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ON A FIXED POINT THEOREM OF
D. W. BOYD AND J. S. WONG

MOHAMED AKKOUCHI

ABSTRACT. We present a generalization of a well-known fixed point theorem
due to D. W. Boyd and J. S. Wong (see [3]). We also provide some improve-
ments to this theorem.

1. INTRODUCTION

One of the main generalizations of the well-known Banach principle is the
following theorem established by D. W. Boyd and J. S. Wong in [3].

Theorem 1.1. Let (M,d) be a complete metric space, and let P := {d(z,y) :
x,y € M}. Let T : M — M be a self-mapping satisfying

(1.1) d(Tz,Ty) < y(d(z,y)) for all z,y € M,

where v : P+ [0, 00] is upper semicontinuous from the right on P and satisfies
y(t) < t for all t € P\ {0} (P denotes the closure of P). Then T has a unique
fized point z and d(T™x, z) tends to zero for every x € M (T™ means the n—th
iterate of T').

We remark that the contractive condition (1.1) forces T" to be continuous. The
purpose of this note is to change this condition and introduce a more general
contractive condition from which no information on the continuity of 1" could
be derived. Denote by @ the set of continuous functions ¢ : [0, 00— [0, o0]
satisfying the following conditions:

(C1) ¢(t) =0if and only if t = 0, and
(C2) For all sequence {t,} of elements in [0, co[, if {¢(t,)} is decreasing then
sup t, < 00.

n

Observe that if ¢ : [0, c0[— [0, 00[ is a continuous function satisfying one of
the following properties then it must belong to the class ®:
(C3) ¢ is nondecreasing in [0, col;
(C4) ¢(t) > Mt" for every t > 0, where M and u are strictly positive constants.

We can now state the first main result of this paper.
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Theorem 1.2. Let (M,d) be a complete metric space, and let P := {d(z,y) :
x,y € M}. Let ¢ € ® and let v : ¢(P) — [0, 00 be upper semicontinuous from the

right on ¢(P) and satisfies y(t) < t for allt € ¢(P)\ {0}, where ¢(P) denotes the
closure of $(P). Let T be a self-mapping of M, satisfying the following contractive
condition

(1.2) ¢ (d(Tz,Ty)) <v (¢ (d(Tx,Ty))) forall z,y € M.

Then T has a unique fized point z and d(T™x, z) tends to zero for every x € M.

Theorem 1.2 will be proved in Section 2. Since no information on the continuity
of T is given by the assumptions of Theorem 1.2, we must use arguments different
from those utilized in [3]. Theorem 1.2 can be considered as a generalization of
Therem 1.1 of Boyd and Wong. In Section 3, we propose some complements to
Theorem 1.1, when ~ satisfies some supplementary but natural conditions (see
Theorem 3.1).

2. PROOF OF THEOREM 1.2

(a) Let xp be some point in M. For every integer n > 0, we set x,, := T"x
and put t,, := d(zy, zp4+1). Then for every integer n, we have

P(tnt1) = ¢(d(Tzn, Txp11))
< v(¢(d(xn, Tnt1)))
(2.1) < ¢(d(zn, nt1)) = ¢(tn).

The inequalities in (2.1) show that the sequence {¢(t,)} is decreasing. Let 6 be
the limit of {¢(t,)}. We observe that 6 belongs to the closure of ¢(P). Let us
show that & = 0. Suppose on the contrary that ¢ > 0. Then from the inequalities
(2.1), for every integer n, we get 6 < v(¢(t,,)). By letting n — oo and using the
continuity of ¢ and the upper semicontinuity from the right of v at the point 0,
we obtain

(2.2) 0<6< limnsup Y(P(tn)) < v(0).

It is clear that (2.2) contradicts the assumptions on . Thus # = 0. Since ¢
satisfies condition (C2), the sequence {¢,} is bounded. Let us show that {¢,}
converges to 0. Indeed, consider a convergent subsequence {t,,} of {t,}, say
lirrnn t,, = t. By the continuity of ¢, we get lirgn d(tm) = ¢(t) = 0, and then, in
view of (C1), we obtain ¢ = 0. Since any convergent subsequence of the bounded
sequence {t, } converges to 0, we conclude that the whole sequence {t,,} converges
to 0.

(b) Now, we shall prove that {z,} is a Cauchy sequence. To obtain a contradic-
tion, suppose that we can find a number € > 0 and two sequences {p(n)}, {q(n)}
such that, for every integer n, we have

(2.3) n<p(n) <qn), dzpm),Tem)) > and  d(Tpm); Tomn)—1) < €.
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For each n, we set s, 1= d(Tp(n), Tq(n)), and 7, := d(Tp(n)11; Tgn)+1). By using
the triangular inequalities, we obtain

eE<s, < e+ tq(n)fh
(2.4)
7 = snl < tpm) + to(n)-

Since the sequence {t,} converges to 0, we deduce from (2.4) that the sequences
{sn} and {r,} converge to . Now, for every n, we have

¢(rn) = ¢(d(xp(n)+1>xq(n)+l))
= (AT p(ny, TTq(n)))

(2.5) < v(d(sn))-
We let n — oo in (2.5) and use the properties of 4 and ¢ to get
(2.6) 0 < ¢(e) < limsupy(d(sn)) < v(e(e)).

Since ¢(e) € ¢(P) \ {0}, (2.6) contains a contradiction. Therefore {z,} is a
Cauchy sequence in the complete metric space (M, d). Let z be the limit of the
sequence {x,}. We proceed to prove that z is a fixed point for 7.

(c) For every n, we have
(2.7) ¢(d(2n11,T2)) = p(d(Ten, Tz)) < y(P(d(2n, 2)))-
By letting n — oo in (2.7) we get
$(d(2,T2)) = lm 6(d(z11,T2))
< limsup (9(d(r, =)

(2.8) <7(¢(0)) =~(0) = 0.
We deduce that ¢(d(z,Tz)) = 0. Since ¢ satisfies (C'1), we obtain z = T'z.

(d) Suppose that there exists another fixed point y # 2z of T'. Using (1.2) we
have

(2.9) 0 < ¢(d(y, 2)) = ¢(d(Ty, Tz)) < ~(¢(d(y, 2))) < ¢(d(y, 2))-

Since ¢(d(y, z)) € ¢(P)\ {0}, (2.9) contains a contradiction. Consequently, there
exists a unique point z € M to which every Picard sequence converges. The proof
is complete.

3. COMPLEMENTS TO THE THEOREM OF BOYD AND WONG

If the function ~ in Theorem 1.1 satisfies some natural additional conditions,
then one could obtain some information about the diameters of level sets of the
function F' : z — d(Tz, ), and a result of approximation characterizing the fixed
point of 7. This observation has been used in [8]. Before stating our result (see
Theorem 3.1 below), we need to introduce the following notations and definitions.
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As before (M, d) is a complete metric space and P = {d(z,y) : x,y € M}. For
every subset B of M, the closure of B is denoted by B. Let T : M — M be a self-
mapping. For every x € M, we set F(x) = d(T'z, x). If the orbit of x is bounded,
then we set D(x) := diam(O(x)). For each ¢ > 0, let L. :={x € M : F(z) < c}.

We recall (see [2] and [8]) that a function G : M — R is said to be a regular-
global-inf (r.g.i.) at z € M if G(x) > 111\14f(G) implies the existence of € > 0 such
that ¢ < G(z) — i]r\14f(G) and a neighborhood N, of x such that G(y) > G(z) — ¢
for every y € N,. If this condition holds for each x € M, then G is said to be an
r.g.i. on M.

Definition 3.1. We denote by T the set of functions v : P — [0, oo[ such that
~v(t) <t for all t € P, and there exists an associated positive function ¢ defined
on [0, oo[ satisfying the following two properties:

(S1) te};,rtnﬁoqb(t) =0, and

(S2) Vt € P, Vs >0, s —(s) <t == s < (1).

If 7 is defined on [0, co[ and if the function z — p(z) := x —y(x) is continuous
and strictly increasing from [0, co[ onto itself, then by taking 1 as the inverse
mapping of i, we see that (S1) and (S2) are satisfied.

Now we are ready to state our second main result.

Theorem 3.1. Let (M,d) be a complete metric space and let T : M — M be a
self-mapping satisfying the condition

(3.1) d(Tz, Ty) < v(d(z,y)) forall z,y € M,

where v € Y is upper semicontinuous from the right on P and satisfies y(t) < t

for allt € P\ {0}. Then T has bounded orbits and the following five equivalent
assertions hold:

(i) T has a unique fized point z € M, and klim T*(z) = z for each x € M;
——400
(ii) Ve > 0, the set L. is nonempty and lim+ diam(L.) = 0;
c—0
(iii) There exists a unique point z € M, such that, for each sequence {x,} C M,
limd(xy,, Txy,) =0 if and only if {x,} converges to z;
n

(iv) There exists a unique point z € M such that, for each sequence {x,} C M,
lim D(x,,) = 0 if and only if {x,} converges to z;
n

(v) The mapping D : x — diam(O(x)) is an r.g.i. on M.
Proof. (a) Let us prove that T has bounded orbits. For every z € M and every

positive integer n we set O, (z) := {x,Tx,...,T"(x)}. It is easy to verify that, for
eachn > 1,

(3.2) diam (O, (Tx)) < vy(diam(Op41(z)))
and there exists an integer k,, € {1,2,...,n} such that
(3.3) diam (O, (z)) = d(z, T*" (z)).
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From (3.2) and (3.3) it follows that
diam (O, (z)) = d(z, T* (2)) < d(x, Tz) + d(Tx, T (z))

< d(z,Tz)+ diam(Op—1(Tx))

< d(z,Tzx)+ vy(diam(Oy,(x))).

By (52), we have diam(O,(z)) < ¢ (d(x,Tz)) for every integer n > 1. Since

O(z) = JOn(z), we deduce that

F(z) < diam(O(z)) = sup diam(Oy,(x))

n

< (d(z,Tx))
(3.4) < 0.
Hence T has bounded orbits.

(b) Let us prove that (i) implies (ii). For every ¢ > 0, the set L. contains the
fixed point z. For every x € M, we have

d(z,Tx) < d(x,z) +d(Tz,Tz) < d(z,z) +v(d(Tz,Tz))
(3.5) < 2d(z, z).
On the other hand, for every x € M, we have
(3.6) d(z,z) < d(x,Tz)+d(Tz,Tx) < d(z,Tx)+v(d(z,z)).
Using (52), we deduce from (3.6) that
(3.7) d(z,z) < ¢P(d(z,Tx)).

Now, let € > 0 and § > 0 be such that s € P, and s < ¢ implies ¥(s) < =. Let

¢ € 10,9]. Then, for all z,y € L., we have

d(z,y) < d(z, z) + d(z,y) < Y(d(x, Tz)) +(d(y, Ty))
<e.

DN ™

So, we have proved that lim diam(L.) = 0.

c—0

(c) Let us prove that (ii) implies (iii). Let {c,} be a strictly decreasing sequence
of positive numbers converging to zero, and set A := () L,,, (where L. means
n

the closure of L., ). An application of Cantor’s intersection theorem implies the
existence of a unique element z € A. For every nonzero integer n, since z € L., ,

1
we can find y,, € L., such that d(y,, z) < —. Therefore {y,} converges to z. Since
n

T is continuous, we deduce that the sequence {T'y,} converges to T'z. Since, for
each integer n, we have 0 < F(y,) < ¢,, we deduce that lim F'(y,) = 0, and
n

therefore we get Tz = z. Hence z is the unique fixed point of T'. Let {z,} be a
sequence in M such that lim F(z,,) = 0. According to (3.7) and Property (S1),
n

we get limd(xy,, z) < lim¢(F(zy,)) = 0. Conversely, let {z,} be a sequence in
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M converging to the fixed point z. Since T' is continuous, {7z, } converges to
Tz = z. Then we have lim F(z,) = 0.
n

(d) By the inequalities stated in (3.4), we see that (iii) and (iv) are equivalent.
So, let us prove that (iv) implies (v). Note that the point z involved in the
assertion (iv) must be a fixed point of 7. By (3.1), this fixed point is unique.
It follows that i]I\l/[fD = 0. To prove that D is an r.g.i., we use Proposition 1.2,

of [8]. Let {z,} be a sequence such that lim D(x,) = 0 and limz, = z. Since
n n
F(z) < D(x) for all z € M, we have lim F'(x,) = 0. By the continuity of T', we
n
obtain Tx = x, and therefore x = z. Thus D is an r.g.i. on M.

(e) Let us prove that (v) implies (i). Let xg be some point in M. For every
integer n > 0, we set x, := T"x¢ and put t, := d(zn,2n+1). Then for every
integer n, we have

tn+1 = d(Txn, Tepi1) < Y(d(@n, Tns1))
< d(l’n, xn+1)
(3.8) = tp.
The inequalities in (3.8) show that the sequence {¢,} is decreasing. Let t be its
limit. We observe that t belongs to the closure of P. Let us show that ¢ = 0.
Indeed, from the inequalities (3.8), for every integer n, we get t < 7(¢,). Letting

n — oo and using the upper semicontinuity from the right at the point ¢, we
obtain

(3.9) t <limsup~y(t,) < ().
n
In view of the assumptions made on v, (3.9) shows that we must have ¢t = 0.

Now, from (3.4) and Property (S1) we deduce that lim D(z,) = 0. This fact
n

implies that {x,} is a Cauchy sequence. Let z be its limit in M. According to
the assumption (v), we have D(z) = i]r\14f D = 0. Therefore z is the unique fixed

point of T' to which every Picard sequence converges.

(f) Thus the five properties are equivalent. They are verified by applying the
theorem of Boyd and Wong or our result stated in Theorem 1.2. O
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