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EFFICIENCY EQUIVALENT POLYHEDRA

FOR THE FEASIBLE SET OF

MULTIPLE OBJECTIVE LINEAR PROGRAMMING

NGUYEN THI BACH KIM

Abstract. We propose an outer approximation algorithm for constructing
a simple efficiency equivalent polyhedron for the feasible set of the multiple
objective linear programming problem in the case where the ordering cone
induced by the criteria functions is pointed and has a nonempty interior.

1. Introduction

In general, the efficient set of a multiple objective linear programming problem
is a very complicated non-convex set. The complicated structure of the efficient
set depends on the size of the problem, the size of data determining the feasible
set and the criteria functions. That complication grows rapidly as the size of
such data increases. An important problem arising is how one can reduce the
complexity of the problem. In recent years, Benson [1]–[3], Dauer and Liu [4],
Gallagher and Saleh [5] and some other authors have suggested the outcome set
approach. This approach is effective when the number of the problem criteria is
much smaller than that of the decision variables.

Another possibility to reduce the size of the problem is that instead of the
feasible set one works with the so-called “efficiency equivalent” set, which has the
same efficient set as the feasible set. The structure of the efficiency equivalent
set is simpler than that of the feasible set of the original problem. Observe that,
in general, not all of the data determining the feasible set must play a role in
creating the efficient set.

In this paper we are concerned with the multiple objective linear programming
problem in the special case where the ordering cone induced by criteria functions
is pointed and has a nonempty interior. We propose here an outer approximation
algorithm for finding all efficient extreme points and constructing efficiency equiv-
alent polyhedron whose data size is, normally, smaller than that of the original
feasible set.
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2. Efficiency and efficiency equivalent polyhedron

Throughout the paper R
k denotes an k-dimensional Euclidean space. For any

two vectors x′ = (x′

1, . . . , x
′

k), x = (x1, . . . , xk) ∈ R
k we write x′ ≥ x if x′

i ≥ xi,
for all i = 1, . . . , k. We write x′ > x if x′ ≥ x and x′ 6= x. We always assume that
C is a fixed p × n-matrix with the row vectors c1, . . . , cp ∈ R

n, p ≥ 2. Let

C0 := {x ∈ R
n : Cx ≥ 0} and `(C0) := C0 ∩ (−C0)

stand for the ordering cone induced by the matrix C and the lineality space of
C0, respectively. Recall that, for a given polyhedron Q, the efficient set QE of Q
with respect to the ordering cone C0 is defined by

QE := {x0 ∈ Q : 6 ∃x ∈ Q such that x − x0 ∈ C0 \ `(C0)},

or, equivalently,

QE := {x0 ∈ Q : 6 ∃x ∈ Q such that Cx > Cx0}.

It is well-known that QE is a connected set which is composed by some faces of
the polyhedron Q.

Consider the multiple objective linear programming problem

maxCx , x ∈ X,(VP)

where X is a polyhedron defined by a system of linear inequalities

〈ai, x〉 ≥ bi, i = 1, . . . ,m,(1)

where a1, . . . , am are vectors from R
n and b1, . . . , bm are real numbers.

Recall that a point x0 ∈ X is called an efficient solution for (VP) if there
exists no x ∈ X such that Cx > Cx0. Thus, the set of all the efficient solutions
for (VP) is just the efficient set XE of X with respect to the ordering cone C0.
If every point of a face F ⊆ X is an efficient solution, then F is said to be an
efficient (solution) face.

Definition 2.1. A polyhedron Q ⊂ R
n is said to be an efficiency equivalent

polyhedron for X if QE = XE .

The just defined notion of efficiency equivalent polyhedron differs slightly from
the one considered in [2], [5] and [8].

The following proposition can be derived from Proposition 2.2 in [8]. However,
for the convenience of the reader, we give here a direct proof.

Proposition 2.1. Suppose that the ordering cone C0 is pointed and has a non-
empty interior. Then, a polyhedron Q ⊂ R

n is an efficiency equivalent polyhedron
for X if

X ⊆ Q ⊆ X − C0.
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Proof. Since C0 is pointed then `(C0) = {0}. First, we show that XE ⊆ QE . Let
x∗ ∈ XE . Since X ⊂ Q, we have x∗ ∈ Q. Assume to the contrary that x∗ 6∈ QE.
By the definition, there is x0 ∈ Q such that x0 − x∗ ∈ C0 \ {0}, i.e.,

x0 − x∗ = k0 6= 0 with k0 ∈ C0.(2)

By the assumption, Q ⊂ X − C0. Therefore x0 = x1 − k1 for some x1 ∈ X and
k1 ∈ C0. This fact and (2) imply that x1 − x∗ = k1 + k0 = k2 ∈ C0 for some
k2 ∈ C0. As `(C0) = {0}, we must have k2 6= 0. Thus x1 − x∗ ∈ C0 \ {0}. This
shows that x∗ 6∈ XE , a contradiction. Hence, x∗ ∈ QE.

Now, we prove that XE ⊇ QE. Let x0 ∈ QE . Since Q ⊆ X − C0, x0 can be
represented as x0 = x1−x2 for some x1 ∈ X and x2 ∈ C0. Then x1−x0 = x2 ∈ C0.
Since x0 ∈ QE, we must have x1 = x0. This shows that x0 ∈ X. As X ⊂ Q, the
inclusion x0 ∈ QE implies that x0 ∈ XE .

Now, in order to reduce the size of (VP), we are interested in the efficiency
equivalent polyhedra determined by the subsystems of the system (1).

Definition 2.2. A subset I ⊂ {1, . . . ,m} is an E-index set of (VP) if the poly-
hedron defined by the system

〈ai, x〉 ≥ bi, i ∈ I,

is an efficiency equivalent polyhedron for X.

Let us denote

IE :=
⋃

x∈XE

I(x),

where, I(x) stands for the set of the active indices at x ∈ X, i.e.,

I(x) := {i ∈ {1, . . . ,m} : 〈ai, x〉 = bi}.

Denote by Xreduced the polyhedron determined by the system

〈ai, x〉 ≥ bi, i ∈ IE .(3)

To Xreduced we associate the reduced problem

maxCx , x ∈ Xreduced.(RVP)

For a point x ∈ Xreduced we denote by II(x) the set of all active indices at x with
respect to the system (3). Denote by Xreduced

E the set of all efficient solutions for
(RVP).

As will be seen below, the polyhedron Xreduced is a good efficiency equivalent
polyhedron for X. Furthermore, the problem of determining Xreduced is equiv-
alent to that of finding the active index sets of the efficient extreme points for
(VP).

Recall (see [12]) that the system (1) has no redundant inequalities if X cannot
be defined by a smaller number of inequalities of (1). A vertex x0 of X is said
to be nondegenerate if it satisfies as equalities exactly n inequalities (which must
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then be linearly independent) from (1). The polyhedron X is nondegenerate if
every vertex of X is nondegenerate.

Proposition 2.2. Suppose that X contains no lines and XE 6= ∅. Then

(i) The set IE is the union of the active index sets of the efficient extreme
points for (VP), i.e.,

IE =
⋃

x∈V (XE)

I(x),(4)

where V (XE) stands for the set of the efficient extreme points of (VP).

(ii) IE is an E-index set for (VP).

(iii) If the system (1) has no redundant inequalities and the polyhedron X is
nondegenerate and has non-empty interior, then IE is the unique smallest set
among of the E-index sets for (VP).

Let us recall from [7] the condition for a point to be an efficient solution for
problem (VP).

Proposition 2.3. (see [7, Corollary 5.4]) A point x0 ∈ X is an efficient solution
for (VP) if and only if the following system is consistent (has a solution)

∑

i∈I(x0)

µia
i = −

p∑

j=1

λjc
j

µi ≥ 0, i ∈ I(x0), λj > 0, j = 1, . . . , p.

Proof of Proposition 2.2. (i) Since X contains no lines and XE 6= ∅, the efficient
set XE is an union of some faces of X and every efficient face F ⊆ XE must
contain some extreme point of X. In particular, V (XE) 6= ∅.

To obtain the representation (4), we need only to show that

I(x0) ⊂
⋃

x∈V (XE)

I(x)(5)

for every point x0 ∈ XE \ V (XE).

Let x0 ∈ XE \ V (XE). Then x0 must be a point in the relative interior of a
face F of XE . According to [9], F is determined by a system

〈ai, x〉 = bi, i ∈ IF ,

〈aj, x〉 ≥ bj , j ∈ {1, . . . ,m}\IF ,

for a nonempty index set IF ⊆ {1, . . . ,m}. Since x0 is a point in the relative
interior of F , we must have I(x0) = IF . As mentioned in above, F must contain
an efficient extreme point, say, x̄ ∈ V (XE). For such a vertex x̄ we have that
IF ⊆ I(x̄). Hence, I(x0) = IF ⊆ I(x̄) and we get (5).

(ii) To show that IE is an E-index set we have to verify that Xreduced
E = XE .
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First, we can show that XE ⊆ Xreduced
E . Assume that x0 ∈ XE . Since X ⊂

Xreduced, we have that x0 ∈ Xreduced. By definition of Xreduced, the index set IE

contains the set I(x0). Hence, II(x0) = I(x0). Therefore, in view of Proposition
2.3 we can see that x0 is an efficient solution for Problem (RVP), i.e. x0 ∈
Xreduced

E . Thus, XE ⊆ Xreduced
E .

Next, we prove the reverse inclusion Xreduced
E ⊆ XE . Assume to the contrary

that Xreduced
E 6⊆ XE . Recall that the efficient sets XE and Xreduced

E consist

of some faces of X and Xreduced, respectively. Furthermore, they are closed
connected sets and X ⊆ Xreduced. Hence, if Xreduced

E 6⊆ XE, then there exists an

efficient face F ⊂ Xreduced
E such that F 6⊆ XE and F ∩ XE 6= ∅. For such a face

F there exists a point x0 ∈ ri(F ) \ XE , since F is a face of Xreduced
E and XE is

closed. Therefore, we can choose a point x∗ ∈ XE ∩F such that [x0, x∗] ⊆ F and
[x0, x∗]∩XE = {x∗}. Note from definition that Xreduced

E ∩X ⊆ XE . So, we have
also [x0, x∗] ∩ X = {x∗}. Let J := {1, . . . ,m} \ IE and consider the sets

Li := {x ∈ [x0, x∗] : 〈ai, x〉 ≥ bi}

for i ∈ J . We have
⋂

i∈J

Li = [x0, x∗] ∩ X = {x∗}.

Since x∗ ∈ XE ⊆ X, it is clear that x∗ ∈ Li for all i ∈ J . Then, each of the sets Li

is of the form [xi, x∗] for a point xi ∈ [x0, x∗]. Hence, there exists an index k ∈ J
such that Lk = {x∗}. This ensures that 〈ak, x

∗〉 = bk, i.e. k ∈ I(x∗). This means
that J ∩ I(x∗) 6= ∅ that contradicts the definition of IE. Thus, Xreduced

E ⊆ XE .

(iii) Let I ⊂ {1, . . . ,m} be an E-index set of (VP). To prove that IE is the
smallest E-index set, we have to show only that I(x0) ⊆ I for all x0 ∈ V (XE).
This fact together with (i) implies that IE ⊆ I. Let Q be the polyhedron deter-
mined by the system

〈ai, x〉 ≥ bi, i ∈ I,

which is an efficiency equivalent polyhedron for X. By definition, X ⊂ Q, XE =
QE and V (XE) = V (QE), where V (QE) stands for the set of the efficient extreme
points of QE. Let x0 ∈ V (XE) and denote J := {i ∈ I : 〈ai, x

0〉 = bi}. By
definition, J ⊆ I(x0). Since V (XE) = V (QE), x0 is a vertex of Q. Therefore, the
set J consists of at least n distinct indices. On the other hand, by assumption,
X is a nondegenerate polyhedron with non-empty interior and the system (1)
has no redundant inequalities. Then, x0 is a non-degenerate vertex of X and the
active index set I(x0) has exactly n distinct elements. Hence, J = I(x0). Thus,
the active index set I(x0) is a subset of I.

3. Algorithm for constructing efficiency equivalent polyhedra

We consider Problem (VP) with the assumption that the ordering cone C0

is pointed. We shall restrict ourselves to the case where the system (1) has no
redundant inequalities and the feasible set X has non-empty interior and contains
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no lines. To avoid trivial cases, we also assume that the efficient set XE is non-
empty. Note that there are several method can be used to check whether the
efficient solution set XE is nonempty (see, for example, Corollary 5.5 in [7]).

Denote by RecY the recession cone of a polyhedral convex set Y consisting of
all vectors v ∈ Rn such that x + tv ∈ Y for all x ∈ Y and t ≥ 0.

Our algorithm consists of two phases:

1) Construct an efficiency equivalent polyhedron Q for X. As a result, we also
obtain the vertex set V(Q) and the extreme direction set R(Q) of Q .

2) Determine the set V (XE) of all efficient extreme points of X and the E-index
set IE .

Phase I

Initialization Step.

a) X is bounded: Construct a simple polytope Q0 (for example a suitable
simplex or a box) such that X ⊆ Q0. (This is possible because X is a bounded
set.) Store the vertex set V(Q0). Set k := 0 and go to Step 2.

b) X is unbounded: Construct a simple polyhedral convex set Q0 ⊃ X. For
example,

Q0 := {x ∈ Rn : 〈ai, x〉 ≥ bi, i ∈ I(x0)},

where x0 is a vertex of X. Store the vertex set V(Q0) and the extreme direction
set R(Q0). Set ` := 0 and go to Step 1.

Step 1. Iteration `, ` ≥ 0.

If R(Q`) 6⊆ Rec(X − C0) Then

find a v0 ∈ R(Q`) \ RecX and an index i0 ∈ {1, . . . ,m}

such that 〈ai0 , v0〉 < 0. Set

Q`+1 := {x ∈ Q` : 〈ai0 , x〉 ≥ bi0}.

Using V(Q`), R(Q`) and the definition of Q`+1,

determine V(Q`+1) and R(Q`+1). Set ` := ` + 1

and go to Iteration `.

Else Set Q0 := Q`. Go to Step 2

Step 2. Iteration k, k ≥ 0.

If V(Qk) 6⊆ X − C0 Then

find a x0 ∈ V (Qk) \ X and an index i0 ∈ {1, . . . ,m}

such that 〈ai0 , x0〉 < bi0 . Set

Qk+1 := {x ∈ Qk : 〈ai0 , x〉 ≥ bi0}.

Using V(Qk), R(Qk) and the definition of Qk+1,

determine V(Qk+1) and R(Qk+1). Set k = k + 1

and go to Iteration k.
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Else Set Q := Qk. STOP.

The iteration process is terminated after a finite steps. Note that Qk ⊆ X−C0

if and only if V(Qk) ⊆ X − C0 and R(Qk) ⊆ Rec(X − C0). So, after Phase I we
obtain a polyhedron Q together with the sets V(Q) and R(Q) such that

X ⊆ Q ⊆ X − C0.

Hence, by Proposition 2.1 Q is an efficiency equivalent polyhedron for X and

V (XE) = V (Q) ∩ XE .(6)

Phase II

Let I := ∅ and V := ∅.

For every point x ∈ V (Q) do

If x ∈ X Then

If the system

∑

i∈I(x)

µia
i = −

p∑

j=1

λjc
j

µi ≥ 0, i ∈ I(x),(7)

λj > 0, j = 1, . . . , p,

has a solution

Then add x into V and I(x) into I.

By Proposition 2.3, if the system (7) has a solution then x ∈ XE . It follows
from (6) that x ∈ V (XE). Hence, according to (6), after Phase II one obtains
two sets V and I such that V = V (XE) and I = IE .

Let us conclude this section with some remarks on the implementation of the
computational modules in the above algorithm.

Remark.

(i) One can verify by definition that RecX ⊆ Rec(X − C0). Hence, if v0 6∈
Rec(X − C0) then v0 6∈ RecX. When X is given by the system (1), RecX is the
solution set to the homogeneous system

RecX = {x ∈ Rn : 〈ai, x〉 ≥ 0, i = 1, . . . ,m},

(see, for example, [12, Prop. 1.26]). So, if v0 /∈ RecX then there is an index
i0 ∈ {1, . . . ,m} such that 〈ai0 , v0〉 < 0.

(ii) To check the inclusions R(Q`) 6⊆ Rec(X − C0) and V(Qk) 6⊆ X − C0 in
Phase I, we can use the following simple observation, which can be easily verified
by definition.
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Proposition 3.1. A point x0 ∈ X − C0 if and only if the following system is
consistent

〈ai, x〉 ≥ bi, i = 1, . . . ,m,

Cx ≥ Cx0.

By Lemma 1.1 from [12], v ∈ Rec(X − C0) if and only if x0 + tv ∈ X − C0 for
some x0 ∈ X and t ≥ 0.

(iii) The most expensive computational cost in the algorithm is in determining
vertices and extreme directions of each generated polyhedron Qk+1 in Phase I.
Since Qk+1 is obtained from Qk by adding a new constraint inequality, the vertices
and the extreme directions of Qk+1 can be calculated from those of Qk by using
some existing efficient methods (see, for example, [6], [10] and [11]).

4. An example

To illustrate the notion of efficiency equivalent polyhedron and the algorithm,
we consider the (VP) where C is 3× 3-unit matrix, and X is defined by 10 linear
inequalities

−x − y − z ≥ −2, 9
−x ≥ −1
−y ≥ −1
−z ≥ −1

x ≥ 0
y ≥ 0
z ≥ 0

4x + 4y + z ≥ 0.8
x + 4y + 4z ≥ 0.8

x + y + z ≥ 0.5

(8)

In this example, the ordering cone C0 is the positive orthant cone of R
3 and

the efficient set XE consists of a 2-dimensional face with 3 efficient vertices:

v1 = (1.000, 0.900, 1.000)

v2 = (1.000, 1.000, 0.900)

v3 = (0.900, 1.000, 1.000)

We now show how the algorithm works with this example.

Suppose that in Phase I we start with Q0 to be the box [0, 1] × [0, 1] × [0, 1]
in R

3. Q0 has 8 vertices and (1, 1, 1) is the unique vertex of Q0 not belonging to
X −C0. The process of iteration is terminated after only one step and we obtain

V (Q) = (V (Q0) \ {(1, 1, 1)}) ∪ {v1, v2, v3}.

After Phase II we obtain V (XE) = {v1, v2, v3}. The efficiency equivalent
polyhedron Xreduced is determined just by the first four inequalities in (9).
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