HYPER-GROUPS OF ORTHOGONAL POLYNOMIALS

NGUYEN VAN THU

Dedicated to Professor Nguyen Duy Tien on his 60th birth day

Abstract

In the present paper we give a new condition for existence of dual weak hypergroups of hypergroups generated by orthogonal polynomials. In the case of Jacobi polynomials we prove a representation theorem for Lévy type processes in terms of their infinitesimal operators.

1. Notations and Preliminaries

Throughout the paper we shall preserve the notation and terminology in Lasser [$9,10,11]$ and Thu [15]. In particular, given a locally compact Hausdorff totological space E let $P(E)$ denote the class of p.m.'s on E with the weak convergence. Let $C_{b}(E)$ denote the Banach space of all bounded continuous complex valued functions on E with the usual supremum norm.

Let $\tau^{x}, x \in E$, denote a generalized translation operator on $C_{b}(E)$ as defined in [15] (see also Levitan [12]).

Let o be a stochastic convolution on $P(E)$ in the sense of Vol'kovich [18] such that the pair $(P(E), \circ)$ stands for a commutative hypergroup (cf. Lasser $[8,9,10$, 11], Heyer [7], Thu [15], Vol'kovich [18] for the concept of hypergroup).

Suppose that $a_{n}, b_{n}, c_{n}, n \in N$, are real numbers satisfying $a_{n}, c_{n}>0, b_{n} \geq 0$ and $a_{n}+b_{n}+c_{n}=1$.

Let $P_{n}(x), n \in N_{0}=N \cup\{0\}$, be a sequence of polynomials on R such that each $P_{n}(x)$ is of degree n and the following recurrence relation is satisfied

$$
\begin{align*}
P_{0}(x) & =1, \quad P_{-1}(x)=0, \\
x P_{n}(x) & =a_{n} P_{n+1}(x)+b_{n} P_{n}(x)+c_{n} P_{n-1}(x), \quad n \in N_{0} . \tag{1.1}
\end{align*}
$$

Favard's theorem says that the polynomials $P_{n}(x)$ are orthogonal on an infinite subset K of R w.r. to a positive measure π if and only if $a_{n-1} c_{n}>0$ for $n \in N$. The measure π is called the Plancherel measure of $\left\{P_{n}(x)\right\}$.

[^0]The product $P_{n}(x) P_{m}(x)$ is of the form

$$
\begin{equation*}
P_{n}(x) P_{m}(x)=\sum_{k=0}^{2 m} A(n, m, k) P_{n+m-k}(x) . \tag{1.2}
\end{equation*}
$$

The coefficients in (1.2) are called the linearization coefficients of the polynomials $P_{n}(x)$. If all linearization coefficients are nonnegative then we say that the polynomials $P_{n}(x)$ have the property (\mathbb{P}) (cf. Lasser [8, 9, 10, 11]). Such a property (\mathbb{P}) together with the above mentioned properties guarantees the hypergroup structure on N_{0}.

In what follows we fix $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ such that (\mathbb{P}) implies that the polynomials $\left(P_{n}\right)$ are orthogonal on K w.r. to a Plancherel measure π.

Following Lasser [8] we define a convolution operation, say \square, on N_{0} by

$$
\delta_{0} \square \delta_{n}=\delta_{n} \square \delta_{0}=\delta_{n} \quad \text { for } \quad n \in N_{0}
$$

and

$$
\begin{equation*}
\delta_{n} \square \delta_{m}=\sum_{k=0}^{2 m} A(n, m, n+m-k) \delta_{n+m-k} \tag{1.3}
\end{equation*}
$$

for $n, m \in N$.
It should be noted that $\delta_{n} \square \delta_{m}$ is a p.m. on N_{0} with δ_{0} as unit element. Thus $\left(N_{0}, \square\right)$ becomes a hypergroup (cf. Lasser $[8,9]$).

Following Lasser [9] we define, for $z \in C$,

$$
\alpha_{z}(n)=\mathbb{P}_{n}(n)
$$

and let

$$
D=\left\{z \in C:\left(\mathbb{P}_{n}\right) \text { is bounded }\right\} \text { and } D_{s}=D \cap \mathbb{R} .
$$

It has been proved in [9] that both D and D_{s} are compact, $D_{s} \subseteq\left[1-2 a_{0}, 1\right]$ and the map $\mathrm{z} \Rightarrow \alpha_{z}$ is a homeomorphism. Therefore, \mathcal{D}_{s} can be regarded as the dual object to the hypergroup (N_{0}, \square). Moreover, for the Plancherel measure (orthogonal measure) π we have

$$
\operatorname{supp} \pi \subseteq \mathcal{D}_{s}
$$

2. A condition for the existence of THE DUAL HYPERGROUP OF (N_{0}, \square)

Given $x, y \in D_{s}$ define a linear functional $\omega(x, y)$ on $\left.\mathcal{H}=\operatorname{spand}\left\{P_{n}: n \in N_{0}\right)\right\}$ by

$$
\begin{equation*}
\left(\omega(x, y) P_{n}=P_{n}(x) P_{n}(y)\right. \tag{2.1}
\end{equation*}
$$

for $n \in N_{0}$. Obviously,

$$
\begin{equation*}
\omega(x, y) P_{0}=\omega(x, y) 1=1 \tag{2.2}
\end{equation*}
$$

and $\omega(x, y)$ is continuous in $C\left(D_{s}\right)$-norm if and only if there exists a constant $K_{x, y}>0$ such that for any $f \in \mathcal{H}$,

$$
\begin{equation*}
|\omega(x, y) f| \leq K_{x, y}\|f\| \tag{2.3}
\end{equation*}
$$

which together with the property (\mathbb{P}) and (2.2) implies the existence of a unique probability measure $\mu_{x, y}$ on D_{s} such that for each $n \in N_{0}$,

$$
\int_{D_{s}} P_{n}(u) \mu_{x, y}(d u)=P_{n}(x) P_{n}(y)
$$

Putting

$$
\begin{equation*}
\mu_{x, y}=\delta_{x} \circ \delta_{y} \tag{2.4}
\end{equation*}
$$

and taking into account $(2.1),(2.2),(2.3)$ we get a binary operation \circ on $P\left(D_{s}\right)$ such that each $\delta_{x} \circ \delta_{y}$ is a p.m and \circ is commutative with δ_{1} as the unit element. Note that in such a case the constant $K_{x, y}$ in (2.3) can be 1. Thus, $\left(P\left(D_{s}\right), \circ\right)$ is a weak hypergroup and we have proved the following theorem.

Theorem 2.1. Suppose that (\mathbb{P}) holds. Then there exists a convolution operation ○ such that $\left(P\left(D_{s}\right), \circ\right)$ is a weak hypergroup if and only if for any $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n} \in R$ and $x, y \in D_{s}$

$$
\begin{equation*}
\left|\sum_{j=0}^{n} \lambda_{j} P_{j}(x) P_{j}(y)\right| \leq \sup _{u \in D_{s}}\left|\sum_{j=0}^{n} \lambda_{j} P_{j}(u)\right| \tag{2.5}
\end{equation*}
$$

Remark 2.1. If there exists convolution \circ with the property (2.4) then the associated generalized translation operators $\tau^{x}, x \in D_{s}$, satisfy the following equation:

$$
\begin{equation*}
\tau^{x} P_{n}(y)=P_{n}(x) P_{n}(y) \tag{2.6}
\end{equation*}
$$

3. Jacobi Polynomials

Let us consider the Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$, where $\alpha \geq \beta>-1, \alpha+\beta+$ $1 \geq 0$. For the defining sequences $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ we have

$$
\begin{aligned}
a_{n} & =\frac{2(n+\alpha+\beta+1)(n+\alpha+1)(\alpha+\beta+2)}{(2 n+\alpha+\beta+2)(2 n+\alpha+\beta+1) 2(\alpha+1)} \\
b_{n} & =\frac{\alpha-\beta}{2(\alpha+1)}\left[1-\frac{(\alpha+\beta+2)(\alpha+\beta)}{(2 n+\alpha+\beta+2)(2 n+\alpha+\beta)}\right] \\
c_{n} & =\frac{2 n(n+\beta)(\alpha+\beta+2)}{(2 n+\alpha+\beta+1)(2 n+\alpha+\beta) 2(\alpha+1)}
\end{aligned}
$$

One can check that $a_{n}>0, c_{n}>0, b_{n} \geq 0$ and $a_{n}+b_{n}+c_{n}=1$.
It was proved in [9] (see also [1]) that property (\mathbb{P}) holds. Moreover, in this case \widehat{N}_{0} is a hypergroup and can be identified with $[-1,1]$. The Plancherel measure π is given on $[-1,1]$ by

$$
\begin{equation*}
d \pi(x)=(1-x)^{\alpha}(1+x)^{\beta} d x \tag{3.1}
\end{equation*}
$$

Thus $[-1,1]=\operatorname{supp} \pi \subseteq\left[1-2 a_{0}, 1\right]$.
Let $\otimes=\circ_{\alpha, \beta}$ denote the stochastic convolution on $D_{s}=[-1,1]$ such that $\mathcal{P}\left(D_{s}, \circ_{\alpha, \beta}\right)$ stands for the dual hypergroup of \widehat{N}_{0}. In particular, for any $x, y \in$ $[-1,1]$

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(x) P_{n}^{(\alpha, \beta)}(y)=\int_{-1}^{1} P_{n}^{(\alpha, \beta)}(u) \delta_{x} \circ_{\alpha, \beta} \delta_{y}(d u) . \tag{3.2}
\end{equation*}
$$

Let $\tau^{x}, x \in[-1,1]$, denote the generalized translation operator associated to $\circ_{\alpha, \beta}$. By a similar way as in Thu ([15], formula 3.1) we define

$$
\begin{equation*}
D^{\otimes} f(x)=\lim _{y \rightarrow 1-} \frac{\tau^{x} f(y)-f(x)}{1-y}, \tag{3.3}
\end{equation*}
$$

where the convergence is taken in $C([-1,1])$-norm. The operator D^{\otimes} is called a characteristic operator for \otimes.

By virtue of (3.2) and by the fact that

$$
\begin{equation*}
\lim _{y \rightarrow 1} \frac{1-P_{n}^{(\alpha, \beta)}(y)}{1-y}=P_{n}^{(\alpha, \beta)^{\prime}}(1)=\frac{n(n+1+\alpha+\beta)}{\alpha+\beta+2}, \tag{3.4}
\end{equation*}
$$

it follows that $\left\{P_{n}^{(\alpha, \beta)}(y)\right\}$ are eigenvectors of D^{\otimes} and the corresponding eigenvalues are $\frac{n(n+1+\alpha+\beta)}{\alpha+\beta+2}$.

Let $\xi_{t}, t \geq 0$, be an \otimes-Lévy process on $[-1,1]$ corresponding to an \otimes-semigroup $\left\{\mu_{t}\right\}$ of p.m'.s on $[-1,1]$. Then there exists a p.m. $H \in \mathcal{P}([-1,1])$ such that

$$
(1-y) t^{-1} \mu_{t}(d y) \rightarrow H \quad \text { weakly. }
$$

Let $\left\{\mu_{t}\right\}$ be an \otimes-semigroup corresponding to an \otimes-Lévy process $\left\{\xi_{t}\right\}$ with the infinitesimal operator A. Then we have

Theorem 3.1. The following inclusion holds:

$$
\mathcal{D}\left(D^{\otimes}\right) \subset \mathcal{D}(A),
$$

where $\mathcal{D}(S)$ denotes the domain of operator S. Moreover, for $f \in \mathcal{D}\left(D^{\otimes}\right)$, we have

$$
\begin{equation*}
A f(x)=\int_{-1}^{1} \frac{\tau^{x} f(y)-f(x)}{1-y} H(d y) \tag{3.5}
\end{equation*}
$$

H being a p.m. in $\mathcal{P}\left(D_{s}\right)$ and the integrand assumes the value $D^{\otimes} f(x)$ at $y=1-$. The measure H is uniquely determined.

Conversely, for every p.m. H on $[-1,1]$ the formula (3.5) defines an \otimes-Lévy process with the infinitesimal operator A given by (3.5). Proof is similar to that of Theorem 3.3 in (Thu [15]) following from the Lévy-Hinc̆in formula (cf. Lasser [10], Theorem 5).

Corollary 3.1. If $H=\delta_{x}, x \in[-1,1)$, the process $\left\{\xi_{t}\right\}$ is of Poisson type and $H=\delta_{1}$ corresponds to the "Gaussian" case. In the last case, $\left\{\xi_{t}\right\}$ becomes a "Brownian" motion and the corresponding infinitesimal operator τ satisfies
(a) $P_{n}^{(\alpha, \beta)}(x)$ belongs to $\mathcal{D}(\tau)$
(b) $\tau P_{n}^{(\alpha, \beta)}(x)=\frac{n(n+1+\alpha+\beta)}{\alpha+\beta+2} P_{n}^{(\alpha, \beta)}(x), \quad n=0,1,2, \ldots$

References

[1] W. R. Bloom and H. Heyer, Harmonic Analysis and Probability Measures on Hypergroups, Walter der Gruyter, Berlin-New York, 1995.
[2] P. M. Blumenthal and R. K. Getoor, Markov Process and Potential Theory, Academic Press, New York, 1968.
[3] S. Bochner, Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials and associated Bessel functions, Proc. Conference on differential equations Maryland, 1955.
[4] D. M. Bressound, Linearization and related formulas for q-ultraspherical polynomials, SIAM J. Math. Anal. 12 (1981), 161-168.
[5] K. L. Chung, Lectures from Markov Process to Brownian Motion, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
[6] E. B. Dynkin, Markov Processes, I, Springer-Verlag, 1965.
[7] H. Heyer, Probability Theory on Hypergroups: A survey. In H. Heyer (Ed.) Probability Measures on groups VII, Lecture Notes in Mathematics Vol. 1064, Springer-Verlag, Berlin, pp. 481-550, 1984.
[8] R. Lasser, Bochner theorems for hypergroups and their applications to orthogonal polynomial expansions, J. Approx. Theor. 37 (1983), 311-325.
[9] R. Lasser, Orthogonal polynomials and hypergroups, Rend Math. (7) 3 (1983), no. 2, 185209.
[10] R. Lasser, On the Lévy-Hinčin formula for a commutative hypergroups, In "Probability Measures on Groups VII", (H. Heyer, Ed.), Lecture Notes in Mathematics, Vol. 1064, Springer-Verlag, Berlin, pp.481-550, 1984.
[11] R. Lasser, Orthogonal polynomials and hypergroups II: The symmetric case, Trans. Amer. Math. Soc. 314 (1994), 749-770.
[12] B. M. Levitan, Generalized translation operators and some of their applications, Israel Program for Scientific Translations, Jerusalem, 1962.
[13] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.
[14] N. V. Thu, Generalized independent increments processes, Nagoya Math. J. 133 (1994), 155-175.
[15] N. V. Thu, Generalized translation operators and Markov process, Demmonstr. Math. 34 (2001), 259-304.
[16] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), 217-245.
[17] V. E. Vol'kovich, On an analytical description of Urbanik algebras, Izv. Akad. Nauk. UzSSR Ser. Fiz. Math. Nauk 5 (1979), 12-17.
[18] V. E. Vol'kovich, On symmetric stochastic convolutions, J. Theor. Prob. 5 (1992), No 3, 417-430.
[19] G. N. Watson, A Treatise on Bessel Functions, Sec. Ed. Cambridge University Press, 1966.
Institute of Mathematics, Hanoi
P. O. Box 631, Bo Ho, Hanoi, Vietnam

[^0]: Received April 25, 2001; in revised form October 21, 2002.
 1991 Mathematics Subject Classification. MSC 2000: 60B05, 60J25, 60J35, 60J80.
 Key words and phrases. Convolution, dual hypergroup, Lévy process, Jacobi polynomials.
 The paper is partially supported by the National Basic Research Program in Natural Science, Vietnam.

