A NEW CLASS OF UNIQUE RANGE SETS FOR MEROMORPHIC FUNCTIONS ON \mathbb{C}

TA THI HOAI AN

Dedicated to the memory of Le Van Thiem

Abstract

In this paper, we give a new class of unique range sets for meromorphic functions.

1. Introduction and the result

In 1926, Nevanlinna [N] proved the well-known Five-point Theorem: "Let f and g be two meromorphic functions on \mathbb{C}. If $f^{-1}\left(a_{i}\right)=g^{-1}\left(a_{i}\right)$ for five distinct points $a_{i}, i=1, \ldots, 5$, then $f \equiv g$. Since then such a similar uniqueness property of meromorphic functions has been studied extensively.

Let f be a non-constant meromorphic function on the complex plane \mathbb{C} and S be a subset of \mathbb{C}. Define

$$
E_{f}(S)=\bigcup_{a \in S} E_{f}(a),
$$

where $E_{f}(a)=\{(m, z) \in \mathbb{N} \times \mathbb{C} \mid f(z)-a=0$, with multiplicity $m\}$.
A set S is called a unique range set for meromorphic functions (URSM) if, for any pair of non-constant meromorphic functions f and g, the condition $E_{f}(S)=E_{g}(S)$ implies $f \equiv g$. A set S is called a unique range set for entire functions ($U R S E$) if for any pair of non-constant entire functions f and g, the condition $E_{f}(S)=E_{g}(S)$ implies $f \equiv g$. A natural question arises: Which conditions warrant S to be a unique range set?.

There are several contributions to this quetion. For example, in 1982 Gross and Yang [GY] showed that the set $S=\left\{z \in \mathbb{C} \mid z+e^{z}=0\right\}$ is a $U R S E$ (note that S contains an infinite number of elements). Afterwards, $U R S E$ and also $U R S M$ with finitely many elements have been found by Yi ([Y1], [Y2]), Li and Yang ([LY1], [LY2]), Mues and Reinders [MR], Hu and Yang [HY], and others. In fact, in these papers, they showed that the set $\left\{\omega, \omega^{q}+a \omega^{q-r}+b=0\right\}$ gives small unique range sets for meromorphic functions or entire functions under suitable conditions on constants a, b and positive interges q, r. Recently, Frank

[^0]and Reinders [FR] gave a unique set for meromorphic functions with 11 elements, which are given as the set of all zeros of the polynomoial
$$
P(\omega)=\frac{(q-1)(q-2)}{2} \omega^{q}-q(q-2) \omega^{q-1}+\frac{q(q-1)}{2} \omega^{q-2}-c
$$
for $q=11$ and a constant $c \neq 0,1$. Forthermore, the method used in the above cited papers involves estimations of Nevanlinna characteristic functions. In [FR] the authors remarked that by the method of estimations of Nevanlinna characteristic functions one cannot obtain a lower bound less than 11, while there is a conjecture saying that $\lambda_{M}=6([\mathrm{LY}])$ (recall that $\lambda_{M}=\inf \{\#(S) \mid S$ is a URSM $\}$, where $\#(S)$ is the number of elements of the set S.)

In this paper, we give a new class of URSMs (with 13 elements), using a recent result of Y. T. Siu and S. K. Yeung [SY]. The main idea is to relate the problem of finding URSM to the problem of proving some curves to be degenerate.

Theorem 1.1. Suppose that n and $2 m$ are two positive integers such that n and $2 m$ have no common factors and $n>8+4 m$. Let

$$
S=\left\{z \in \mathbb{C} \mid z^{n}+a z^{n-m}+b z^{n-2 m}+c=0\right\}
$$

where $a, b, c \in \mathbb{C}^{*}$ such that $a^{2}-4 b \neq 0$ and the algebraic equation

$$
z^{n}+a z^{n-m}+b z^{n-2 m}+c=0
$$

has no mutiple roots. Then S is a unique range set for meromorphic functions.

2. Some lemmas

The following lemmas will be needed in the proof of our theorem.
Lemma 2.1. [SY] Let $g_{j}\left(x_{0}, \ldots, x_{n}\right)$ be a homogeneous polynomial of degree δ_{j} for $0 \leq j \leq n$. Suppose there exists a holomorphic map $f: \mathbb{C} \longrightarrow \mathbb{P}^{n}(\mathbb{C})$ so that its image lies in the curve described by

$$
\begin{aligned}
& \sum_{j=0}^{n} x_{j}^{p-\delta_{j}} g_{j}\left(x_{0}, \ldots, x_{n}\right)=0, \\
& \text { and } \quad p>(n+1)(n-1)+\sum_{j=0}^{n} \delta_{j} .
\end{aligned}
$$

Then the polynomials

$$
x_{1}^{p-\delta_{1}} g_{1}\left(x_{0}, \ldots, x_{n}\right), \ldots, x_{n}^{p-\delta_{n}} g_{n}\left(x_{0}, \ldots, x_{n}\right)
$$

are linearly dependent on the image of f.
Lemma 2.2. (The Second Main Theorem, [L]). Let f be a meromorphic function and a_{1}, \ldots, a_{q} be distinct complex constants. Then

$$
(q-2) T(r) \leq \sum_{j=1}^{q} N_{1}\left(a_{j}, r\right)+S(r, f) .
$$

Furthermore,

$$
\sum_{a \in \mathbb{C}} \delta_{f}(a) \leq 2,
$$

where

$$
\delta_{f}(a)=1-\lim _{r \rightarrow \infty} \sup \frac{N_{1}\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
$$

Lemma 2.3. [M] If X is a irreducible curve of degree d and genus g in the complex projective plane, then

$$
\frac{1}{2}(d-1)(d-2)=g+\sum \delta_{z}, \quad 2 \delta_{z}=\mu_{z}+r_{z}-1
$$

where μ is multiplicity of X at the singular point z, and r branches of X pass through the singular point z.

3. Proof of Theorem

Let $a_{1}, a_{2}, \ldots, a_{n}$ be the distinct roots of the polynomial $z^{n}+a z^{n-m}+b z^{n-2 m}+$ $c=0$ and $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ be homogeneous projective coordinates in $\mathbb{P}^{3}(\mathbb{C})$.

Consider the surface X in $\mathbb{P}^{3}(\mathbb{C})$ define by
$X:\left(z_{1}-a_{1} z_{2}\right)\left(z_{1}-a_{2} z_{2}\right) \ldots\left(z_{1}-a_{n} z_{2}\right)-\left(z_{3}-a_{1} z_{4}\right)\left(z_{3}-a_{2} z_{4}\right) \ldots\left(z_{3}-a_{n} z_{4}\right)=0$.
Let f, g be non-constant meromorphic functions such that $E_{f}(S)=E_{g}(S)$. Represent $f=\frac{f_{1}}{f_{2}}$ and $g=\frac{l_{1}}{l_{2}}$, where $\left(f_{1}, f_{2}\right)$ and $\left(l_{1}, l_{2}\right)$ are some pairs of entire functions without common factors. Then there exists an entire function h such that

$$
\left(f_{1}-a_{1} f_{2}\right) \ldots\left(f_{1}-a_{n} f_{2}\right)=e^{h}\left(\ell_{1}-a_{1} \ell_{2}\right) \ldots\left(\ell_{1}-a_{n} \ell_{2}\right) .
$$

Put $g_{1}=e^{\frac{l}{n}} l_{1}, g_{2}=e^{\frac{l}{n}} l_{2}$, and define $\Phi=\left(f_{1}, f_{2}, g_{1}, g_{2}\right)$. Then Φ is a holomorphic curve in X. Hence
$f_{1}^{n-2 m}\left(f_{1}^{2 m}+a f_{1}^{m} f_{2}^{m}+b f_{2}^{2 m}\right)+c f_{2}^{n}-g_{1}^{n-2 m}\left(g_{1}^{2 m}+a g_{1}^{m} g_{2}^{m}+b g_{2}^{2 m}\right)-c g_{2}^{n}=0$.
Since $n>8+4 m$, the hypothesis of Lemma 2.1 is satisfied (with $k=3, \delta_{0}=$ $\delta_{2}=2 m, \delta_{1}=\delta_{3}=0$). Without loss of generality we can suppose that there are numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$, not all are zero, such that

$$
\alpha_{1} f_{1}^{n-2 m}\left(f_{1}^{2 m}+a f_{1}^{m} f_{2}^{m}+b f_{2}^{2 m}\right)+\alpha_{2} f_{2}^{n}-\alpha_{3} g_{2}^{n}=0
$$

We consider the possible cases:
Case 1: $\alpha_{1} \alpha_{2} \alpha_{3} \neq 0$.
Using again Lemma 2.1 (with $k=2, \delta_{0}=2 m, \delta_{1}=\delta_{2}=0$), we obtain

$$
\alpha_{1}^{\prime} f_{1}^{n-2 m}\left(f_{1}^{2 m}+a f_{1}^{m} f_{2}^{m}+b f_{2}^{2 m}\right)+\alpha_{2}^{\prime} f_{2}^{n}=0
$$

where not all α_{i}^{\prime} are zeros. This implies that f is constant.

Case 2: $\alpha_{3}=0$. It is clear that f is constant.
Case 3: $\alpha_{2}=0$. Clearly, $\alpha_{1} \alpha_{3} \neq 0$. Then

$$
f_{1}^{n}+a f_{1}^{n-m} f_{2}^{m}+b f_{1}^{n-2 m} f_{2}^{2 m}=\gamma g_{2}^{n},
$$

where $\gamma=\frac{\alpha_{3}}{\alpha_{1}}$.
The image of the holomorphic mapp

$$
\left(f_{1}, f_{2}, g_{2}\right): \mathbb{C} \longrightarrow \mathbb{P}^{2}
$$

is contained in the curve L defined by the equation

$$
x^{n}+a x^{n-m} y^{m}+b x^{n-2 m} y^{2 m}-\gamma z^{n}=0 .
$$

Denoting by $F(x, y, z)$ the polynomial in the equation of the curve L, we have

$$
\left\{\begin{array}{l}
\frac{\partial F}{\partial x}=x^{n-2 m-1}\left[n x^{2 m}+(n-m) a x^{m} y^{m}+(n-2 m) b y^{2 m}\right] \tag{2}\\
\frac{\partial F}{\partial y}=m y^{m-1} x^{n-2 m}\left(a x^{m}+2 b y^{m}\right) \\
\frac{\partial F}{\partial z}=\gamma n z^{n-1} .
\end{array}\right.
$$

If $t=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{P}^{2}$ is a singular point of the curve, then

$$
\left.\frac{\partial F}{\partial x}\right|_{t}=\left.\frac{\partial F}{\partial y}\right|_{t}=\left.\frac{\partial F}{\partial z}\right|_{t}=0
$$

From (2) and the hypothesis it follows that L has a unique singular point at $(0,1,0)$.

We prove that the curve L is irreducible. If not, since $(0,1,0)$ is the only singular point of L, the irreducible components of L must go through this point. This implies that the point $(0,1,0)$ must be an irreducible singularity of L, which contradicts to the assumption $(n, 2 m)=1$. In this case, by Lemma 2.3, the genus of L is

$$
g=\frac{(n-1)(n-2)}{2}-\frac{(n-2 m-1)(n-1)}{2}=\frac{(n-1)(2 m-1)}{2} .
$$

The conditions on n, m imply that the genus of L is at least 6 . Then L is hyperbolic and $\left(f_{1}, f_{2}, g_{2}\right)$ is constant mapping.

Case 4: $\alpha_{1}=0$. It is clear that $\alpha_{2} \alpha_{3} \neq 0$. Further more,

$$
\alpha f_{2}^{n}=g_{2}^{n}
$$

where $\alpha=\frac{\alpha_{2}}{\alpha_{3}}$. From (1) we obtain

$$
\begin{aligned}
& f_{1}^{n-2 m}\left(f_{1}^{2 m}+a f_{1}^{m} f_{2}^{m}+b f_{2}^{2 m}\right) \\
& +c(1-\alpha) f_{2}^{n}-g_{1}^{n-2 m}\left(g_{1}^{2 m}+a \varepsilon^{m} g_{1}^{m} f_{2}^{m}+b \varepsilon^{2 m} f_{2}^{2 m}\right)=0,
\end{aligned}
$$

where $\varepsilon^{n}=\alpha$.
We claim that $\alpha=1$. Indeed, if $\alpha \neq 1$, then using Lemma 2.1 (with $\delta_{0}=\delta_{2}=$ $\left.2 m, \delta_{1}=0, k=2, n>3+4 m\right)$ we obtain that $f_{1}^{n-2 m}\left(f_{1}^{2 m}+a f_{1}^{m} f_{2}^{m}+b f_{2}^{2 m}\right)$
and f_{2}^{n} are linearly dependent, and then $\frac{f_{1}}{f_{2}}=$ constant. This is a contracdition. Hence $f_{2}^{n}=g_{2}^{n}$.

Putting $h=\frac{f}{g}$, we conclude from (1) that

$$
\begin{equation*}
\left(h^{n}-1\right) g^{2 m}+a\left(h^{n-m}-1\right) g^{m}+b\left(h^{n-2 m}-1\right)=0 . \tag{3}
\end{equation*}
$$

We prove that h is constant. In fact, if it is not the case, we write (3) in the form

$$
\begin{equation*}
\left[\left(h^{n}-1\right) g^{m}+\frac{a}{2}\left(h^{n-m}-1\right)\right]^{2}=\Psi(h), \tag{4}
\end{equation*}
$$

where Ψ is defined by

$$
\Psi(z)=-b\left(z^{n}-1\right)\left(z^{n-2 m}-1\right)+\frac{a^{2}}{4}\left(z^{n-m}-1\right)^{2} .
$$

Since

$$
\Psi^{\prime}(z)=z^{n-2 m-1}\left[(n-m) \frac{a^{2}-4 b}{2} z^{n}+b n z^{2 m}-\frac{a^{2}(n-m)}{2} z^{m}+b(n-2 m)\right],
$$

and $\Psi(0) \neq 0$, the polynomial Ψ has at least $(2 n-2 m)-n=n-2 m$ distinct zeros. From (4), we obtain that the roots of $\Psi(h)=0$ have multiplicity at least 2. It follows from Lemma 2.2 that $\frac{n-2 m}{2} \leq 2$, which contradicts the condition $n>8+4 m$. Hence h is constant.

Furthermore, since g is not constant, equation (3) give $h^{n}-1=0$ and $h^{n-1}-1=$ 0 . It follows $h=1$ and hence $f \equiv g$. So S is a unique range set for meromorphic functions.

Acknowledgment

I am very grateful to Professor Ha Huy Khoai for his constant help and useful suggestions.

References

[FR] G. Frank and M. Reinders, A unique range set for meromorphic functions with 11 elements, Complex Variables Theory Appl. 37 (1998), 185-193.
[GY] F. Gross and C. C. Yang, On preimage and range sets of meromorphic functions, Proc. Japan Acard. Ser. A Math. Sci. 58 (1982), 17-20. MR 83d:30027.
[KA] H. H. Khoai and T. T. H. An, On unique range sets for meromorphic functions and Brody hyperboliccity, Preprint.
[L] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York, 1997, pp. 168-169.
[LY1] P. Li and C. C. Yang, On the unique range sets of meromorphic functions, Proc. Amer. Math. Soc. 124 (1996), 177-185.
[LY2] P. Li and C. C. Yang, Some further results on the unique range sets of meromorphic function, Kodai Math. J. 18 (1995), 437-450.
[M] J. Milnor, Singular Points of Complex Hypersurfaces, Princeton, New Jersey, 1968, pp. 8192.
[MR] E. Mues and M. Reinders, Meromorphic function sharing one value and unique range sets, Kodai Math. J. 18 (1995), 515-522.
[N] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Function, Acta. Math. 48 (1926), 367-391.
[SY] Y. T. Siu and S. K. Yeung, Defects for ample divisors of Abelian varieties, Schwarz lemma, and Hyperbolic hypersurfaces of low degrees, Amer. J. Math. 119 (1997), 1139-1172.
[Y1] H. X. Yi, Uniqueness of meromorphic functions and a question of C. C. Yang, Complex variables Theory Appl. 14 (1990), 169-176.
[Y2] H. X. Yi, Meromorphic function that share three values, Chiness Ann. Math. Ser. A 9 (1988), 434-439.
[Y] C. C. Yang, On deficiencies of differential polinomials, II, Math. Z. 125 (1972), 107-112.

Vinh Pedagogical Institute
Vinh, Nghe An, Vietnam
E-mail address: tthan@ thevinh.ac.vn

[^0]: 1991 Mathematics Subject Classification. 32H20.
 Key words and phrases. Unique range set for meromorphic functions.

