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ON A FIXED POINT THEOREM OF
D. W. BOYD AND J. S. WONG

MOHAMED AKKOUCHI

Abstract. We present a generalization of a well-known fixed point theorem
due to D. W. Boyd and J. S. Wong (see [3]). We also provide some improve-
ments to this theorem.

1. Introduction

One of the main generalizations of the well-known Banach principle is the
following theorem established by D. W. Boyd and J. S. Wong in [3].

Theorem 1.1. Let (M,d) be a complete metric space, and let P := {d(x, y) :
x, y ∈M}. Let T : M →M be a self-mapping satisfying

d(Tx, Ty) ≤ γ(d(x, y)) for all x, y ∈M,(1.1)

where γ : P̄ 7→ [0,∞[ is upper semicontinuous from the right on P̄ and satisfies
γ(t) < t for all t ∈ P̄ \ {0} (P̄ denotes the closure of P ). Then T has a unique
fixed point z and d(Tnx, z) tends to zero for every x ∈ M (Tn means the n−th
iterate of T ).

We remark that the contractive condition (1.1) forces T to be continuous. The
purpose of this note is to change this condition and introduce a more general
contractive condition from which no information on the continuity of T could
be derived. Denote by Φ the set of continuous functions φ : [0,∞[−→ [0,∞[
satisfying the following conditions:
(C1) φ(t) = 0 if and only if t = 0, and
(C2) For all sequence {tn} of elements in [0,∞[, if {φ(tn)} is decreasing then
sup

n
tn <∞.

Observe that if φ : [0,∞[−→ [0,∞[ is a continuous function satisfying one of
the following properties then it must belong to the class Φ:
(C3) φ is nondecreasing in [0,∞[;
(C4) φ(t) ≥Mtu for every t > 0, where M and u are strictly positive constants.

We can now state the first main result of this paper.
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Theorem 1.2. Let (M,d) be a complete metric space, and let P := {d(x, y) :
x, y ∈M}. Let φ ∈ Φ and let γ : φ(P )→ [0,∞[ be upper semicontinuous from the
right on φ(P ) and satisfies γ(t) < t for all t ∈ φ(P )\{0}, where φ(P ) denotes the
closure of φ(P ). Let T be a self-mapping of M, satisfying the following contractive
condition

φ (d(Tx, Ty)) ≤ γ (φ (d(Tx, Ty))) for all x, y ∈M.(1.2)

Then T has a unique fixed point z and d(Tnx, z) tends to zero for every x ∈M .

Theorem 1.2 will be proved in Section 2. Since no information on the continuity
of T is given by the assumptions of Theorem 1.2, we must use arguments different
from those utilized in [3]. Theorem 1.2 can be considered as a generalization of
Therem 1.1 of Boyd and Wong. In Section 3, we propose some complements to
Theorem 1.1, when γ satisfies some supplementary but natural conditions (see
Theorem 3.1).

2. Proof of Theorem 1.2

(a) Let x0 be some point in M . For every integer n ≥ 0, we set xn := Tnx0

and put tn := d(xn, xn+1). Then for every integer n, we have

φ(tn+1) = φ(d(Txn, Txn+1))

≤ γ(φ(d(xn, xn+1)))

≤ φ(d(xn, xn+1)) = φ(tn).(2.1)

The inequalities in (2.1) show that the sequence {φ(tn)} is decreasing. Let θ be
the limit of {φ(tn)}. We observe that θ belongs to the closure of φ(P ). Let us
show that θ = 0. Suppose on the contrary that θ > 0. Then from the inequalities
(2.1), for every integer n, we get θ ≤ γ(φ(tn)). By letting n −→∞ and using the
continuity of φ and the upper semicontinuity from the right of γ at the point θ,
we obtain

0 < θ ≤ lim sup
n

γ(φ(tn)) ≤ γ(θ).(2.2)

It is clear that (2.2) contradicts the assumptions on γ. Thus θ = 0. Since φ
satisfies condition (C2), the sequence {tn} is bounded. Let us show that {tn}
converges to 0. Indeed, consider a convergent subsequence {tm} of {tn}, say
lim
m
tm = t. By the continuity of φ, we get lim

m
φ(tm) = φ(t) = 0, and then, in

view of (C1), we obtain t = 0. Since any convergent subsequence of the bounded
sequence {tn} converges to 0, we conclude that the whole sequence {tn} converges
to 0.

(b) Now, we shall prove that {xn} is a Cauchy sequence. To obtain a contradic-
tion, suppose that we can find a number ε > 0 and two sequences {p(n)}, {q(n)}
such that, for every integer n, we have

n ≤ p(n) < q(n), d(xp(n), xq(n)) > ε, and d(xp(n), xq(n)−1) ≤ ε.(2.3)
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For each n, we set sn := d(xp(n), xq(n)), and rn := d(xp(n)+1, xq(n)+1). By using
the triangular inequalities, we obtain

ε < sn ≤ ε+ tq(n)−1,
(2.4)

|rn − sn| ≤ tp(n) + tq(n).

Since the sequence {tn} converges to 0, we deduce from (2.4) that the sequences
{sn} and {rn} converge to ε. Now, for every n, we have

φ(rn) = φ(d(xp(n)+1, xq(n)+1))

= φ(d(Txp(n), Txq(n)))

≤ γ(φ(sn)).(2.5)

We let n→∞ in (2.5) and use the properties of γ and φ to get

0 < φ(ε) ≤ lim sup
n

γ(φ(sn)) ≤ γ(φ(ε)).(2.6)

Since φ(ε) ∈ φ(P ) \ {0}, (2.6) contains a contradiction. Therefore {xn} is a
Cauchy sequence in the complete metric space (M,d). Let z be the limit of the
sequence {xn}. We proceed to prove that z is a fixed point for T .

(c) For every n, we have

φ(d(xn+1, T z)) = φ(d(Txn, T z)) ≤ γ(φ(d(xn, z))).(2.7)

By letting n −→∞ in (2.7) we get

φ(d(z, Tz)) = lim
n
φ(d(xn+1, T z))

≤ lim sup
n

γ(φ(d(xn, z)))

≤ γ(φ(0)) = γ(0) = 0.(2.8)

We deduce that φ(d(z, Tz)) = 0. Since φ satisfies (C1), we obtain z = Tz.

(d) Suppose that there exists another fixed point y 6= z of T . Using (1.2) we
have

0 < φ(d(y, z)) = φ(d(Ty, Tz)) ≤ γ(φ(d(y, z))) < φ(d(y, z)).(2.9)

Since φ(d(y, z)) ∈ φ(P ) \ {0}, (2.9) contains a contradiction. Consequently, there
exists a unique point z ∈M to which every Picard sequence converges. The proof
is complete.

3. Complements to the theorem of Boyd and Wong

If the function γ in Theorem 1.1 satisfies some natural additional conditions,
then one could obtain some information about the diameters of level sets of the
function F : x 7→ d(Tx, x), and a result of approximation characterizing the fixed
point of T . This observation has been used in [8]. Before stating our result (see
Theorem 3.1 below), we need to introduce the following notations and definitions.
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As before (M,d) is a complete metric space and P = {d(x, y) : x, y ∈M}. For
every subset B of M , the closure of B is denoted by B. Let T : M →M be a self-
mapping. For every x ∈M , we set F (x) = d(Tx, x). If the orbit of x is bounded,
then we set D(x) := diam(O(x)). For each c > 0, let Lc := {x ∈M : F (x) ≤ c}.

We recall (see [2] and [8]) that a function G : M −→ R is said to be a regular-
global-inf (r.g.i.) at x ∈ M if G(x) > inf

M
(G) implies the existence of ε > 0 such

that ε < G(x)− inf
M

(G) and a neighborhood Nx of x such that G(y) > G(x)− ε
for every y ∈ Nx. If this condition holds for each x ∈M , then G is said to be an
r.g.i. on M .

Definition 3.1. We denote by Υ the set of functions γ : P −→ [0,∞[ such that
γ(t) ≤ t for all t ∈ P , and there exists an associated positive function ψ defined
on [0,∞[ satisfying the following two properties:
(S1) lim

t∈P, t→0
ψ(t) = 0, and

(S2) ∀t ∈ P , ∀s ≥ 0, s− γ(s) ≤ t =⇒ s ≤ ψ(t).
If γ is defined on [0,∞[ and if the function x 7→ µ(x) := x− γ(x) is continuous

and strictly increasing from [0,∞[ onto itself, then by taking ψ as the inverse
mapping of µ, we see that (S1) and (S2) are satisfied.

Now we are ready to state our second main result.

Theorem 3.1. Let (M,d) be a complete metric space and let T : M −→M be a
self-mapping satisfying the condition

d(Tx, Ty) ≤ γ(d(x, y)) for all x, y ∈M,(3.1)

where γ ∈ Υ is upper semicontinuous from the right on P and satisfies γ(t) < t
for all t ∈ P \ {0}. Then T has bounded orbits and the following five equivalent
assertions hold:
(i) T has a unique fixed point z ∈M, and lim

k→+∞
T k(x) = z for each x ∈M ;

(ii) ∀c > 0, the set Lc is nonempty and lim
c→0+

diam(Lc) = 0;

(iii) There exists a unique point z ∈ M , such that, for each sequence {xn} ⊂ M,
lim
n
d(xn, Txn) = 0 if and only if {xn} converges to z;

(iv) There exists a unique point z ∈ M such that, for each sequence {xn} ⊂ M,
lim
n
D(xn) = 0 if and only if {xn} converges to z;

(v) The mapping D : x 7−→ diam(O(x)) is an r.g.i. on M .

Proof. (a) Let us prove that T has bounded orbits. For every x ∈ M and every
positive integer n we set On(x) := {x, Tx, ..., Tn(x)}. It is easy to verify that, for
each n ≥ 1,

diam(On(Tx)) ≤ γ(diam(On+1(x)))(3.2)

and there exists an integer kn ∈ {1, 2, . . . , n} such that

diam(On(x)) = d(x, T kn(x)).(3.3)
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From (3.2) and (3.3) it follows that

diam(On(x)) = d(x, T kn(x)) ≤ d(x, Tx) + d(Tx, T kn(x))

≤ d(x, Tx) + diam(On−1(Tx))

≤ d(x, Tx) + γ(diam(On(x))).

By (S2), we have diam(On(x)) ≤ ψ (d(x, Tx)) for every integer n ≥ 1. Since
O(x) =

⋃
n
On(x), we deduce that

F (x) ≤ diam(O(x)) = sup
n

diam(On(x))

≤ ψ (d(x, Tx))

<∞.(3.4)

Hence T has bounded orbits.

(b) Let us prove that (i) implies (ii). For every c > 0, the set Lc contains the
fixed point z. For every x ∈M , we have

d(x, Tx) ≤ d(x, z) + d(Tz, Tx) ≤ d(x, z) + γ(d(Tz, Tx))

≤ 2d(x, z).(3.5)

On the other hand, for every x ∈M , we have

d(x, z) ≤ d(x, Tx) + d(Tz, Tx) ≤ d(x, Tx) + γ(d(z, x)).(3.6)

Using (S2), we deduce from (3.6) that

d(x, z) ≤ ψ(d(x, Tx)).(3.7)

Now, let ε > 0 and δ > 0 be such that s ∈ P , and s ≤ δ implies ψ(s) ≤ ε

2
. Let

c ∈ [0, δ]. Then, for all x, y ∈ Lc, we have

d(x, y) ≤ d(x, z) + d(z, y) ≤ ψ(d(x, Tx)) + ψ(d(y, Ty))
≤ ε.

So, we have proved that lim
c→0+

diam(Lc) = 0.

(c) Let us prove that (ii) implies (iii). Let {cn} be a strictly decreasing sequence
of positive numbers converging to zero, and set A :=

⋂
n
Lcn , (where Lcn means

the closure of Lcn). An application of Cantor’s intersection theorem implies the
existence of a unique element z ∈ A. For every nonzero integer n, since z ∈ Lcn ,

we can find yn ∈ Lcn such that d(yn, z) ≤
1
n

. Therefore {yn} converges to z. Since

T is continuous, we deduce that the sequence {Tyn} converges to Tz. Since, for
each integer n, we have 0 ≤ F (yn) ≤ cn, we deduce that lim

n
F (yn) = 0, and

therefore we get Tz = z. Hence z is the unique fixed point of T . Let {xn} be a
sequence in M such that lim

n
F (xn) = 0. According to (3.7) and Property (S1),

we get lim
n
d(xn, z) ≤ lim

n
ψ(F (xn)) = 0. Conversely, let {xn} be a sequence in
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M converging to the fixed point z. Since T is continuous, {Txn} converges to
Tz = z. Then we have lim

n
F (xn) = 0.

(d) By the inequalities stated in (3.4), we see that (iii) and (iv) are equivalent.
So, let us prove that (iv) implies (v). Note that the point z involved in the
assertion (iv) must be a fixed point of T . By (3.1), this fixed point is unique.
It follows that inf

M
D = 0. To prove that D is an r.g.i., we use Proposition 1.2,

of [8]. Let {xn} be a sequence such that lim
n
D(xn) = 0 and lim

n
xn = x. Since

F (x) ≤ D(x) for all x ∈ M , we have lim
n
F (xn) = 0. By the continuity of T , we

obtain Tx = x, and therefore x = z. Thus D is an r.g.i. on M .

(e) Let us prove that (v) implies (i). Let x0 be some point in M . For every
integer n ≥ 0, we set xn := Tnx0 and put tn := d(xn, xn+1). Then for every
integer n, we have

tn+1 = d(Txn, Txn+1) ≤ γ(d(xn, xn+1))

≤ d(xn, xn+1)

= tn.(3.8)

The inequalities in (3.8) show that the sequence {tn} is decreasing. Let t be its
limit. We observe that t belongs to the closure of P . Let us show that t = 0.
Indeed, from the inequalities (3.8), for every integer n, we get t ≤ γ(tn). Letting
n −→ ∞ and using the upper semicontinuity from the right at the point t, we
obtain

t ≤ lim sup
n

γ(tn) ≤ γ(t).(3.9)

In view of the assumptions made on γ, (3.9) shows that we must have t = 0.
Now, from (3.4) and Property (S1) we deduce that lim

n
D(xn) = 0. This fact

implies that {xn} is a Cauchy sequence. Let z be its limit in M . According to
the assumption (v), we have D(z) = inf

M
D = 0. Therefore z is the unique fixed

point of T to which every Picard sequence converges.

(f) Thus the five properties are equivalent. They are verified by applying the
theorem of Boyd and Wong or our result stated in Theorem 1.2. �
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