = lim
y→1−

τxf(y) − f(x)

1 − y
,(3.3)

where the convergence is taken in C([−1, 1])-norm. The operator D⊗ is called a
characteristic operator for ⊗.

By virtue of (3.2) and by the fact that

lim
y→1

1 − P
(α,β)
n (y)

1 − y
= P (α,β)′

n (1) =
n(n + 1 + α + β)

α + β + 2
,(3.4)

it follows that {P
(α,β)
n (y)} are eigenvectors of D⊗ and the corresponding eigen-

values are
n(n + 1 + α + β)

α + β + 2
·

Let ξt, t ≥ 0, be an ⊗-Lévy process on [−1, 1] corresponding to an ⊗-semigroup
{µt} of p.m’.s on [−1, 1]. Then there exists a p.m. H ∈ P([−1, 1]) such that

(1 − y)t−1µt(dy) → H weakly.

Let {µt} be an ⊗-semigroup corresponding to an ⊗-Lévy process {ξt} with the
infinitesimal operator A. Then we have

Theorem 3.1. The following inclusion holds:

D(D⊗) ⊂ D(A),

where D(S) denotes the domain of operator S. Moreover, for f ∈ D(D⊗), we

have

Af(x) =

1∫

−1

τxf(y) − f(x)

1 − y
H(dy),(3.5)

H being a p.m. in P(Ds) and the integrand assumes the value D⊗f(x) at y = 1−.

The measure H is uniquely determined.

Conversely, for every p.m. H on [−1, 1] the formula (3.5) defines an ⊗-Lévy
process with the infinitesimal operator A given by (3.5). Proof is similar to that
of Theorem 3.3 in (Thu [15]) following from the Lévy-Hinc̆in formula (cf. Lasser
[10], Theorem 5).



HYPER-GROUPS OF ORTHOGONAL POLYNOMIALS 15

Corollary 3.1. If H = δx, x ∈ [−1, 1), the process {ξt} is of Poisson type and

H = δ1 corresponds to the “Gaussian” case. In the last case, {ξt} becomes a

“Brownian” motion and the corresponding infinitesimal operator τ satisfies

(a) P
(α,β)
n (x) belongs to D(τ)

(b) τP
(α,β)
n (x) =

n(n + 1 + α + β)

α + β + 2
P (α,β)

n (x), n = 0, 1, 2, ...

References

[1] W. R. Bloom and H. Heyer, Harmonic Analysis and Probability Measures on Hypergroups,
Walter der Gruyter, Berlin-New York, 1995.

[2] P. M. Blumenthal and R. K. Getoor, Markov Process and Potential Theory, Academic
Press, New York, 1968.

[3] S. Bochner, Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical poly-

nomials and associated Bessel functions, Proc. Conference on differential equations Mary-
land, 1955.

[4] D. M. Bressound, Linearization and related formulas for q-ultraspherical polynomials, SIAM
J. Math. Anal. 12 (1981), 161-168.

[5] K. L. Chung, Lectures from Markov Process to Brownian Motion, Springer-Verlag, New
York-Heidelberg-Berlin, 1982.

[6] E. B. Dynkin, Markov Processes, I, Springer-Verlag, 1965.
[7] H. Heyer, Probability Theory on Hypergroups: A survey. In H. Heyer (Ed.) Probability

Measures on groups VII, Lecture Notes in Mathematics Vol. 1064, Springer-Verlag, Berlin,
pp. 481-550, 1984.

[8] R. Lasser, Bochner theorems for hypergroups and their applications to orthogonal polynomial

expansions, J. Approx. Theor. 37 (1983), 311-325.
[9] R. Lasser, Orthogonal polynomials and hypergroups, Rend Math. (7) 3 (1983), no. 2, 185-

209.
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