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A MODEL FOR HOMOTOPY TYPE OF THE COMPLEMENT

NGUYEN VIET DUNG

Dedicated to the memory of Le Van Thiem

Abstract. We construct a cellular complex of the same homotopy type of
the complement for a complex line arrangement in C

2. The construction
based on the labyrinth of a line arrangement, defined by us, and on the braid
monodromy presentation for its fundamental group.

1. Introduction

Let A be an `-arrangement, that is a finite set of hyperplanes in C
`. The

hyperplanes under consideration are not necessarily linear. Each hyperplane is
defined by a linear form. If all hyperplanes of A are defined by real defining
forms, we have a real arrangement. The complement of A is the open 2`-manifold
M = C

` \
⋃

H∈A

H. Many efforts have been done to find out a simple model for the

homotopy type of this complement M . M. Salvetti [9] has constructed a regular
CW-complex which is a strong deformation of the complement for the case of real
arrangements. P. Orlik [7] proved the existence of such a complex for an arbitrary
arrangement of subspaces, the most general case. However, cell structure of the
Orlik’s complex can not be described explicitly. Another result was due to A.
Libgober [5], where he proved that the canonical 2-complex associated to the braid
monodromy presentation for the fundamental group of the complement of a plane
curve is homotopy to its complement. Again, the braid monodromy presentation
is somewhat unwieldy. For the case of complexification of arrangement of real
lines, from Salvetti’s complex, M. Falk [4] has deduced another complex which
is homotopy equivalent to the complement. It is nothing but a modification of
the canonical 2-complex modeled on the Randell’s presentation [8], using Tietze’s
transformations.

In this paper we will deal with the case of arrangements of complex lines in
C

2. More precisely, we shall construct a cellular complex of the same homotopy
type as the complement of A in C

2. Our construction will base on the method
to describe braid monodromy from the labyrinth of a line arrangement.
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2. Braid monodromy presentation

In this section we recall the definition of braid monodromy of a plane curve
defined by B. Moishezon [6]. In the context of line arrangements we introduce
the notion of labyrinth. Then we shall show how we can read off explicitly all
braids of an arrangement of lines from its labyrinth.

Let C = {f(x, y) = 0} ∈ C
2 be a plane curve. Suppose that the projection

pr1 : C
2 → C

1 onto the x-axis is generic with respect to the curve C. Denote
by S(C) the set {α ∈ C; ∂f(α)/∂y = 0} and D(C) the image of S(C) under the
projection pr1. For a point x̃ of the x-plane C

1 let Cx̃ denote the fiber of the
projection pr1 over the point x̃, Cx̃ = {(x, y) ∈ C

2 ; x = x̃}. Given a path
γ : I → C

1 \D(C) on the x-coordinate C
1. We see easily that outside of S(C) the

restriction pr1|C of pr1 is a trivial bundle. We have then a homeomorphisms

(pr−1
1 (γ(0)), pr−1

1 (γ(0)) ∩ C) −→ (pr−1
1 (γ(t)), pr−1

1 (γ(t)) ∩ C),

t ∈ [0, 1], induced by a given trivialization of (pr1, pr1|C). We call this homeo-
morphism the braid homeomorphism defined over the path γ, or simply the braid
defined over γ. Let fix a base point x0 of the x-axis, x0 ∈ C

1\D(C). When γ is a
loop beginning and ending at x0, we obtain a homeomorphism

(Cx0
, Cx0

∩ C) −→ (Cx0
, Cx0

∩ C).

This defines a homomorphism

θ : π1(C
1\D(C);x0) −→ B[Cx0

, Cx0
∩ C],

which is called the braid monodromy of the curve C (see [6]). Here by B[P,K]
we mean the group of isotopy classes of compact support homeomorphisms of a
2-plane P which preserves a fixed finite subset K ⊂ P .

The determination of the braid monodromy is usually carried out in two steps.
First, for a point xk ∈ D(C) we denote by Dε

xk
a small disk of radius ε, centered

at xk. Let fix a point xε
k on the boundary ∂Dε

xk
of this disk and Cxε

k
the fiber over

this point xε
k. By moving this fiber Cxε

k
counterclockwise along the boundary of

the disk Dε
xk

we obtain a homeomorphism of Cxε
k

into itself, preserving Cxε
k
∩ C.

It gives rise an element of the braid group B[Cxε
k
, Cxε

k
∩ C] and will be called the

local braid monodromy of C at xk.

Next, suppose that D(C) = {x1, ..., xN}. Let Γ1, ...,ΓN be a system of simple
paths in C

1 \ D(C) satisfying

1) Γi ∩ Γj = x0, 1 ≤ i < j ≤ N ;

2) Each Γi connects x0 with xε
i and Γi ∩ D(C) = ∅.

We call those Γi’s, i = 1, ..., N , a good system of simple paths. Let γi ∈
π1(C

1 \D(C)) be the element represented by Γi · ∂Dε
xi
· Γ−1

i . The set of all those

γi’s is called a good ordered system of generators of π1(C
1 \D(C)). To determine

the braid monodromy θ means to find all θ(γi), 1 ≤ i ≤ N . Let θ(Γi) be the
braid homeomorphism defined over the path Γi. Then it is clear that θ(γi) can be
completely determined by the local braid monodromy at xi and the braid θ(Γi).
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From now on we consider only the case when C is an arrangement A of complex
lines in C

2.

Suppose that each line Hi ∈ A is defined by an equation y = αi(x), where αi

is a linear function αi : C → C. Let Ri(x) = Re(αi(x)). For any 1 ≤ i < j ≤ n,
the subset Li,j of the x-axis C

1, defined by

Li,j = {x ∈ C
1;Ri(x) = Rj(x)},

is a (real) line in C
1.

Definition 2.1. We call the set

L(A) = {Li,j ; 1 ≤ i < j ≤ n}

the labyrinth of the arrangement A.

Remark 2.1. For each line L ∈ L(A), there might be i1, ..., ik with 1 ≤ i1 <
... < ik ≤ n such that

L = {x ∈ C
1 ;Ris(x) = Rit(x), 1 ≤ s < t ≤ k}.

The number k will be called the multiplicity of L. It is easy to see that after a
suitable change of coordinates we can always assume that the multiplicity of any
line L in L(A) equals to 2.

In the arrangement context, the points of S(C) are nothing but multiple points
of the arrangement A. By definition, a multiple point P of the arrangement A
is the nonempty intersection of two or more hyperplanes of A. The assumption
on the genericity of the projection pr1 implies that the multiple points of the
arrangement A are distinct by their x-coordinates. In other words, the images of
multiple points of A on the x-plane C

1 are pairwise distinct.

Let xk ∈ C
1 be the image of a multiple point Pk = (xk, yk) of A under the

projection pr1. Suppose that Pk =
r⋂

j=1
Hij . Then it is clear that xk belongs to

the lines Lis,it, 1 ≤ s < t ≤ r of the labyrinth L(A). However, there might be
another line L ∈ L(A), which does not belong to {Lis,it ; 1 ≤ s < t ≤ r}, going
through this point xk.

Definition 2.2. (i) The labyrinth L(A) is said to be good with respect to the

multiple point Pk =
r⋂

j=1
Hij if there is not any line of L(A) except Lis,it ; 1 ≤ s <

t ≤ r, going through xk.

(ii) The labyrinth L(A) of an arrangement A is said to be proper if any line of
L(A) has multiplicity 2 and it is good with respect to all multiple points of A.

Remark 2.2. After a suitable change of coordinates we can assume that the
labyrinth L(A) is good with respect to all multiple points of A. So, from now on
we always assume that the labyrinth L(A) of an arrangement A is proper.
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Now we show how we can read off the braids of an arrangement A from its
labyrinth. The intersection of Cx̃ = {(x, y) ∈ C

2;x = x̃}, the fiber of pr1 over

the point x̃ ∈ C
1\D(A), with lines of A, Cx̃ ∩

( n⋃

i=1
Hi

)
, consists of n distinct

points. When we move the point x̃ along a path in C1 \ D(A), the fiber Cx̃ will
move correspondingly. These n points form a braid on n strings. We will call
the string corresponding to the hyperplane Hi the ith string. In general, these
points have distinct real parts. A braiding will occur when the path intersects a
line of the labyrinth L(A). Precisely, following two steps suggested by Moishezon
as described in Section 2, suppose that the path Γk intersects the line Li,j of the

labyrinth L(A). Then we will obtain a braiding of the ith string and jth string.
The received braid is determined up to sign. The sign of this braid depends on
the fact that which of these strings moves over the other one. This can also be
determined by the labyrinth L(A). Recording successively all these braids when
the fiber moves along the path γk, we will get the braids θ(γk).

3. A CW-complex model for C
2 \ A

We begin by recalling results of [3]. Suppose that P = {P1, ..., PN} denotes the
set of all multiple points of A. For each multiple point Pk, let Ik be its local index
(see [3]). Let choose a good system of simple paths Γk, k = 1, ..., N as in Section
2. It gives us a good ordered system of generators {γ1, ..., γN} of π1(C

1 \D(A)).

The following is the main result of [3].

Theorem 3.1. The braid monodromy of A is determined by

θ(γk) = βk · AIk
· β−1

k , 1 ≤ k ≤ N,

where AIk
is the full twist on Ik, βk is a braid which can be read off from the

labyrinth L(A).

The full twists AIk
’s and the braids βk’s are determined from the labyrinth

L(A) as mentioned after the Remark 2.2.

As noted in [6], the braid monodromy of A is closely related to the fundamental
group of its complement π1

(
C

` \
⋃

H∈A

H
)
. The intersection of the fiber Cx0

of

pr1 over x0 with hyperplanes of A consists of n points. Then Cx0
\ (Cx0

∩
(

⋃

H∈A

H)) is a punctured complex line with n removed points. Let g1, ..., gn denote

the generators of the free group π1(Cx0
\ (Cx0

∩ (
⋃

H∈A

H))). We identify these

generators with their images in C
` \

⋃

H∈A

H via the homomorphism induced from

the embedding Cx0
\(Cx0

∩ (
⋃

H∈A

H)) ⊂ C` \
⋃

H∈A

H. Let consider the braid group

B[Cx0
, Cx0

∩ (
⋃

H∈A

H)] as a group of automorphisms of π1(C
` \

⋃

H∈A

H). For each

multiple point Pk, 1 ≤ k ≤ N , we denote by Ik the set of indices of all lines of
A going through Pk. Then we have the following corollary (cf. [5]).
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Corollary 3.1. The fundamental group of the complement to the arrangement
A, π1(C

` \
⋃

H∈A

H), is generated by elements g1, ..., gn, with the defining relations

gi = βk · AIk
· β−1

k · gi, i ∈ Ik, k = 1, ..., N.

Remind that in [8], Randell gave a presentation for the fundamental group of
the complement of any real arrangement. This presentation can be simplified (see
[4]) to get a smaller presentation having one generator for each line and m − 1
commutation relations for each multiple point of multiplicity m. Also, in [4], M.
Falk has proved that the canonical 2-complex, modeled on this presentation is
homotopy equivalent to the complement M .

Now we proceed on the construction of our model. Consider the set P =
{P1, ..., PN} of all multiple points of A. These multiple points Pk = (xk, yk) are
the only singularities of A. Let x0 be a fixed base point in C

1 \ D(A). Remind
that Ik = {i1, ..., ir} is the set of all indices of those lines of A passing through
the multiple point Pk. Let denote by Ak the arrangement of hyperplanes His ;
s = 1, ..., r. Observe that, locally at the point Pk, after a suitable isotopy, we
can consider that we have a real arrangement. First, we associate with x0 a
cellular complex C0 = S

1 ∨ ..... ∨ S
1

︸ ︷︷ ︸

n

. Let denote each copy of S
1 by ei; i = 1, ..., n

respectively. For each multiple point Pk, 1 ≤ k ≤ N , we associate a complex Ck

as follows. Denote by Rk the simplified Randell’s complex corresponding to the
arrangement Ak as defined in [4]. Then we set Ck = Rk ∨ (S1 ∨ ... ∨ S

1
︸ ︷︷ ︸

n−r

). We

denote the 1-cells of Rk by e
(k)
is

; s = 1, ..., r respectively, and each copy of S
1 by

e
(k)
i , i ∈ {1, ..., n}\Ik . Next we have to attach these complexes Ci’s to each other.

In fact, each Ck will be attach to C0 and the attachment will be done along the
chosen simple paths Γk connecting x0 to a point xε

k near the point xk. We have
two cases.

Case I: If the path Γk does not cut any line of the labyrinth L(A), we will
attach a 1-cell lk connecting the 0-cell of C0 to the 0-cell of Ck. Then for each

i = 1, ..., n we attach a 2-cell having the boundary ei · lk · (e
(k)
i )−1l−1

k .

Case II: If the path Γk cuts some lines of the labyrinth L(A), the attachment
will be done in several steps.

Step 1: Suppose that beginning from x0, Γk cuts the line Lm,n first. We

take a new copy of complex C0, denote it by C
(1)
0 and denote its 1-cells by

g
(1)
i , i = 1, ..., n, respectively. We attach C

(1)
0 to C0 first by attaching a 1-cell

connecting two 0-cells of these complexes. Then, for each i ∈ {1, ..., n} \ {m,n}
we attach a 2-cell as in the case I. Finally, we attach a new 2-cell having the

boundary em · en · (g
(1)
m )−1 · (g

(1)
n )−1.

Step 2: Suppose that after Lm,n, the path Γk will cut next another line Ls,t of

L(A). Then we will repeat the step 1, using the the complex C
(1)
0 instead of the

complex C0, the 1-cells g
(1)
i , i = 1, ..., n, instead of 1-cells ei; i = 1, ..., n, and the
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indices s, t instead of indices m, n. Continuing this way, after a finite number of

steps we will come to a complex C
(h)
0 and from here the path Γk will go to the

point xε
k, without cutting any other line of the labyrinth. We denote the 1-cells

of this complex by e
(h)
i , i = 1, ..., n.

Step 3: Now, the complex C
(h)
0 is attached to the complex Ck in the same way

as it has been done in the Case I.

By this attachment procedure, we obtain a CW-complex, denoted by C(A).

Theorem 3.2. The CW-complex C(A) is homotopy equivalent to the comple-
ment of the arrangement A in C

2.

Proof. The proof is quite elementary and can be deduced from the construction
of this CW-complex. If the arrangement A is central, as noted above, after a
suitable isotopy we can consider it to be a real arrangement. Then, the complex
C(A) is nothing but the simplified Randell’s complex. And the theorem follows
from [4].

Suppose that the arrangement A has more than one multiple points. From
the complex C(A) we first collapse the new 2-cells occurring in the attachment.

By this way, we have identified the 1-cells e
(k)
i , i = 1, ..., n, k = 1, ..., N to ei

respectively, modulo a conjugation. Note that according to the construction
of the complex C(A) these conjugations are the same conjugations appear in
the determining of braid monodromy as in [3]. Observe that the union of all
new 1-cells appear in the construction of C(A) is a copy of the union of all Γk,
k = 1, ..., N . Because Γk, k = 1, ..., N , is a good system of simple paths, this
union is contractible. So, we can collapse all new 1-cells to the only 0-cell of C0.
Clearly, the resulting complex is the canonical 2-complex associated to the braid
monodromy presentation of the fundamental group of the complement given in
[3], [2]. According to Libgober [5], it is homotopy equivalent to the complement
of the arrangement A.

The Theorem was proved.
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