ON A FIXED POINT THEOREM OF D. W. BOYD AND J. S. WONG

MOHAMED AKKOUCHI

ABSTRACT. We present a generalization of a well-known fixed point theorem due to D. W. Boyd and J. S. Wong (see [3]). We also provide some improvements to this theorem.

1. INTRODUCTION

One of the main generalizations of the well-known Banach principle is the following theorem established by D. W. Boyd and J. S. Wong in [3].

Theorem 1.1. Let (M,d) be a complete metric space, and let $P := \{d(x,y) : x, y \in M\}$. Let $T : M \to M$ be a self-mapping satisfying

(1.1)
$$d(Tx, Ty) \le \gamma(d(x, y)) \quad \text{for all } x, y \in M,$$

where $\gamma: \overline{P} \mapsto [0, \infty[$ is upper semicontinuous from the right on \overline{P} and satisfies $\gamma(t) < t$ for all $t \in \overline{P} \setminus \{0\}$ (\overline{P} denotes the closure of P). Then T has a unique fixed point z and $d(T^n x, z)$ tends to zero for every $x \in M$ (T^n means the n-th iterate of T).

We remark that the contractive condition (1.1) forces T to be continuous. The purpose of this note is to change this condition and introduce a more general contractive condition from which no information on the continuity of T could be derived. Denote by Φ the set of continuous functions $\phi : [0, \infty[\longrightarrow [0, \infty[$ satisfying the following conditions:

(C1) $\phi(t) = 0$ if and only if t = 0, and

(C2) For all sequence $\{t_n\}$ of elements in $[0, \infty[$, if $\{\phi(t_n)\}$ is decreasing then $\sup t_n < \infty$.

Observe that if $\phi : [0, \infty[\longrightarrow [0, \infty[$ is a continuous function satisfying one of the following properties then it must belong to the class Φ : (C3) ϕ is nondecreasing in $[0, \infty[$;

(C4) $\phi(t) \ge Mt^u$ for every t > 0, where M and u are strictly positive constants.

We can now state the first main result of this paper.

Received August 27, 2001; in revised form June 21, 2002.

¹⁹⁹¹ Mathematics Subject Classification. 47H10.

Key words and phrases. Fixed point theorems in complete metric spaces.

Theorem 1.2. Let (M,d) be a complete metric space, and let $P := \{d(x,y) : x, y \in M\}$. Let $\phi \in \Phi$ and let $\gamma : \overline{\phi(P)} \to [0, \infty[$ be upper semicontinuous from the right on $\overline{\phi(P)}$ and satisfies $\gamma(t) < t$ for all $t \in \overline{\phi(P)} \setminus \{0\}$, where $\overline{\phi(P)}$ denotes the closure of $\phi(P)$. Let T be a self-mapping of M, satisfying the following contractive condition

(1.2)
$$\phi(d(Tx,Ty)) \le \gamma(\phi(d(Tx,Ty))) \quad for \ all \ x,y \in M.$$

Then T has a unique fixed point z and $d(T^nx, z)$ tends to zero for every $x \in M$.

Theorem 1.2 will be proved in Section 2. Since no information on the continuity of T is given by the assumptions of Theorem 1.2, we must use arguments different from those utilized in [3]. Theorem 1.2 can be considered as a generalization of Therem 1.1 of Boyd and Wong. In Section 3, we propose some complements to Theorem 1.1, when γ satisfies some supplementary but natural conditions (see Theorem 3.1).

2. Proof of Theorem 1.2

(a) Let x_0 be some point in M. For every integer $n \ge 0$, we set $x_n := T^n x_0$ and put $t_n := d(x_n, x_{n+1})$. Then for every integer n, we have

(2.1)

$$\begin{aligned}
\phi(t_{n+1}) &= \phi(d(Tx_n, Tx_{n+1})) \\
&\leq \gamma(\phi(d(x_n, x_{n+1}))) \\
&\leq \phi(d(x_n, x_{n+1})) &= \phi(t_n)
\end{aligned}$$

The inequalities in (2.1) show that the sequence $\{\phi(t_n)\}$ is decreasing. Let θ be the limit of $\{\phi(t_n)\}$. We observe that θ belongs to the closure of $\phi(P)$. Let us show that $\theta = 0$. Suppose on the contrary that $\theta > 0$. Then from the inequalities (2.1), for every integer n, we get $\theta \leq \gamma(\phi(t_n))$. By letting $n \longrightarrow \infty$ and using the continuity of ϕ and the upper semicontinuity from the right of γ at the point θ , we obtain

(2.2)
$$0 < \theta \le \limsup \gamma(\phi(t_n)) \le \gamma(\theta).$$

It is clear that (2.2) contradicts the assumptions on γ . Thus $\theta = 0$. Since ϕ satisfies condition (C2), the sequence $\{t_n\}$ is bounded. Let us show that $\{t_n\}$ converges to 0. Indeed, consider a convergent subsequence $\{t_m\}$ of $\{t_n\}$, say $\lim_m t_m = t$. By the continuity of ϕ , we get $\lim_m \phi(t_m) = \phi(t) = 0$, and then, in view of (C1), we obtain t = 0. Since any convergent subsequence of the bounded sequence $\{t_n\}$ converges to 0, we conclude that the whole sequence $\{t_n\}$ converges to 0.

(b) Now, we shall prove that $\{x_n\}$ is a Cauchy sequence. To obtain a contradiction, suppose that we can find a number $\epsilon > 0$ and two sequences $\{p(n)\}, \{q(n)\}$ such that, for every integer n, we have

(2.3)
$$n \le p(n) < q(n), \quad d(x_{p(n)}, x_{q(n)}) > \varepsilon, \text{ and } d(x_{p(n)}, x_{q(n)-1}) \le \varepsilon.$$

232

For each n, we set $s_n := d(x_{p(n)}, x_{q(n)})$, and $r_n := d(x_{p(n)+1}, x_{q(n)+1})$. By using the triangular inequalities, we obtain

(2.4)
$$\varepsilon < s_n \le \varepsilon + t_{q(n)-1},$$
$$|r_n - s_n| \le t_{p(n)} + t_{q(n)}.$$

Since the sequence $\{t_n\}$ converges to 0, we deduce from (2.4) that the sequences $\{s_n\}$ and $\{r_n\}$ converge to ε . Now, for every n, we have

(2.5)

$$\begin{aligned}
\phi(r_n) &= \phi(d(x_{p(n)+1}, x_{q(n)+1})) \\
&= \phi(d(Tx_{p(n)}, Tx_{q(n)})) \\
&\leq \gamma(\phi(s_n)).
\end{aligned}$$

We let $n \to \infty$ in (2.5) and use the properties of γ and ϕ to get

(2.6)
$$0 < \phi(\epsilon) \le \limsup_{n} \gamma(\phi(s_n)) \le \gamma(\phi(\epsilon)).$$

Since $\phi(\epsilon) \in \overline{\phi(P)} \setminus \{0\}$, (2.6) contains a contradiction. Therefore $\{x_n\}$ is a Cauchy sequence in the complete metric space (M, d). Let z be the limit of the sequence $\{x_n\}$. We proceed to prove that z is a fixed point for T.

(c) For every n, we have

(2.7)
$$\phi(d(x_{n+1},Tz)) = \phi(d(Tx_n,Tz)) \le \gamma(\phi(d(x_n,z)))$$

By letting $n \longrightarrow \infty$ in (2.7) we get

(2.8)

$$\phi(d(z,Tz)) = \lim_{n} \phi(d(x_{n+1},Tz))$$

$$\leq \limsup_{n} \gamma(\phi(d(x_n,z)))$$

$$\leq \gamma(\phi(0)) = \gamma(0) = 0.$$

We deduce that $\phi(d(z,Tz)) = 0$. Since ϕ satisfies (C1), we obtain z = Tz.

(d) Suppose that there exists another fixed point $y \neq z$ of T. Using (1.2) we have

(2.9)
$$0 < \phi(d(y,z)) = \phi(d(Ty,Tz)) \le \gamma(\phi(d(y,z))) < \phi(d(y,z)).$$

Since $\phi(d(y, z)) \in \phi(P) \setminus \{0\}$, (2.9) contains a contradiction. Consequently, there exists a unique point $z \in M$ to which every Picard sequence converges. The proof is complete. \Box

3. Complements to the theorem of Boyd and Wong

If the function γ in Theorem 1.1 satisfies some natural additional conditions, then one could obtain some information about the diameters of level sets of the function $F: x \mapsto d(Tx, x)$, and a result of approximation characterizing the fixed point of T. This observation has been used in [8]. Before stating our result (see Theorem 3.1 below), we need to introduce the following notations and definitions.

MOHAMED AKKOUCHI

As before (M, d) is a complete metric space and $P = \{d(x, y) : x, y \in M\}$. For every subset B of M, the closure of B is denoted by \overline{B} . Let $T: M \to M$ be a selfmapping. For every $x \in M$, we set F(x) = d(Tx, x). If the orbit of x is bounded, then we set $D(x) := \operatorname{diam}(O(x))$. For each c > 0, let $L_c := \{x \in M : F(x) \le c\}$.

We recall (see [2] and [8]) that a function $G: M \longrightarrow \mathbb{R}$ is said to be a regularglobal-inf (r.g.i.) at $x \in M$ if $G(x) > \inf_M(G)$ implies the existence of $\varepsilon > 0$ such that $\varepsilon < G(x) - \inf_{M}(G)$ and a neighborhood N_x of x such that $G(y) > G(x) - \varepsilon$ for every $y \in N_x$. If this condition holds for each $x \in M$, then G is said to be an r.g.i. on M.

Definition 3.1. We denote by Υ the set of functions $\gamma: \overline{P} \longrightarrow [0, \infty]$ such that $\gamma(t) \leq t$ for all $t \in \overline{P}$, and there exists an associated positive function ψ defined on $[0, \infty]$ satisfying the following two properties:

(S1)
$$\lim_{t \in P, t \to 0} \psi(t) = 0$$
, and

 $(S2) \ \forall t \in \overline{P}, \ \forall s \ge 0, \ s - \gamma(s) \le t \Longrightarrow s \le \psi(t).$

If γ is defined on $[0,\infty)$ and if the function $x\mapsto \mu(x):=x-\gamma(x)$ is continuous and strictly increasing from $[0,\infty]$ onto itself, then by taking ψ as the inverse mapping of μ , we see that (S1) and (S2) are satisfied.

Now we are ready to state our second main result.

Theorem 3.1. Let (M, d) be a complete metric space and let $T: M \longrightarrow M$ be a self-mapping satisfying the condition

(3.1)
$$d(Tx,Ty) \le \gamma(d(x,y)) \quad for \ all \ x,y \in M,$$

where $\gamma \in \Upsilon$ is upper semicontinuous from the right on \overline{P} and satisfies $\gamma(t) < t$ for all $t \in \overline{P} \setminus \{0\}$. Then T has bounded orbits and the following five equivalent assertions hold:

(i) T has a unique fixed point $z \in M$, and $\lim_{k \to +\infty} T^k(x) = z$ for each $x \in M$; (ii) $\forall c > 0$, the set L_c is nonempty and $\lim_{c \to 0^+} \operatorname{diam}(L_c) = 0$; (iii) There exists a unique point $z \in M$, such that, for each sequence $\{x_n\} \subset M$, $\lim d(x_n, Tx_n) = 0$ if and only if $\{x_n\}$ converges to z;

(iv) There exists a unique point $z \in M$ such that, for each sequence $\{x_n\} \subset M$, $\lim_n D(x_n) = 0$ if and only if $\{x_n\}$ converges to z;

(v) The mapping $D: x \mapsto \operatorname{diam}(O(x))$ is an r.g.i. on M.

Proof. (a) Let us prove that T has bounded orbits. For every $x \in M$ and every positive integer n we set $O_n(x) := \{x, Tx, ..., T^n(x)\}$. It is easy to verify that, for each $n \geq 1$,

(3.2)
$$\operatorname{diam}(O_n(Tx)) \le \gamma(\operatorname{diam}(O_{n+1}(x)))$$

and there exists an integer $k_n \in \{1, 2, ..., n\}$ such that

(3.3)
$$\operatorname{diam}(O_n(x)) = d(x, T^{k_n}(x)).$$

234

From (3.2) and (3.3) it follows that

$$\begin{aligned} \operatorname{diam}(O_n(x)) &= d(x, T^{k_n}(x)) \leq d(x, Tx) + d(Tx, T^{k_n}(x)) \\ &\leq d(x, Tx) + \operatorname{diam}(O_{n-1}(Tx)) \\ &\leq d(x, Tx) + \gamma(\operatorname{diam}(O_n(x))). \end{aligned}$$

By (S2), we have diam $(O_n(x)) \leq \psi(d(x,Tx))$ for every integer $n \geq 1$. Since $O(x) = \bigcup_n O_n(x)$, we deduce that

$$F(x) \le \operatorname{diam}(O(x)) = \sup_{n} \operatorname{diam}(O_{n}(x))$$
$$\le \psi \left(d(x, Tx) \right)$$
$$< \infty.$$

Hence T has bounded orbits.

(3.4)

(3.5)

(b) Let us prove that (i) implies (ii). For every c > 0, the set L_c contains the fixed point z. For every $x \in M$, we have

$$d(x,Tx) \le d(x,z) + d(Tz,Tx) \le d(x,z) + \gamma(d(Tz,Tx))$$
$$\le 2d(x,z).$$

On the other hand, for every $x \in M$, we have

$$(3.6) d(x,z) \le d(x,Tx) + d(Tz,Tx) \le d(x,Tx) + \gamma(d(z,x)).$$

Using (S2), we deduce from (3.6) that

(3.7)
$$d(x,z) \le \psi(d(x,Tx))$$

Now, let $\varepsilon > 0$ and $\delta > 0$ be such that $s \in P$, and $s \leq \delta$ implies $\psi(s) \leq \frac{\varepsilon}{2}$. Let $c \in [0, \delta]$. Then, for all $x, y \in L_c$, we have

$$d(x,y) \le d(x,z) + d(z,y) \le \psi(d(x,Tx)) + \psi(d(y,Ty))$$
$$\le \varepsilon.$$

So, we have proved that $\lim_{c \to 0^+} \operatorname{diam}(L_c) = 0$.

(c) Let us prove that (ii) implies (iii). Let $\{c_n\}$ be a strictly decreasing sequence of positive numbers converging to zero, and set $A := \bigcap_n \overline{L_{c_n}}$, (where $\overline{L_{c_n}}$ means the closure of L_{c_n}). An application of Cantor's intersection theorem implies the existence of a unique element $z \in A$. For every nonzero integer n, since $z \in \overline{L_{c_n}}$, we can find $y_n \in L_{c_n}$ such that $d(y_n, z) \leq \frac{1}{n}$. Therefore $\{y_n\}$ converges to z. Since T is continuous, we deduce that the sequence $\{Ty_n\}$ converges to Tz. Since, for each integer n, we have $0 \leq F(y_n) \leq c_n$, we deduce that $\lim_n F(y_n) = 0$, and therefore we get Tz = z. Hence z is the unique fixed point of T. Let $\{x_n\}$ be a sequence in M such that $\lim_n F(x_n) = 0$. Conversely, let $\{x_n\}$ be a sequence in $\sum_{n=1}^{n} d(x_n, z) \leq \lim_{n=1}^{n} \psi(F(x_n)) = 0$. Conversely, let $\{x_n\}$ be a sequence in *M* converging to the fixed point *z*. Since *T* is continuous, $\{Tx_n\}$ converges to Tz = z. Then we have $\lim_{n \to \infty} F(x_n) = 0$.

(d) By the inequalities stated in (3.4), we see that (iii) and (iv) are equivalent. So, let us prove that (iv) implies (v). Note that the point z involved in the assertion (iv) must be a fixed point of T. By (3.1), this fixed point is unique. It follows that $\inf_{M} D = 0$. To prove that D is an r.g.i., we use Proposition 1.2, of [8]. Let $\{x_n\}$ be a sequence such that $\lim_{n} D(x_n) = 0$ and $\lim_{n} x_n = x$. Since $F(x) \leq D(x)$ for all $x \in M$, we have $\lim_{n} F(x_n) = 0$. By the continuity of T, we obtain Tx = x, and therefore x = z. Thus D is an r.g.i. on M.

(e) Let us prove that (v) implies (i). Let x_0 be some point in M. For every integer $n \ge 0$, we set $x_n := T^n x_0$ and put $t_n := d(x_n, x_{n+1})$. Then for every integer n, we have

$$t_{n+1} = d(Tx_n, Tx_{n+1}) \le \gamma(d(x_n, x_{n+1})) \le d(x_n, x_{n+1}) = t_n.$$

The inequalities in (3.8) show that the sequence $\{t_n\}$ is decreasing. Let t be its limit. We observe that t belongs to the closure of P. Let us show that t = 0. Indeed, from the inequalities (3.8), for every integer n, we get $t \leq \gamma(t_n)$. Letting $n \longrightarrow \infty$ and using the upper semicontinuity from the right at the point t, we obtain

(3.9)
$$t \le \limsup_{n} \gamma(t_n) \le \gamma(t).$$

In view of the assumptions made on γ , (3.9) shows that we must have t = 0. Now, from (3.4) and Property (S1) we deduce that $\lim_{n} D(x_n) = 0$. This fact implies that $\{x_n\}$ is a Cauchy sequence. Let z be its limit in M. According to the assumption (v), we have $D(z) = \inf_{M} D = 0$. Therefore z is the unique fixed point of T to which every Picard sequence converges.

(f) Thus the five properties are equivalent. They are verified by applying the theorem of Boyd and Wong or our result stated in Theorem 1.2. \Box

Acknowledgements

I thank the anonymous referee very much for his (her) helpful comments.

References

- M. Akkouchi On a result of W. A. Kirk and L. M. Saliga, J. Comput. Appl. Math. 142 (2) (2002), 445-448.
- [2] M. Angrisani, M. Clavelli, Synthetic approaches to problems of fixed points in metric space, Ann. Mat. Pura Appl. (IV) CLXX (1996), 1-12.
- [3] D. W. Boyd and J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-469.

(3.8)

ON A FIXED POINT THEOREM

- [4] D. Delbosco, Un estensione di un teorema sul punto fisso di S. Reich, Rend. Sem. Mat. Univers. Politecn. Torino 35 (1976-77), 233-239.
- [5] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79.
- [6] B. Fisher, A fixed point mapping, Bull. Calcutta Math. Soc. 68 (1976), 265-266.
- [7] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distance between the points, Bull. Austral. Math. Soc. 30 (1984), 1-9.
- [8] W. A. Kirk and L. M. Saliga, Some results on existence and approximation in metric fixed point theory, J. Comput. Appl. Math. 113 (2000), 141-152.
- J. Matkowski, Some inequalities and a generalization of Banach's principle, Bull. Polish. Acad. Sci. Ser. Sci. Math. Astronom. Phys. 21 (1973), 323-325.
- [10] J. Matkowski, Integrable solutions of functional equations, Dissertationes Math. 127 (1975).
- [11] J. Matkowski and R. Wegrzyk, On equivalence of some fixed point theorems for selfmappings of metrically convex space, Boll. Un. Mat. Ital. (5) 15-A (1978), 359-369.
- [12] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329.
- [13] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459-465.
- [14] S. Reich, Kannan's fixed point theorem, Boll. Un. Mat. Ital. (4) 4 (1971), 1-11.
- [15] F. Skof, Teorema di punti fisso per applicazioni negli spazi metrici, Atti. Accad. Aci. Torino. 111 (1977), 323-329.
- [16] W. Walter, Remarks on a paper by F. Browder about contractions, Nonlinear Anal. TMA 5 (1981), 21-25.

Département de Mathématiques Université Cadi Ayyad, Faculté des Sciences-Semlalia Bd. du prince My. Abdellah B.P. 2390. Marrakech, Morocco *E-mail address*: makkouchi@hotmail.com