HYPER-GROUPS OF ORTHOGONAL POLYNOMIALS

NGUYEN VAN THU

Dedicated to Professor Nguyen Duy Tien on his 60th birth day

ABSTRACT. In the present paper we give a new condition for existence of dual weak hypergroups of hypergroups generated by orthogonal polynomials. In the case of Jacobi polynomials we prove a representation theorem for Lévy type processes in terms of their infinitesimal operators.

1. NOTATIONS AND PRELIMINARIES

Throughout the paper we shall preserve the notation and terminology in Lasser [9, 10, 11] and Thu [15]. In particular, given a locally compact Hausdorff totological space E let P(E) denote the class of p.m.'s on E with the weak convergence. Let $C_b(E)$ denote the Banach space of all bounded continuous complex valued functions on E with the usual supremum norm.

Let τ^x , $x \in E$, denote a generalized translation operator on $C_b(E)$ as defined in [15] (see also Levitan [12]).

Let \circ be a stochastic convolution on P(E) in the sense of Vol'kovich [18] such that the pair $(P(E), \circ)$ stands for a *commutative hypergroup* (cf. Lasser [8, 9, 10, 11], Heyer [7], Thu [15], Vol'kovich [18] for the concept of hypergroup).

Suppose that $a_n, b_n, c_n, n \in N$, are real numbers satisfying $a_n, c_n > 0, b_n \ge 0$ and $a_n + b_n + c_n = 1$.

Let $P_n(x)$, $n \in N_0 = N \cup \{0\}$, be a sequence of polynomials on R such that each $P_n(x)$ is of degree n and the following recurrence relation is satisfied

(1.1)
$$P_0(x) = 1, \quad P_{-1}(x) = 0,$$
$$xP_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + c_n P_{n-1}(x), \quad n \in N_0.$$

Favard's theorem says that the polynomials $P_n(x)$ are orthogonal on an infinite subset K of R w.r. to a positive measure π if and only if $a_{n-1}c_n > 0$ for $n \in N$. The measure π is called the Plancherel measure of $\{P_n(x)\}$.

Received April 25, 2001; in revised form October 21, 2002.

¹⁹⁹¹ Mathematics Subject Classification. MSC 2000: 60B05, 60J25, 60J35, 60J80.

Key words and phrases. Convolution, dual hypergroup, Lévy process, Jacobi polynomials.

The paper is partially supported by the National Basic Research Program in Natural Science, Vietnam.

The product $P_n(x)P_m(x)$ is of the form

(1.2)
$$P_n(x)P_m(x) = \sum_{k=0}^{2m} A(n,m,k)P_{n+m-k}(x).$$

The coefficients in (1.2) are called the linearization coefficients of the polynomials $P_n(x)$. If all linearization coefficients are nonnegative then we say that the polynomials $P_n(x)$ have the property (\mathbb{P}) (cf. Lasser [8, 9, 10, 11]). Such a property (\mathbb{P}) together with the above mentioned properties guarantees the hypergroup structure on N_0 .

In what follows we fix (a_n) , (b_n) , (c_n) such that (\mathbb{P}) implies that the polynomials (P_n) are orthogonal on K w.r. to a Plancherel measure π .

Following Lasser [8] we define a convolution operation, say \Box , on N_0 by

$$\delta_0 \Box \delta_n = \delta_n \Box \delta_0 = \delta_n \quad \text{for} \quad n \in N_0$$

and

(1.3)
$$\delta_n \Box \delta_m = \sum_{k=0}^{2m} A(n,m,n+m-k)\delta_{n+m-k}$$

for $n, m \in N$.

It should be noted that $\delta_n \Box \delta_m$ is a p.m. on N_0 with δ_0 as unit element. Thus (N_0, \Box) becomes a hypergroup (cf. Lasser [8, 9]).

Following Lasser [9] we define, for $z \in C$,

$$\alpha_z(n) = \mathbb{P}_n(n)$$

and let

$$D = \{z \in C : (\mathbb{P}_n) \text{ is bounded} \} \text{ and } D_s = D \cap \mathbb{R}.$$

It has been proved in [9] that both D and D_s are compact, $D_s \subseteq [1 - 2a_0, 1]$ and the map $z \Rightarrow \alpha_z$ is a homeomorphism. Therefore, \mathcal{D}_s can be regarded as the dual object to the hypergroup (N_0, \Box) . Moreover, for the Plancherel measure (orthogonal measure) π we have

$$\operatorname{supp}\pi \subseteq \mathcal{D}_s$$

2. A CONDITION FOR THE EXISTENCE OF THE DUAL HYPERGROUP OF (N_0, \Box)

Given $x, y \in D_s$ define a linear functional $\omega(x, y)$ on $\mathcal{H} = \text{spand} \{P_n : n \in N_0\}$ by

(2.1)
$$(\omega(x,y)P_n = P_n(x)P_n(y)$$

for $n \in N_0$. Obviously,

(2.2)
$$\omega(x,y)P_0 = \omega(x,y)1 = 1$$

and $\omega(x, y)$ is continuous in $C(D_s)$ -norm if and only if there exists a constant $K_{x,y} > 0$ such that for any $f \in \mathcal{H}$,

$$(2.3) \qquad \qquad |\omega(x,y)f| \le K_{x,y}||f||$$

which together with the property (\mathbb{P}) and (2.2) implies the existence of a unique probability measure $\mu_{x,y}$ on D_s such that for each $n \in N_0$,

$$\int_{D_s} P_n(u)\mu_{x,y}(du) = P_n(x)P_n(y)$$

Putting

(2.4) $\mu_{x,y} = \delta_x \circ \delta_y$

and taking into account (2.1), (2.2), (2.3) we get a binary operation \circ on $P(D_s)$ such that each $\delta_x \circ \delta_y$ is a p.m and \circ is commutative with δ_1 as the unit element. Note that in such a case the constant $K_{x,y}$ in (2.3) can be 1. Thus, $(P(D_s), \circ)$ is a weak hypergroup and we have proved the following theorem.

Theorem 2.1. Suppose that (\mathbb{P}) holds. Then there exists a convolution operation \circ such that $(P(D_s), \circ)$ is a weak hypergroup if and only if for any $\lambda_0, \lambda_1, ..., \lambda_n \in R$ and $x, y \in D_s$

(2.5)
$$\left|\sum_{j=0}^{n} \lambda_j P_j(x) P_j(y)\right| \le \sup_{u \in D_s} \left|\sum_{j=0}^{n} \lambda_j P_j(u)\right|.$$

Remark 2.1. If there exists convolution \circ with the property (2.4) then the associated generalized translation operators τ^x , $x \in D_s$, satisfy the following equation:

(2.6)
$$\tau^x P_n(y) = P_n(x) P_n(y).$$

3. Jacobi Polynomials

Let us consider the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, where $\alpha \ge \beta > -1$, $\alpha + \beta + 1 \ge 0$. For the defining sequences (a_n) , (b_n) , (c_n) we have

$$a_n = \frac{2(n+\alpha+\beta+1)(n+\alpha+1)(\alpha+\beta+2)}{(2n+\alpha+\beta+2)(2n+\alpha+\beta+1)2(\alpha+1)},$$

$$b_n = \frac{\alpha-\beta}{2(\alpha+1)} \Big[1 - \frac{(\alpha+\beta+2)(\alpha+\beta)}{(2n+\alpha+\beta+2)(2n+\alpha+\beta)} \Big],$$

$$c_n = \frac{2n(n+\beta)(\alpha+\beta+2)}{(2n+\alpha+\beta+1)(2n+\alpha+\beta)2(\alpha+1)}.$$

One can check that $a_n > 0$, $c_n > 0$, $b_n \ge 0$ and $a_n + b_n + c_n = 1$.

It was proved in [9] (see also [1]) that property (\mathbb{P}) holds. Moreover, in this case \widehat{N}_0 is a hypergroup and can be identified with [-1,1]. The Plancherel measure π is given on [-1,1] by

(3.1)
$$d\pi(x) = (1-x)^{\alpha}(1+x)^{\beta}dx.$$

Thus $[-1, 1] = \operatorname{supp} \pi \subseteq [1 - 2a_0, 1].$

Let $\otimes = \circ_{\alpha,\beta}$ denote the stochastic convolution on $D_s = [-1,1]$ such that $\mathcal{P}(D_s, \circ_{\alpha,\beta})$ stands for the dual hypergroup of \widehat{N}_0 . In particular, for any $x, y \in [-1,1]$

(3.2)
$$P_n^{(\alpha,\beta)}(x) \ P_n^{(\alpha,\beta)}(y) = \int_{-1}^1 P_n^{(\alpha,\beta)}(u)\delta_x \circ_{\alpha,\beta} \delta_y(du)$$

Let τ^x , $x \in [-1, 1]$, denote the generalized translation operator associated to $\circ_{\alpha,\beta}$. By a similar way as in Thu ([15], formula 3.1) we define

(3.3)
$$D^{\otimes}f(x) = \lim_{y \to 1^{-}} \frac{\tau^{x} f(y) - f(x)}{1 - y},$$

where the convergence is taken in C([-1, 1])-norm. The operator D^{\otimes} is called a characteristic operator for \otimes .

By virtue of (3.2) and by the fact that

(3.4)
$$\lim_{y \to 1} \frac{1 - P_n^{(\alpha,\beta)}(y)}{1 - y} = P_n^{(\alpha,\beta)'}(1) = \frac{n(n + 1 + \alpha + \beta)}{\alpha + \beta + 2},$$

it follows that $\{P_n^{(\alpha,\beta)}(y)\}$ are eigenvectors of D^{\otimes} and the corresponding eigenvalues are $\frac{n(n+1+\alpha+\beta)}{\alpha+\beta+2}$.

Let $\xi_t, t \ge 0$, be an \otimes -Lévy process on [-1, 1] corresponding to an \otimes -semigroup $\{\mu_t\}$ of p.m'.s on [-1, 1]. Then there exists a p.m. $H \in \mathcal{P}([-1, 1])$ such that

$$(1-y)t^{-1}\mu_t(dy) \to H$$
 weakly.

Let $\{\mu_t\}$ be an \otimes -semigroup corresponding to an \otimes -Lévy process $\{\xi_t\}$ with the infinitesimal operator A. Then we have

Theorem 3.1. The following inclusion holds:

 $\mathcal{D}(D^{\otimes}) \subset \mathcal{D}(A),$

where $\mathcal{D}(S)$ denotes the domain of operator S. Moreover, for $f \in \mathcal{D}(D^{\otimes})$, we have

(3.5)
$$Af(x) = \int_{-1}^{1} \frac{\tau^{x} f(y) - f(x)}{1 - y} H(dy),$$

H being a p.m. in $\mathcal{P}(D_s)$ and the integrand assumes the value $D^{\otimes}f(x)$ at y = 1-. The measure H is uniquely determined.

Conversely, for every p.m. H on [-1,1] the formula (3.5) defines an \otimes -Lévy process with the infinitesimal operator A given by (3.5). Proof is similar to that of Theorem 3.3 in (Thu [15]) following from the Lévy-Hinčin formula (cf. Lasser [10], Theorem 5).

Corollary 3.1. If $H = \delta_x$, $x \in [-1, 1)$, the process $\{\xi_t\}$ is of Poisson type and $H = \delta_1$ corresponds to the "Gaussian" case. In the last case, $\{\xi_t\}$ becomes a "Brownian" motion and the corresponding infinitesimal operator τ satisfies

(a)
$$P_n^{(\alpha,\beta)}(x)$$
 belongs to $\mathcal{D}(\tau)$
(b) $\tau P_n^{(\alpha,\beta)}(x) = \frac{n(n+1+\alpha+\beta)}{\alpha+\beta+2} P_n^{(\alpha,\beta)}(x), \quad n = 0, 1, 2, ...$

References

- W. R. Bloom and H. Heyer, Harmonic Analysis and Probability Measures on Hypergroups, Walter der Gruyter, Berlin-New York, 1995.
- [2] P. M. Blumenthal and R. K. Getoor, *Markov Process and Potential Theory*, Academic Press, New York, 1968.
- [3] S. Bochner, Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials and associated Bessel functions, Proc. Conference on differential equations Maryland, 1955.
- [4] D. M. Bressound, Linearization and related formulas for q-ultraspherical polynomials, SIAM J. Math. Anal. 12 (1981), 161-168.
- [5] K. L. Chung, Lectures from Markov Process to Brownian Motion, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
- [6] E. B. Dynkin, Markov Processes, I, Springer-Verlag, 1965.
- [7] H. Heyer, Probability Theory on Hypergroups: A survey. In H. Heyer (Ed.) Probability Measures on groups VII, Lecture Notes in Mathematics Vol. 1064, Springer-Verlag, Berlin, pp. 481-550, 1984.
- [8] R. Lasser, Bochner theorems for hypergroups and their applications to orthogonal polynomial expansions, J. Approx. Theor. 37 (1983), 311-325.
- [9] R. Lasser, Orthogonal polynomials and hypergroups, Rend Math. (7) 3 (1983), no. 2, 185-209.
- [10] R. Lasser, On the Lévy-Hinčin formula for a commutative hypergroups, In "Probability Measures on Groups VII", (H. Heyer, Ed.), Lecture Notes in Mathematics, Vol. 1064, Springer-Verlag, Berlin, pp. 481-550, 1984.
- [11] R. Lasser, Orthogonal polynomials and hypergroups II: The symmetric case, Trans. Amer. Math. Soc. 314 (1994), 749-770.
- [12] B. M. Levitan, Generalized translation operators and some of their applications, Israel Program for Scientific Translations, Jerusalem, 1962.
- [13] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.
- [14] N. V. Thu, Generalized independent increments processes, Nagoya Math. J. 133 (1994), 155-175.
- [15] N. V. Thu, Generalized translation operators and Markov process, Demmonstr. Math. 34 (2001), 259-304.
- [16] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), 217-245.
- [17] V. E. Vol'kovich, On an analytical description of Urbanik algebras, Izv. Akad. Nauk. UzSSR Ser. Fiz. Math. Nauk 5 (1979), 12-17.
- [18] V. E. Vol'kovich, On symmetric stochastic convolutions, J. Theor. Prob. 5 (1992), No 3, 417-430.
- [19] G. N. Watson, A Treatise on Bessel Functions, Sec. Ed. Cambridge University Press, 1966.

INSTITUTE OF MATHEMATICS, HANOI P. O. BOX 631, BO HO, HANOI, VIETNAM