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BILINEAR PROGRAMMING APPROACH TO

OPTIMIZATION OVER THE EFFICIENT SET OF

A VECTOR AFFINE FRACTIONAL PROBLEM

LE DUNG MUU AND HOANG QUANG TUYEN

Abstract. We formulate the problem of optimizing a linear function over
the weakly efficient set of a multicriteria affine fractional program as a special
bilinear problem. For solving the latter problem, we propose a decomposition
branch-and-bound algorithm taking into account the affine fractionality of the
criterion function. The bounding uses only linear subprograms, the branching
takes place over a simplex in the criteria space.

1. Introduction

Consider the multicriteria mathematical programming problem

V min{F (x) = (f1(x), ..., fp(x) | x ∈ X}(V P )

where X ⊂ R
n is a bounded polyhedral convex set (polytope).

We recall that a vector x ∈ X is called efficient (resp. weakly efficient) point for
Problem (V P ) if there does not exist y ∈ X such that F (y) ≤ F (x), F (y) 6= F (x)
(resp. F (y) < F (x)). By E(F,X) (resp. WE(F,X)) we will denote the set of
all efficient (resp. weakly efficient) points. Here and subsequently for two vectors
a = (a1, ..., ap) and b = (b1, ..., bp) the notion a < b (resp. a ≤ b) mean that
ai < bi (resp. ai ≤ bi) for all i = 1, ..., p. The inner product of two vectors a and
b is written as 〈a, b〉 or aT b, bT a.

Recently the problems of optimizing a real valued function over the weakly
efficient and the efficient sets of (V P ) have attracted much attention because of
their important applications in decision making. A number of solution methods
have been developed for solving these problems (see e.g.[2, 3, 5, 6, 7, 12, 16,
19, 23] and the references therein). Most existing methods have been obtained
assuming that Problem (V P ) is linear. These methods are based upon one or
more of the following properties of efficiency:

• Both the efficient and weakly efficient sets are closed.
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• Both these two sets are connected and consist of facets of the constrained
polyhedron X.

• They can be characterized as equalities defined by d.c. or saddle functions.

Unfortunately these properties in general are no longer valid when (V P ) is
an affine fractional vector optimization problem, i.e., each function Fi is affine
fractional (see [8, 18]). Namely, for affine fractional case the efficient set may be
neither closed nor open. Both the efficient and the weakly efficient sets do not
necessarily consist of facets of constrained polyhedron. Up to now the question
of how to formulate these sets as the solution-sets of inequalities or equalities
defined by d.c. or saddle functions is, to our knowledge, still open. This explains
why the developed methods for linear case could not be applied directly to affine
fractional case.

Affine fractional functions are widely used as performance measures in some
management situations, production planning and the analysis of financial en-
terprises. Thus the multicriteria programming problems with affine fractional
criterion functions are important and have wide applications.

In this paper we consider the optimization problems over the efficient and
weakly efficient sets of a multicriteria affine fractional program. These problems
are given respectively as

min{dT x | x ∈ E(F,X)}(P )

min{dT x | x ∈WE(F,X)}(WP )

where E(F,X) and WE(F,X) are the efficient and weakly efficient sets of Prob-
lem (V P ) with F being a vector affine fractional function.

The main difficulty of these problems arises from the fact that both E(F,X)
and WE(F,X), are in general neither convex nor given as a constrained set of
an ordinary mathematical programming problem.

These problems have been studied in [9, 22]. In [9] Choo and Akin proposed
a parametric algorithm for solving (P ) with E(F,X) being the efficient set of a
bicriteria affine fractional program. This parametric algorithm seems to work well
for bicriteria case, but it cannot be extended for three or more criteria. Recently
in [13], Malivert shows that Problems (P ) and (WP ) can be proceeded by solving
a sequence of linearly constrained penalized problems of the form

min{f(x) + tkpw(x) | x ∈ X}

where tk > 0 and pw is a certain penalty function representing the efficient and
weakly efficient sets, which are in general neither convex nor differentiable. So
the penalized problems remain difficult global optimization ones. No solution
method for solving the penalized problems has been discussed in [13].

In our recent paper [22] we used the necessary and sufficient condition for
efficiency established by Malivert in [13] to characterize the weakly efficient set
by an equality defined by a biconvex function. We proposed there an algorithm
for approximating a minimal point of a convex function over the weakly efficient
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set WE(F,X). From a computational point of view, the proposed algorithm of
[22] has the disadvantage that it requires solving minimax subproblems rather
than linear ones for computing lower bounds.

In this paper we continue our work by refining the algorithm of [22] for ap-
proximating a global optimal solution of a linear function over the efficient and
weakly efficient sets of the multiple objective affine fractional Problem (V P ).

We equivalently formulate Problems (P ) and (WP ) as special cases of linear
programs with additional bilinear constraints. We then propose a decomposition
branch-and-bound method for solving the latter problems. The main difference
between this algorithm and the algorithm of [22] is that here the subprograms
needed to solve are linear whereas in [22] they are minimax problems.

The content of this article is as follows. In Section 2, we first illustrate our
work by an example showing that both Problems (P ) and (WP ), unlike the
linear case, do not necessarily attain their optimal solutions among the vertices
of the constrained polyhedron X. Next we show how to formulate (P ) and (WP )
as linear problems with additional bilinear constraints. Section 3 describes an
algorithm solving Problem (WP ) when all vertices of X are known, particularly
when X is a simplex. In Section 4 we describe a relaxation algorithm for solving
Problem (WP ) without requiring that all vertices of X are known in advance.
In Section 5 we show how to approximate a solution of Problem (P ) by solving
problems of types (WP ). Finally, in Section 6, we illustrate the first algorithm
by a small example and report some computational results.

2. Preliminaries

To be precise throughout the paper we suppose that the criterion function in
the multicriteria programming problem (V P ) is given by

F (x) =
(A1x + s1

B1x + t1
, ...,

Apx + sp

Bpx + tp

)

,

where Ai, Bi are n-dimensional vectors; si, ti are real numbers for all i = 1, .., p.
As usual we assume that Bix + ti > 0 for all x ∈ X and all i = 1, ..., p. Thus F
is continuous on X. By definition, the efficient and weakly efficient sets of (V P )
can be given by

E(F,X) = {x ∈ X | 6 ∃y ∈ X : F (y) ≤ F (x), F (y) 6= F (x)},

WE(F,X) = {x ∈ X | 6 ∃y ∈ X : F (y) < F (x)}.

Since X is compact, the weakly efficient set WE(F,X) is compact too [8] whereas
the efficient set E(F,X) in general neither closed nor open. Since WE(F,X) is
compact, Problem (WP ) has always a global optimal solution. Throughout the
paper we assume that (P ) has also a global optimal solution.

It is worth pointing out that, in contrast to the linear case, both Problems (P )
and (WP ) do not necessarily attain their optimal solutions among the vertices
of X. To see this let us consider the follwing example.
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min F (x) = (f1(x), f2(x)) =
( −x1

x1 + x2
,

3x1 − 2x2

x1 − x2 + 3

)

subject to

(x1, x2) ∈ X =
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x1 − 2x2 ≤ 2
−x1 − 2x2 ≤ −2
−x1 + x2 ≤ 1

x1 ≤ 6
x1 ≥ 0, x2 ≥ 0























min
{

−x1 − x2

∣

∣ (x1, x2) ∈WE(F,X)
}

Since the affine fractional function fi(x) (i = 1, 2) is monotone along the line
segment joining any two points y1 and y2 in X, it follows that if

fi(y
1) < fi(y

2) (i = 1, 2)

then

fi(y
1) < fi(λy1 + (1− λ)y2) < fi(y

2) (i = 1, 2)

for every λ ∈ (0, 1).

Take six points (Figure 1)

y1 = (0, 1); y2 = (2, 0); y3 = (6, 2),

y4 = (6, 7); y5 = (2, 3); y6 =
(1

2
,
3

4

)

.

A simple calculation shows that

F (y1) = (0,−1), F (y2) =
(

− 1,
6

5

)

, F (y3) =
(

−
3

4
, 2

)

,

F (y4) =
(

−
6

13
, 2

)

, F (y5) =
(

−
2

5
, 0

)

, F (y6) =
(

−
2

5
, 0

)

.

Using the monotonicity of fi(x) we can see that the weakly efficient set WE(F,X)
for this example consists of three segments [y1, y5], [y5, y6] and [y6, y2]. This can
also be verified by using Corollary 1 in [13]

Thus

min{f(x) := dT x = −x1 − x2 | (x1, x2) ∈WE(F,X)}

= f(y5) = −2− 3 = −5 < f(yi), (i = 1, 2, 3, 4).

Clearly, y5 6∈ V (X) = {y1, y2, y3, y4}.

The following theorem due to Malivert [13] will be useful for our purpose.

Theorem 2.1. [13] A vector x ∈ X is efficient (resp. weakly efficient) if and only
if there exist real numbers λi > 0 (resp. λi ≥ 0 not all zero) for all i = 1, . . . , p
such that
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p
∑

i=1

λi[(Bix + ti)Ai − (Aix + si)Bi](x− y) ≤ 0 ∀y ∈ X.

Figure 1

By dividing by
p
∑

i=1
λi > 0 we can assume that

p
∑

i=1
λi = 1. So, if

Λ0 :=
{

λ = (λi, ..., λp) | λ > 0,

p
∑

i=1

λi = 1
}

,

Λ :=
{

λ = (λi, ..., λp) | λ ≥ 0,

p
∑

i=1

λi = 1
}

then

E(F,X) =
{

x ∈ X | ∃λ ∈ Λ0,

p
∑

i=1

λi[(Bix + ti)Ai − (Aix + si)Bi](x− y) ≤ 0 ∀y ∈ X
}

.

WE(F,X) =
{

x ∈ X | ∃λ ∈ Λ,

p
∑

i=1

λi[(Bix + ti)Ai − (Aix + si)Bi](x− y) ≤ 0 ∀y ∈ X
}

.
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Thus both Problems (P ) and (WP ) can take the form


























min{f(x) = dT x}

s.t.

x ∈ X, λ ∈ Λ̄,
p

∑

i=1
λi[(Bix + ti)Ai − (Aix + si)Bi](x− y) ≤ 0 ∀y ∈ X

(IP )

where Λ̄ = Λ0 for (P ) and Λ̄ = Λ for (WP ).

Let v1, ...vq denote the vertices of X. Problem (IP ) then can be further reduced
due to the following proposition.

Proposition 2.1. We have
p

∑

i=1

λi[(Bix + ti)Ai − (Aix + si)Bi](x− y) ≤ 0 ∀y ∈ X

if and only if
p

∑

i=1

λi[(Bix + ti)Ai − (Aix + si)Bi](x− vk) ≤ 0 ∀k = 1, ..., q.

Proof. Since v1, ..., vq ∈ X, we only need to prove the “only if” part. Since every
y ∈ X can be expressed as

y =

q
∑

k=1

γkv
k, 0 ≤ γk ≤ 1 and

q
∑

k=1

γk = 1,

we have
q

∑

k=1

γk

p
∑

i=1

λi[(Bix + ti)Ai − (Aix + si)Bi](x− vk) ≤ 0 ∀k = 1, ..., q

⇔

p
∑

i=1

λi[(Bix + ti)Ai − (Aix + si)Bi]
((

q
∑

k=1

γk

)

x−

q
∑

k=1

γkv
k
)

≤ 0

⇔

p
∑

i=1

λi[(Bix + ti)Ai − (Aix + si)Bi](x− y) ≤ 0 ∀y ∈ X.

For simplicity we define

M(λ, x, y) :=

p
∑

i=1

λi[(Bix + ti)Ai − (Aix + si)Bi](x− y),

Mk(λ, x) := M(λ, x, vk)

=

p
∑

i=1

λi[(Bix + ti)Ai − (Aix + si)Bi](x− vk), k = 1, ..., q.
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By Theorem 2.1, if (λ, x) ∈ Λ × X (resp. (Λ0 × X) then x is weakly efficient
(resp. efficient) if and only if

M(λ, x, y) ≤ 0 ∀y ∈ X

or

Mk(λ, x) ≤ 0 ∀k = 1, ..., q.

Clearly,

(i) M(λ, x, .) is affine on X for each fixed (λ, x);

(ii) For each k, the function Mk(λ, x) is bilinear on Λ×X.

For each vk we define

Gk(λ) =

p
∑

i=1

λi[(ti + Biv
k)Ai − (si + Aiv

k)Bi],

bk(λ) =

p
∑

i=1

λi[tiAi − siBi]v
k.

Let G(λ) denote the (q × n)-matrix whose kth row is Gk(λ) (k = 1, ..., q), and
b(λ) denote the q-dimensional vector whose kth entry is bk(λ). Suppose that

X = {x ≥ 0 | Gx ≤ b}.

Then by using Proposition 2.1 and the definitions of G(λ) and b(λ) we can rewrite
Problems (IP ) as



















min{f(x) := dT x}

s.t.

Gx− b ≤ 0, x ≥ 0,

G(λ)x− b(λ) ≤ 0, λ ∈ Λ̄.

(P Λ̄)

Remark 2.1. To determine Problem (P Λ̄) we require that all vertices of the
polyhedron X are known in advance. So this formulation is recommended to use
when the vertices of X can be easily calculated. A special case appeared already
in some applications (see e.g. [17, 18]) where each component xi of the decision
variable x represents the ratio of ith quantity to be defined. In this case X is a
simplex given by

X :=
{

x = (x1, ..., xn)
∣

∣

n
∑

i=1

xi = 1, xi ≥ 0 ∀i = 1, ..., n
}

.

Clearly X has exactly n vertices which are the unit vectors of Rn.

3. Solution method

From the preceeding section we see that the problems of optimizing a function
f over the efficient and weakly efficient sets of a multicriteria affine fractional
program (V P ) can be formulated as bilinearly constrained problems of the form
(P Λ̄) with Λ̄ = Λ0 and Λ̄ = Λ, respectively. The main difference between these
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two problems is that Λ is a unit simplex where Λ0 = intΛ. Problem (PΛ) is thus
easier to be handled.

Bilinear programming is an important topic of mathematical programming. A
lot of methods have been developed for solving bilinear programming problems
(see e.g. [1, 11, 14, 15, 20, 21] and the references therein). Most of the developed
methods have been obtained by assuming that the bilinear term appears in the
objective function.

In this section we first describe a decomposition method for solving Problem
(P Λ̄) with Λ̄ = Λ by using its specific structure. Then we will use the fact that
Λ0 is the interior of Λ to approximate a solution of (PΛ0).

As usual, for a given ε ≥ 0, we call a point x an ε-optimal solution to Problem
(P ) if x is feasible and f(x) − f∗ ≤ ε(|f(x)| + 1), where f∗ denotes the optimal
value of (P ).

The proposed algorithm is a branch-and-bound procedure using Lagrangian
bounding operation and a simplicial subdivision. Unlike the algorithm in [22], this
algorithm uses only linear programming for computing lower and upper bounds.

Let

H(λ) :=

[

G
G(λ)

]

, h(λ) =

[

b
b(λ)

]

Then Problem (P Λ̄) can be rewritten as follows


















min{f(x) = dT x}

s.t.

H(λ)x− h(λ) ≤ 0,

x ≥ 0, λ ∈ Λ̄.

(BΛ̄)

Lagrangian Bounding Operation

Define the function φ : Λ→ R by setting

φ(λ) = min{dT x | H(λ)x− h(λ) ≤ 0, x ≥ 0}.(Pλ)

Then the problem

min{φ(λ) | λ ∈ Λ}(MP )

is equivalent to Problems (BΛ) and (WP ) in the sense of the following proposition
whose proof is obvious from the results of the preceeding section. Let f∗ and w∗

denote the optimal values of Problem (P ) and (WP ) respectively.

Proposition 3.1. A point (λ∗, x∗) is optimal to Problem (BΛ) if and only if x∗

is optimal to (WP ) and λ∗ is optimal to (MP ) and w∗ = f(x∗) = φ(λ∗).

Note that a feasible point of Problem (BΛ) can be obtained by solving a
standard linear program. In fact, if λ ∈ Λ fixed and xλ is an optimal solution
of the linear problem (Pλ) then (λ, xλ) is feasible for (BΛ). Hence xλ is feasible
for (WP ). So upper bounds for w∗ are computed by solving a standard linear
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program. As the algorithm executes more and more feasible points can be found,
and thereby upper bounds for w∗ can be iteratively improved.

We now compute lower bound for w∗ by using Lagrangian duality. Let S be a
fully dimensional subsimplex of Λ. Let V (S) denote the vertex set of S. Consider
Problem (BΛ) restricted on S, i.e.,



















w∗(S) := min dT x

s.t.

H(λ)x− h(λ) ≤ 0,

x ≥ 0, λ ∈ S.

(BS)

Let L(u, λ, x) be the Lagrangian function with respected to the constraint H(λ)x−
b(λ) of this problem. That is

L(u, λ, x) = dT x + uT (H(λ)x− h(λ)).(1)

Define the function m(u, λ) as

m(u, λ) = min
x≥0
{dT x + uT (H(λ)x− h(λ))}.

From the Lagrangian duality theorem we have

m(u, λ) ≤ φ(λ) ∀u ≥ 0, ∀λ ∈ S.(2)

Since for each fixed λ the function H(λ)x− h(λ) is affine, we have

sup
u≥0

m(u, λ) = φ(λ).(3)

Let

µS(u) = min
λ∈S

m(u, λ).(4)

From (2) it follows that

µS(u) = min
λ∈S

m(u, λ) ≤ min
λ∈S

φ(λ) = w∗(S) ∀u ≥ 0.

Hence

sup
u≥0

µS(u) ≤ w∗(S).

Therefore, taking

β(S) = sup
u≥0

µS(u)(5)

we obtain a lower bound β(S) for w∗(S). The following lemma states that this
lower bound can be computed by solving linear programs one for each vertex of
S.

Lemma 3.1. Let λi ( i = 1, ..., p) be the vertices of S. Then

β(S) := min
λ∈V (S)

{

sup−hT (λ)u, s.t.

HT (λi)u + d ≥ 0, u ≥ 0, i = 1, ..., p
(LS)
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Proof. From (1) and (5) it follows that

β(S) = sup
u≥0

µS(u) = sup
u≥0

min
λ∈S

m(u, λ).

Hence

β(S) = sup
u≥0

min
λ∈S

min
x≥0
{dT x + uT (H(λ)x− h(λ))}.

Then

β(S) = sup
u≥0

min
λ∈S

{

min
x≥0

(dT + uT H(λ))x− uT h(λ))
}

.(6)

If λ ∈ S is such that dT + uT H(λ) 6≥ 0 for all u ≥ 0, then

min
x≥0

(dT + uT H(λ))x = −∞.

So, the supremum in (6) can be taken over all u ≥ 0 satisfying

HT (λ)u + dT ≥ 0 ∀λ ∈ S(7)

which implies

min
x≥0

(uT H(λ) + dT )x = 0.

Since
(

HT (λ)u + d ≥ 0 ∀λ ∈ S
)

⇐⇒
(

HT (λ)u + d ≥ 0 ∀λ ∈ V (S)
)

,

it follows from (6) and (7) that

β(S) = sup
u≥0

min
λ∈S

{

− uT h(λ)
∣

∣ HT (λ)u + dT ≥ 0 i = 1, . . . , p
}

(8)

with λi ∈ V (S), i = 1, . . . , p. By the minimax theorem, we can interchange the
supremum and the infimum in (8) to obtain

β(S) := min
λ∈V (S)

{

sup−hT (λ)u, s.t.

HT (λi)u + d ≥ 0, i = 1, . . . p, u ≥ 0,

which proves the lemma.

Simplicial Bisection

At each iteration k of the algorithm to be described below, a subsimplex of the
simplex Λ will be bisected into subsimplices such a way so that as the algorithm
executes the obtained lower and upper bounds tend to the same limit. This can
be done by using an exhaustive simplicial bisection that is commonly known in
global optimization [11]. This simplicial bisection can be described as follows.
Let Sk be a subsimplex of full dimension of Λ that we want to bisect at iteration
k. Let vk, wk be two vertices of Sk such that the edge joining these vertices
is longest. Let uk = tkv

k + (1 − tk)w
k with 0 < tk < 1. Bisect Sk into two

subsimplices Sk1 and Sk2, where Sk1 and Sk2 are obtained from Sk by replacing
vk and wk respectively by uk. It is well known [11] that Sk = Sk1 ∪ Sk2, and
that if {Sk} is an infinite sequence of nested simplices generated by this simplicial
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bisection process such that 0 < δ0 < tk < δ1 < 1 for every k, then the sequence
{Sk} shrinks to a singleton.

Now we are in a position to describe the algorithm for solving (P Λ̄) with Λ̄ = Λ.

Algorithm LB

Initialization. Choose a tolerance ε ≥ 0 and set S0 := Λ. For each v ∈ V (S0)
solve the linear program

β(v) :=

{

max−hT (v)u, s.t.

HT (λi)u + d ≥ 0 u ≥ 0, ∀λi ∈ V (S0).
(Lv)

Let β(S0) := minv∈V (S0) β(v) and λ0 ∈ S0, u0 ≥ 0 such that β(S0) = −hT (λ0)u0.

Solve the linear program
{

min{f(x) := dT x}, s.t.

H(λ0)x− h(λ0) ≤ 0, x ≥ 0

to obtain x0. Let α0 := φ(λ0) := dT x0. Set β0 := β(S0) and

Γ0 :=

{

{S0} if α0 − β0 > ε(|α0|+ 1),

∅ otherwise

Let k ← 0 and go to Iteration k.

Iteration k (k = 0, 1, ...)

Step k1 (selection):

a) If Γk = ∅, then terminate: xk is an ε-optimal solution and αk is the ε-optimal
value to Problem (WP).

b) If Γk 6= ∅ then select Sk ∈ Γk such that

βk = β(Sk) = min{β(S) | S ∈ Γk}.

Step k2 (bisection): Bisect Sk into two simplices Sk1 and Sk2 by the exhaustive
simplicial bisection described above.

Step k3 (bounding): Compute, for each v ∈ V (Skj),

β(v) :=

{

max−hT (v)u, s.t.

HT (λi)u + d ≥ 0 u ≥ 0, ∀λi ∈ V (Skj)
(LSkj)

Set β(Skj) = min
v∈V (Skj)

β(v). Let ukj be the obtained optimal solution and λkj ∈

V (Skj) such that

β(Skj) = −hT (λkj)ukj, (j = 1, 2)

Step k4 (updating): Solving the linear programs, one for each λkj

{

min{f(x) := dT x}, s.t.

H(λkj)x− h(λkj) ≤ 0, x ≥ 0
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we obtain new feasible points. Using these feasible points to update the upper
bound. Let xk+1 be the best feasible point among xk and the newly generated
feasible points. Set αk+1 := dT xk+1 and

Γk+1 ← {S ∈ (Γk\{Sk}) ∪ {Sk1, Sk2}
∣

∣ αk+1 − β(S) > ε(|αk+1|+ 1)}

Increase k by 1 and go to iteration k.

Theorem 3.1. (i) If Algorithm LB terminates at iteration k, then xk is an ε-
global optimal solution to Problem (WP ).

(ii) If the algorithm does not terminate then βk ↗ w∗, αk ↘ w∗ as k → +∞,
and any cluster point of the sequence {xk} is a globally solution to Problem (WP ).

Proof. (i) If the algorithm LB terminates at iteration k then Γk = ∅. This
implies that αk−βk ≤ ε(|αk|+1). Since βk ≤ w∗, and αk = f(xk) it follows that
f(xk)− w∗ ≤ ε(|f(xk)|+ 1). Hence xk is an ε-optimal solution.

(ii) Since Sk = Sk1∪Sk2, by the rule for computing lower bound β(Sk) we have

βk = β(Sk) ≤ β(Sk+1) = βk+1 ∀k.

Also, since αk+1 is the currently smallest upper bound determined at Step k4 we
have αk+1 ≤ αk ∀k. Thus, both β∗ = lim βk and α∗ = lim αk exist and satisfy

β∗ ≤ w∗ ≤ α∗(9)

Suppose that the algorithm does not terminate. Then it generates an infinite
sequence of nested simplices that, for simplicity of notation, we also denote by
{Sk}. Since the subdivision is exhaustive, this sequence strinks to a singleton,
say λ∗ ∈ Λ. By the rule for computing lower bound βk we have

βk = sup
u≥0

min
λ∈Sk

m(u, λ) ≥ min
λ∈Sk

m(u, λ) ∀u ≥ 0.

Since the sequence {Sk} tends to λ∗ as k → +∞ we obtain

β∗ = lim βk ≥ m(u, λ∗) ∀u ≥ 0.(10)

Since φ(λk) is an upper bound determined at Step k1 and αk+1 is the currently
smallest upper bound obtained at Step k4 we have

αk+1 ≤ φ(λk) ∀k.

Since λk → λ∗, it follows from the continuity of φ [4] that

α∗ = lim αk = lim αk+1 ≤ lim φ(λk) = φ(λ∗).(11)

On the other hand, by Lagrangian duality theorem for the linear program deter-
mining φ(λ∗) we have

sup
u≥0

m(u, λ∗) = φ(λ∗).

Then from (10) and (11) it follows that

α∗ ≤ φ(λ∗) ≤ β∗
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which together with (9) implies

β∗ = w∗ = α∗ = φ(λ∗).

Let x∗ be any cluster point of the sequence {xk}. By the definition we have
αk = f(xk). Since αk ↘ w∗, it follows from continuity of f that w∗ = f(x∗).
Since xk ∈ WE(F,X) for all k and WE(F,X) is closed [8], x∗ ∈ WE(F,X).
Hence x∗ is a globally optimal solution to Problem (WP ).

Remark 3.1. (i) When ε > 0 the algorithm must terminate affer a finite number
of iterations. Indeed, if the algorithm does not terminate at iteration k, then
αk − βk > ε(|αk|+ 1). Since αk − βk → 0 as k → +∞, it follows that when ε > 0
the inequality αk − βk > ε(|αk|+ 1) can not happen indefinitely.

(ii) The subdivision takes place on the simplex Λ whose dimension is just equal
to the number of the criteria of Problem (V P ) that is just equel to the number
of linear programs needed to solve for computing lower bounds. So the algorithm
is expected to be efficient only when the number of the criteria in (VP) is small.

4. Relaxation approach

The algorithm described in the previous section requires that all vertices of the
constrained polyhedron X are known in advance. So the algorithm can be used
only when the vertices of X are easy to compute. In the case where computing
all vertices of X is expensive, we propose a relaxation algorithm that computes
vertices of X iteratively in a branch-and-bound procedure. It may expect that
the algorithm finds a globally optimal solution without computing all of vertices
of X. To this end, we suppose that some vertices v1, ..., vr of X are known. As
before, for each vk we define

Gk(λ) =

p
∑

i=1

λi[(ti + Biv
k)Ai − (si + Aiv

k)Bi],

bk(λ) =

p
∑

i=1

λi[tiAi − siBi]v
k.

Denote by Gr(λ) the (r× p) matrix whose kth row is Gk(λ) (k = 1, ..., r), and by
br(λ) the r-dimensional vector whose kth entry is bk(λ), (k = 1, . . . , r) and

Hr(λ) :=

[

G
Gr(λ)

]

, hr(λ) =

[

b
br(λ)

]

.

Consider the following problem
{

min{f(x) := dT x}, s.t.

Hr(λ)x− hr(λ) ≤ 0, x ≥ 0, λ ∈ Λ.
(BrΛ)

Let (λr, xr) be an optimal solution of this problem, If xr is weakly efficient, then
xr is an optimal solution to (WP ). Otherwise, the optimal value of (BrΛ) is a
lower bound for that of (BΛ), because the feasible set of (BΛ) is contained in
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the feasible domain of (BrΛ). Then one can increase lower bound by adding a
new vertex of X to obtain Problem (Br+1Λ) and so on. Since the number of the
vertices of X is finite, this procedure must terminate yielding an optimal solution
to (BΛ).

This procedure can be described in details as follows. Let the tolerance ε > 0
be given.

Algorithm RLB

Step 0. Choose one or more distinct vertices v1, ..., vr of X.

Step 1. Solve (BrΛ) by using Algorithm LB. Let (λr, xr) be an ε-optimal
solution to (BrΛ).

Step 2. Solve the linear program

max
{

M(λr, xr, y) | y ∈ X
}

(Lr)

to obtain an optimal solution vr+1 ∈ V (X).

a) If M(λr, xr, vr+1) ≤ 0, then terminate: (λr, xr) is an ε-optimal solution to
(BΛ) (hence xr is weakly efficient and therefore it is an ε-optimal solution to
(WP )).

b) If M(λr, xr, vr+1) > 0, then use vr+1 to define Problem (Br+1Λ). Increase
r by one and go back to Step 1.

Theorem 4.1. Algorithm RLB terminates after a finite number of Step 1 yield-
ing an ε-optimal solution to Problem (BΛ).

Proof. . By the definition of M(λ, x, y) we see that Problem (PΛ) is equivalent
to the problem











min{f(x) := dT x}, s.t.

M(λ, x, vi) ≤ 0, ∀ vi ∈ V (X)

λ ∈ Λ, x ∈ X,

and the relaxed problem (BrΛ) is equivalent to










min{f(x) := dT x}, s.t.

M(λ, x, vi) ≤ 0, i = 1, ..., r

λ ∈ Λ, x ∈ X.

Since (λr, xr) is feasible for (BrΛ), we have M(λr, xr, vi) ≤ 0 for every i = 1, ..., r.
Since

M(λr, xr, vr+1) = max
x∈X

M(λr, xr, x),

it follows from Theorem 1.2 that if M(λr, xr, vr+1) ≤ 0 then xr is weakly efficient,
and therefore (λr, xr) solves (BΛ). If M(λr, xr, vr+1) > 0, then vr+1 6= vj for
every j = 1, ..., r, because M(λr, xr, vj) ≤ 0 for every j = 1, ..., r. Thus if the
algorithm does not terminate, it generates, at each Step 2, a new vertex of X
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that distinct from all previous ones. Hence the algorithm must terminate after a
finite number of Step 1, since the number of the vertices of X is finite.

5. The efficient set case

Because of nonclosedness of Λ0, Problem (PΛ0) is more difficult to handle than
(PΛ). To avoid nonclosedness of Λ0, for δ > 0 we define

Λδ :=
{

λ = (λ1, ..., λp)|λj ≥ δ > 0, ∀j,

p
∑

j=1

λj = 1
}

.

Clearly, for every δ > 0 sufficiently small, Λδ 6= ∅ and

Λδ ⊂ Λ0 ⊂ Λ.

Let δ > 0 be fixed such that Λδ 6= ∅. Consider the problem
{

min
{

f(x) = dT x
}

, s.t.

H(λ)x− h(λ) ≤ 0, x ≥ 0, λ ∈ Λδ.
(PΛδ)

Since the feasible domain of this problem is compact, it admits an optimal solu-
tion. Corresponding to (PΛδ) we define the problem

min{φ(λ) | λ ∈ Λδ}.(MPδ)

Since Λδ is compact, Problems (PΛδ) and (MPδ) are equivalent in the sense that
if (λ∗, x∗) is optimal for (PΛδ) then λ∗ is optimal for (MPδ). Conversely, if λ∗

is optimal for (MPδ) and x∗ optimal solution of problem defining φ(λ∗), then
(λ∗, x∗) solves (PΛδ).

Clearly, if (λ∗, x∗) is an optimal solution to (PΛ) and λ∗ ∈ Λ0 then (λ∗, x∗)
is optimal solution to (PΛ0) as well. Otherwise an optimal solution of (PΛ0)
can be approximated by solving Problem (PΛδ) with δ > 0 sufficiently small, as
shown in the following proposition.

Proposition 5.1. Suppose that Problem (P ) has an optimal solution. Let {δk}
be a decreasing sequence of positive numbers tending to zero. Suppose that δk

is small enough such that Λδk
6= ∅ for every k. Let λk be an optimal solution

of Problem (MPδk
) and xk be a solution of the problem defining φ(λk), i.e.,

φ(λk) = f(xk). Then f(xk)→ f∗ as k →∞, and xk ∈ E(F,X) for all k.

Proof. Since δk > δk+1 > 0, we have Λδk
⊂ Λδk+1

. Let fk := φ(λk). Then

fk = min{φ(λ)|λ ∈ Λδk
}

≥ min{φ(λ)|λ ∈ Λδk+1
}

= φ(λk+1)

= fk+1 ≥ min
λ∈Λ0

φ(λ) = f∗.

Since {fk} is a decreasing sequence bounded from below, there exists f0 such that

f0 = lim
δk→0

fk.
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As f∗ ≤ fk for all k, it follows that f∗ ≤ f0.

Since x∗ ∈ E(X,F ), there exists λ∗ ∈ Λ0 such that φ(λ∗) = f∗. Thus φ(λ∗) ≤
f0. We show that φ(λ∗) = f0. Indeed, otherwise if φ(λ∗) < f0, then λ∗ 6∈ Λδk

for
all k sufficiently large. However, since λ∗ ∈ Λ0, and δk ↘ 0, one can easy to see
that λ∗ ∈ Λδk

for all δk < min{λ∗
1, ..., λ

∗
p}. We arrive at a contradiction. Thus

f0 = φ(λ∗) = f∗, which implies that f(xk)→ f∗.

Note that

λk ∈ Λδk
⊂ Λ0 ∀ k.

Thus, since xk is an optimal solution of Problem (Pλk) defining φ(λk), we have
xk ∈ E(F,X) for every k.

Remark 5.1. Since the set E(F,X) may be not closed, a cluster point of
the sequence {xk} may not be efficient, but it must be weakly efficient because
E(F,X) ⊂WE(F,X) and WE(F,X) is closed.

6. Example and computational results

We now illustrate the LB algorithm by the following example which has been
introduced in Section 2.

V min
x∈X

F (x) = (f1(x), f2(x)) =
( −x1

x1 + x2
,

3x1 − 2x2

x1 − x2 + 3

)

(VP)

where

X = {x|Gx ≤ b, x ≥ 0},

G =









1 −2
−1 −2
−1 1

1 0









, b =









2
−2

1
6









.

Let Λ = {λ = (λ1, λ2)|λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1} and d = [−1,−1]. The
problem to be solved is

min{dT x = −x1 − x2|x ∈WE(F,X)}.

Compute

G(λ) =









−λ1 + 8λ2 −6λ2

9λ2 −2λ1 − 4λ2

−2λ1 + 7λ2 6λ1

−7λ1 + 2λ2 6λ1









, b(λ) =









−6λ2

18λ2

42λ2

12λ2









.
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Hence

H(λ) =

























1 −2
−1 −2
−1 1

1 0
λ1 + 8λ2 −6λ2

9λ2 −2λ1 − 4λ2

−2λ1 + 7λ2 6λ1

−7λ1 + 2λ2 6λ1

























, h(λ) =

























2
−2

1
6

−6λ2

18λ2

42λ2

12λ2

























,

HT (λ1) =
[

+1 −1 −1 −1 (−λ1
1 + 8λ1

2) 9λ1
2 (−2λ1

1 + 7λ1
2) (−7λ1

1 + 2λ1
2)

−2 −2 +1 0 −6λ1
2 (2λ1

1 − 4λ1
2) 6λ1

1 6λ1
1

]

,

HT (λ2) =
[

+1 −1 −1 +1 (−λ2
1 + 8λ2

2) 9λ2
2 (−2λ2

1 + 7λ2
2) (−7λ2

1 + 2λ2
2)

−2 −2 +1 0 −6λ2
2 (2λ2

1 − 4λ2
2) 6λ2

1 6λ2
1

]

.

For a fixed λ = (λ1, λ2) ∈ V (Sk), the problems of determining upper and lower
bounds are

α =



































































min{−x1 − x2}, s.t.






























1 −2

−1 −2

−1 1

1 0

−λ1 + 8λ2 −6λ2

9λ2 +2λ1 − 4λ2

−2λ1 + 7λ2 6λ1

−7λ1 + 2λ2 6λ1































[

x1

x2

]

≤































2

−2

1

6

−6λ2

18λ2

42λ2

12λ2































,

β(Sk) =

min
β(λ1),β(λ2)











































































β(λ1) := max−[4u1 − 2u2 + u3 + 6u4 − 6λ1
2u5 + 18λ1

2u6 + 42λ1
2u7 + 12λ1

2u8]

β(λ2) := max−[4u1 − 2u2 + u3 + 6u4 − 6λ2
2u5 + 18λ2

2u6 + 42λ2
2u7 + 12λ2

2u8]

subject to

2u1 − u2 − u3 + u4 + (−λ1
1 + 8λ1

2)u5 + 9λ1
2u6+

(−2λ1
1 + 7λ1

2)u7 + (−7λ1
1 + 2λ1

2)u8 − 1 ≥ 0

−4u1 − 2u2 + u3 + 0u4 − 6λ1
2u5 + (2λ1

1 − 4λ1
2)u6 + 6λ1

1u7 + 6λ1
1u8 − 1 ≥ 0

2u1 − u2 − u3 + u4 + (−λ2
1 + 8λ2

2)u5 + 9λ2
2u6+

(−2λ2
1 + 7λ2

2)u7 + (−7λ2
1 + 2λ2

2)u8 − 1 ≥ 0

−4u1 − 2u2 + u3 + 0u4 − 6λ2
2u5 + (2λ2

1 − 4λ2
2)u6 + 6λ2

1u7 + 6λ2
1u8 − 1 ≥ 0

u1 ≥ 0, u2 ≥ 0, u3 ≥ 0, u4 ≥ 0, u5 ≥ 0, u6 ≥ 0, u7 ≥ 0, u8 ≥ 0.
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Intialization. Choose ε = 0.05 and set S0 = [(0, 1), (1, 0)]. Then

β(S0) = min
{

β((0, 1)), β((1, 0))
}

= min{−13,−13} = −13.

Take λ = (1, 0) ∈ S0, α0 = [−1,−1][2, 0]T = −2, β0 = β(S0) = −13. Since
α0− β0 = −2 + 13 = 11 ≥ 0.05(| − 2|+ 1) = 0.15, we have Γ0 = {S0}. Set k := 0
and go to Iteration k.

Iteration k. The following table presents the result attained by the maple V
release 4 package after 27 Iterations.

In order to obtain a preliminary evaluation of the performance of Algorithm
RLB, we have written a computer code by Maple V that implements this algo-
rithm. We have used the code to solve thirty one randomly generated problems
on a Pentium II personal computer. The computed results are reported in Table
2. In this table, m1 stands for the number of newly added constraints.

Table 1

Iter- Incum Selected Number
ation -bent partition of stored

k βk αk + 1 xk+1 set partition
sets

0 -13 -2 (2, 0) [(0, 1), (1, 0)] 2

1 -13 ” ” [(
1

2
,
1

2
), (1, 0)] 3

2 -13 -3.75 (
3

2
,
9

4
) [(0, 1), (

1

2
,
1

2
)] 4

3 -13 ” ” [(0, 1), (
1

4
,
3

4
)] 4

4 -13 ” ” [(
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4
,
3

4
), (
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2
,
1

2
)] 3
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2
,
1

2
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4
,
1

4
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4
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4
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8
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8
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2
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2
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4
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8
)] 5
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2
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8
)] 4
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2
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2
), (
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7
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)] 5
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Table 1 (continue)

Iter- Incum Selected Number
ation -bent partition of stored

k βk αk + 1 xk+1 set partition
sets

11 -7.4 ” ” [(
5

8
,
3

8
), (

3

4
,
1

4
)] 4

12 -7.4 -4.69 (
15

8
,
45

16
) [(

7

8
,
1

8
), (1, 0)] 5

13 -7.18 ” ” [(
9

16
,

7

16
), (

5

8
,
3

8
)] 4

14 -6.27 ” ” [(
19

32
,
13

32
), (

5

8
,
3

8
)] 5

15 -6.23 ” ” [(
9

16
,

7

16
), (

19

32
,
13

32
)] 5

16 -5.91 ” ” [(
5

8
,
3

8
), (

21

32
,
11

32
)] 3

17 -5.68 ” ” [(
5

8
,
3

8
), (
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,
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)] 3

18 -5.68 ” ” [(
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,
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8
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19 -5.59 ” ” [(
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4
,
1

4
), (
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8
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8
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20 -5.55 ” ” [(
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), (
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4
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4
)] 3

21 -5.46 ” ” [(
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32
,
11

32
), (
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16
,

5
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)] 4

22 -5.33 ” ” [(
5

8
,
3

8
), (
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,

5

16
)] 2

23 -5.31 -4.92 (
63

32
,
189

64
) [(
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128
,
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128
), (
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,
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)] 3

24 -5.30 ” ” [(
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,
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), (
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,
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)] 2

25 -5.30 ” ” [(
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,
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), (
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)] 1

26 -5.22 ” ” [(
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,
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), (
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,
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128
)] 1

27 -5.17 ” ” [(
21

32
,
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32
), (
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,
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256
)] 0
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An ε-global optimal solution is x = (63/32, 189/64).

The ε-optimal value is f∗ε = −4.92.
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Table 2

Pron CPU
-lems p n m ε f∗ m1 Iter. time(s)

1 2 2 6 0.005 -4.995 4 101 189
2 ” 9 0.01 -99.5 3 8 56.5
3 ” ” ” ” -38.8 6 10 54
4 3 6 7 0.01 -120 1 1 2
5 ” ” ” ” -5.4 2 2 16
6 ” ” ” ” -35.2 5 12 90
7 3 9 10 0.01 -179 4 4 12
8 ” ” ” ” -110 4 45 390
9 ” ” ” ” -47 2 6 32.5

10 ” ” ” ” -90 1 1 2
11 ” ” ” ” -180 2 2 5
12 3 12 13 0.01 -59.3 5 84 753
13 ” ” ” ” -186 4 6 49
14 ” ” ” ” -192 2 2 4
15 ” ” ” ” 0 5 38 362
16 ” ” ” ” -189 3 50 371
17 4 9 10 0.01 -144 6 164 2001
18 ” ” ” ” -141 6 76 862
19 ” ” ” ” -92 2 2 6
20 ” ” ” ” -144 3 9 90
21 ” ” ” ” -22.5 5 10 667
22 4 12 13 0.01 -66 5 25 416
23 ” ” ” ” 0 5 763 11078
24 ” ” ” ” -4026 5 134 1997
25 ” ” ” ” -62 3 3 17
26 ” ” ” ” -61 5 5 47
27 4 16 17 0.01 -246 4 6 116
28 ” ” ” ” -255 4 20 359
29 ” ” ” ” -249 2 2 9
30 ” ” ” ” -246 1 1 4
31 ” ” ” ” -32 2 2 10
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