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LINEAR OPERATORS SATISFYING THE ASSUMPTIONS

OF SOME GENERALIZED LAX-MILGRAM THEOREMS

NGUYEN DONG YEN AND BUI TRONG KIM

Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

Abstract. This paper analyzes the structure of two classes of linear opera-
tors satisfying the assumptions of two generalized Lax-Milgram theorems of
J. Saint Raymond. For the first class, complete characterizations are proposed.
For the second class, some preliminary results are shown. In particular, we
prove that the second class is strictly larger than the first one which, in its
turn, is strictly larger than the class of elliptic operators.

1. Introduction

The Lax-Milgram theorem (see [1, p.66], [2, p.84]) is an important result of
functional analysis which has various applications. For example, in [1] (Chapter
13) this theorem has been used for proving the existence and uniqueness of so-
lutions to a boundary value problem for partial differential equations of elliptic
type.

Several authors have tried to generalize the above-mentioned theorem. The
Stampacchia theorem is a generalized version of the Lax-Milgram theorem which
is useful for studying the existence of solutions to variational inequalities. B. Ric-
ceri [3] expressed some ideas which would allow one to get generalized Lax-
Milgram theorems even in the case where the linear operator does not satisfy
the elliptic condition. The problems asked by B. Ricceri were solved completely
by J. Saint Raymond [4] who obtained four new generalized Lax-Milgram the-
orems. There is a hope that the results of J. Saint Raymond can be a tool for
proving the existence and uniqueness of solutions to a boundary value problem
for a large class of PDEs which includes many non-elliptic equations.

The aim of this paper is to analyze the structure of two classes of linear op-
erators satisfying the assumptions of two generalized Lax-Milgram theorems of
J. Saint Raymond. For the first class, complete characterizations are proposed.
For the second class, some preliminary results are shown. In particular, we prove
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that the second class is strictly larger than the first one which, in its turn, is
strictly larger than the class of elliptic operators.

The paper is organized as follows. In Section 2 we summarize without proofs
the relevant material on the Lax-Milgram theorem. In Section 3 we obtain com-
plete characterizations for the class A0 of the linear operators satisfying the as-
sumptions of Theorem 2.4 (J. Saint Raymond’s first generalized Lax-Milgram
theorem), and give several examples on the operators of the class. In Section 4
it is shown that the class AK of the linear operators satisfying the assumptions
of Theorem 2.6 (J. Saint Raymond’s third generalized Lax-Milgram theorem), in
general, is strictly larger than A0. Necessary conditions for a linear operator to
belong to AK are also obtained in Section 4.

Throughout this paper, H is a Hilbert space over the reals. The norm and the
scalar product in H are denoted by ‖ · ‖ and 〈·, ·〉, respectively. If A : H → H is
a continuous linear operator then ‖A‖ denotes the norm of A. For simplicity of
notation, we let SH stand for the unit sphere of H.

2. Lax-Milgram theorem and the results of J. Saint Raymond

Definition 2.1. ([1, p.66]) A linear operator A : H → H is called an elliptic
operator if there exists a constant α > 0 such that

〈Ax, x〉 ≥ α‖x‖2 ∀x ∈ H.(2.1)

Theorem 2.1. (Lax-Milgram; see [1, p.66], [2, p.84]) If A : H → H is an
elliptic continuous linear operator then A is invertible. That is, for every y ∈ H,
the equation

Ax = y(2.2)

has a unique solution x = A−1y. Besides, it holds ‖A−1‖ ≤
1

α
.

The above theorem is a strong tool for proving the existence and uniqueness
of solutions to a boundary value problem for elliptic partial differential equations
(see [1, Chapter 13]).

The following result is a type of generalized Lax-Milgram theorems.

Theorem 2.2. (Stampacchia; see [1, p.67], [2, p.83], [5]) Suppose that A : H →
H is an elliptic continuous linear operator and C ⊂ H is a nonempty closed
convex subset. Then, for every y ∈ H, the variational inequality problem

x ∈ C : 〈Ax − y, x′ − x〉 ≥ 0 ∀x′ ∈ C(2.3)

has a unique solution x = x(y). Besides, it holds

‖x(y′) − x(y)‖ ≤
1

α
‖y′ − y‖ ∀y, y′ ∈ H.(2.4)

Note that if C = H then x is a solution of the problem (2.3) if and only if x is
a solution of the equation (2.2). Thus Theorem 2.2 extends Theorem 2.1.

Sometimes Theorem 2.2 is stated in the following equivalent form.
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Theorem 2.3. (Stampacchia; see [2, p.83], [5]) Suppose that C ⊂ H is a non-
empty closed convex subset; a(·, ·) : H ×H → R is a bilinear form such that there
are constants ` > 0 and α > 0 satisfying

|a(u, v)| ≤ `‖u‖‖v‖ ∀u, v ∈ H,

|a(u, u)| ≥ α‖u‖2 ∀u ∈ H.

Then, for every y ∈ H, there exists a unique vector x ∈ C such that

a(x, x′ − x) ≥ 〈y, x′ − x〉 ∀x′ ∈ C.

In addition, the Lipschitz property (2.4) of the function x(·) holds.

The equivalence between Theorems 2.2 and 2.3 can be proved easily by using
the Riesz-Fréchet representation theorem (see [2, p.83]).

From what has been said it follows that the Lax-Milgram theorem and the
Stampacchia theorem can be applied only to problems involving elliptic operators.

One may ask:

Is it possible to establish theorems of the Lax-Milgram type where the linear
operator A needs not to satisfy the elliptic condition (2.1) ?

Based on his generalizations of the Ky Fan inequality, B. Ricceri [4] expressed
an idea that the condition (2.1) might be replaced by the following weaker con-
dition:

inf
x∈SH

(〈Ax, x〉 + ‖Ax‖) > 0.(2.5)

Observe that (2.1) implies (2.5). Indeed, from (2.1) we have

inf
x∈SH

〈Ax, x〉 ≥ α > 0.(2.6)

As 〈Ax, x〉 + ‖Ax‖ ≥ 〈Ax, x〉, (2.6) implies (2.5).

Recently J. Saint Raymond has proved that the conclusion of the Lax-Milgram
theorem remains valid for the case of the linear operators satisfying (2.5). Namely,
the following result has been obtained.

Theorem 2.4. [4] If A : H → H is a linear operator satisfying the condition
(2.5) then A is continuous and invertible. In particular, for every y ∈ H, the
equation Ax = y has a unique solution.

J. Saint Raymond has obtained also the following results.

Theorem 2.5. [4] Suppose that A : H → H is a linear operator and y1, y2,
. . . , ym is an orthogonal system of m unit vectors in H. If there exists γ > 0
such that

inf
x∈SH






〈Ax, x〉 + ‖Ax‖ + γ





m
∑

j=1

〈Ax, yj〉
2





1/2





> 0(2.7)

then A is continuous and invertible. In particular, for every y ∈ H, the equation
Ax = y has a unique solution.
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Theorem 2.6. [4] Suppose that A : H → H is a linear operator and K : H → H
is a compact linear operator. If

inf
x∈SH

(〈Ax, x〉 + ‖Ax‖ + ‖KAx‖) > 0(2.8)

then A is continuous and invertible. In particular, for every y ∈ H, the equation
Ax = y has a unique solution.

Theorem 2.7. [4] Suppose that A : H → H is a linear operator and K : H → H
is a compact linear operator. If

inf
x∈SH

(|〈Ax, x〉| + ‖KAx‖) > 0

then A is continuous and invertible. In particular, for every y ∈ H, the equation
Ax = y has a unique solution.

Recall that a linear operator K : H → H is said to be compact if K maps
every bounded subset of H to a subset whose closure in the norm topology of H
is compact.

Note that if y1, y2, · · · , ym is an orthogonal system of unit vectors in H and
γ > 0 is an arbitrary positive number then the formula

K(x) = γ (〈x, y1〉y1 + 〈x, y2〉y2 + · · · + 〈x, ym〉ym) ∀x ∈ H,

defines a continuous linear operator. As K(x), for every x ∈ H, belongs to
the finite dimensional subspace span {y1, y2, · · · , ym} generated by the vectors
y1, y2, · · · , ym, K is a compact operator. For this K we have

‖KAx‖ = γ





m
∑

j=1

〈Ax, yj〉
2





1/2

∀x ∈ H,

hence it is obvious that (2.7) is a special case of (2.8). We thus conclude that
Theorem 2.5 is a special case of Theorem 2.6.

For any linear operators A and K we have

〈Ax, x〉 + ‖Ax‖ + ‖KAx‖ ≥ 〈Ax, x〉 + ‖Ax‖,

hence (2.5) implies (2.8). Thus Theorem 2.4 is a special case of Theorem 2.6 (if
one chooses K = 0.)

Let us denote by A0 (resp., AK , A′
K) the class of the linear operators satisfying

the assumptions of Theorem 2.4 (resp., Theorem 2.6, Theorem 2.7).

It is worth noting that Theorems 2.4–2.6 cannot be derived from Theorem
2.7. For analyzing the structure of the class A′

K probably one cannot proceed
similarly as one does for the classes A0 and AK in the subsequent two sections.
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3. The class A0

We shall need the following fact whose simple proof will be omitted.

Lemma 3.1. Let H be a Hilbert space. If x, y ∈ H are such that 〈y, x〉 = ‖y‖
and ‖x‖ = 1 then there exists µ ≥ 0 satisfying y = µx.

In finite-dimensional spaces, the operators from A0 can be characterized via
their eigenvalue sets.

Theorem 3.1. If H is a finite-dimensional Hilbert space, A : H → H is a linear
operator, then A ∈ A0 if and only if A has no nonpositive eigenvalues.

Proof. a) Necessity: To obtain a contradiction, suppose that (2.5) is satisfied and
there exists an eigenvalue λ ≤ 0 of A. Let v ∈ SH be an eigenvector corresponding
to that λ. Since

〈Av, v〉 + ‖Av‖ = λ‖v‖2 − λ‖v‖ = 0,

it follows that

inf
x∈SH

(〈Ax, x〉 + ‖Ax‖) = 0,

contrary to (2.5).

b) Sufficiency: Assume that A has no nonpositive eigenvalues. If (2.5) is vio-
lated then

inf
x∈SH

(〈Ax, x〉 + ‖Ax‖) ≤ 0.

Since H is a finite-dimensional Hilbert space, SH is a compact set. Since the
function ϕ(x) := 〈Ax, x〉 + ‖Ax‖ is continuous on SH , there exists v ∈ SH satis-
fying

ϕ(v) = inf
x∈SH

(〈Ax, x〉 + ‖Ax‖) ≤ 0.

As ϕ(v) = 〈Av, v〉 + ‖Av‖ ≥ 0 we have ϕ(v) = 0. Hence 〈−Av, v〉 = ‖ − Av‖.
By Lemma 3.1, there exists µ ≥ 0 such that −Av = µv. This shows that
λ := −µ is a nonpositive eigenvalue of A, contrary to our assumption. The
proof is complete.

In the case where H is an arbitrary Hilbert space, we shall characterize the
operators A ∈ A0 through the upper bound of the geometric angle between a
vector x ∈ SH and its image Ax.

By definition, if u, v ∈ H are two arbitrary nonzero vectors then the cosine of
the geometric angle formed by u and v is defined by the formula

cos(u, v) =
〈u, v〉

‖u‖‖v‖
.

Clearly, if u and v are two unit vectors then cos(u, v) = 〈u, v〉.
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Theorem 3.2. If H is a Hilbert space over the reals and A : H → H is a
continuous linear operator, then A ∈ A0 if and only if the following two conditions
are satisfied

(i) There exists a constant ρ > 0 such that

‖Ax‖ ≥ ρ ∀x ∈ SH ,(3.1)

(ii) There exists a constant µ > −1 such that

cos(Ax, x) ≥ µ ∀x ∈ SH .(3.2)

Proof. a) Necessity: Suppose that (2.5) is satisfied. If there exists no ρ >
0 satisfying (3.1) then one can find a sequence of unit vectors {xk} such that
‖Axk‖ → 0 as k → ∞. It is evident that

0 ≤ 〈Axk, xk〉 + ‖Axk‖ ≤ 2‖Axk‖.

This clearly forces

inf
x∈SH

(〈Ax, x〉 + ‖Ax‖) = 0,

a contradiction. We have thus proved that there exists a constant ρ > 0 such
that (3.1) holds. Since (2.5) is valid, there is β > 0 such that

inf
x∈SH

(〈Ax, x〉 + ‖Ax‖) = β > 0.

For every x ∈ SH , since Ax 6= 0,

‖Ax‖

(〈

Ax

‖Ax‖
, x

〉

+ 1

)

= 〈Ax, x〉 + ‖Ax‖ ≥ β.

Therefore
〈

Ax

‖Ax‖
, x

〉

+ 1 ≥
β

‖Ax‖
≥

β

‖A‖‖x‖
=

β

‖A‖
.

We thus get

cos(Ax, x) =

〈

Ax

‖Ax‖
, x

〉

≥
β

‖A‖
− 1.

Setting

µ :=
β

‖A‖
− 1 > −1

we obtain (3.2).

b) Sufficiency: Suppose that there exist constants ρ > 0 and µ > −1 such that
(3.1) and (3.2) are valid. By (3.2), there is ε > 0 such that

cos(Ax, x) ≥ ε − 1 ∀x ∈ SH .

This means that
〈

Ax

‖Ax‖
, x

〉

≥ ε − 1.
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Combining this with (3.1) gives 〈Ax, x〉 + ‖Ax‖ ≥ ερ for all x ∈ SH . Thus (2.5)
is satisfied. The proof is complete.

Remark 3.1. The property (ii) in Theorem 3.2 can be reformulated in the
following equivalent form: There exists a geometric angle ω ∈ [0, π) such that

angle{Ax, x} ≤ ω ∀x ∈ SH ,

where angle{Ax, x} denotes the geometric angle between the vectors Ax and x.

Remark 3.2. In the Lax-Milgram theorem, since A is an elliptic continuous
linear operator, there exists α > 0 such that 〈Ax, x〉 ≥ α‖x‖2 for every x ∈ H.
This implies ‖Ax‖ ≥ 〈Ax, x〉 ≥ α for every x ∈ SH . Noting that Ax 6= 0 for every
x ∈ SH , we get

cos(Ax, x) =

〈

Ax

‖Ax‖
, x

〉

≥
α

‖Ax‖

≥
α

‖A‖
> 0.

Hence A satisfies both the conditions (i) and (ii) of Theorem 3.2. Thus the class
A0 contains the class of elliptic continuous linear operators, which we denote by
A.

From the following examples it is clear that A0 is strictly larger than A if
dimH ≥ 2.

Example 3.1. Consider the operator A : R2 → R2 defined by the formula

Ax =

(

cos θ − sin θ
sin θ cos θ

)(

x1

x2

)

.

This is the rotation with the angle θ in the two-dimensional Euclidean space. For
every x ∈ R2, ‖x‖ = 1, we have ‖Ax‖ = 1 and

cos(Ax, x) = 〈Ax, x〉

= x2
1 cos θ − x1x2 sin θ + x2

2 cos θ + x1x2 sin θ

= cos θ.

If 0 ≤ θ < π then cos θ > −1. From the above observations and Theorem 3.2 it
follows that A ∈ A0. Note that if

π/2 ≤ θ < π

then A /∈ A. Indeed, for every x ∈ R2 with ‖x‖ = 1 we have 〈Ax, x〉 = cos θ < 0,
hence A cannot be an elliptic operator.

Example 3.2. In the space Rn = R2 ⊕ Rn−2, n ≥ 3, define the operator
A : Rn → Rn by the formula

A(x + y) = A1x + y, ∀x ∈ R2, ∀y ∈ Rn−2,
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where

A1x =

(

cos θ − sin θ
sin θ cos θ

)(

x1

x2

)

.

Analysis similar to that in the previous example shows that:

1. If 0 ≤ θ < π/2 then A ∈ A.

2. If π/2 ≤ θ < π then A ∈ A0 \ A.

Example 3.3. Let H be an infinite-dimensional Hilbert space having an or-
thogonal basis {e1, e2, · · · }. Let Mi = span{e2i−1, e2i}, i = 1, 2, · · · , and let
Ai : Mi → Mi be the rotation of an angle θi, θi ∈ [0, π), which is defined simi-
larly as in Example 3.1. The formula

Ax =

∞
∑

i=1

Aixi for every x =

∞
∑

i=1

xi,

where xi ∈ Mi for all i, defines a continuous linear operator A : H → H. It
can be shown that if ω := sup{θi : i = 1, 2, · · · } < π then A ∈ A0. Especially, if
ω < π/2 then A ∈ A.

4. The class AK

From the definitions it follows immediately that A0 ⊆ AK . We now construct
an example to show that the equality A0 = AK is not true in general.

Let H = `2 be the Hilbert space of the sequences of real numbers x =

(x1, x2, x3, · · · ) satisfying the condition
∞
∑

i=1

x2
i < +∞. By definition,

〈x, y〉 =

∞
∑

i=1

xiyi (∀x, y ∈ `2), and ‖x‖ =

(

∞
∑

i=1

x2
i

)1/2

.

For every x ∈ H, we set

Ax = (−x1, x2, x3, · · · )

and

Kx = (x1, 0, 0, · · · ).

Note that K is a compact linear operator. For x̄ := (−1, 0, 0, · · · ) we have

〈Ax̄, x̄〉 + ‖Ax̄‖ = 0.

Hence

inf
x∈SH

(〈Ax, x〉 + ‖Ax‖) = 0,
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and we see that A /∈ A0. For every x ∈ SH it holds

〈Ax, x〉 = −x2
1 +

∞
∑

i=2

x2
i

= −x2
1 + (1 − x2

1)

= 1 − 2x2
1,

‖Ax‖ =

√

√

√

√

∞
∑

i=1

x2
i = 1,

‖KAx‖ = ‖(−x1, 0, 0, · · · )‖ = |x1|.

Therefore

inf
x∈SH

(〈Ax, x〉 + ‖Ax‖ + ‖KAx‖) = inf
−1≤x1≤1

(2 + |x1| − 2x2
1)

= inf
0≤t≤1

(−2t2 + t + 2)

= 1.

This shows that A ∈ AK .

In the example above we have

AK \ A0 6= ∅.(4.1)

It is of interest to know whether this property always holds.

Theorem 4.1. If H is an infinite-dimensional Hilbert space and K : H → H is
a nonzero continuous linear operator, then (4.1) holds.

Proof. Let L := ker K = {u ∈ H : Ku = 0}, M := L⊥ = {v ∈ H : 〈v, u〉 =
0 for all u ∈ L}. Since K is a nonzero operator, we can find a unit vector v̄ ∈ M.
Set M ′ = {tv̄ : t ∈ R}, M ′′ = {w ∈ M : 〈w, v̄〉 = 0}. Of course, the orthogonal
decomposition H = L ⊕ M ′ ⊕ M ′′ holds. Defining a linear operator A : H → H
by the formula Ax = u− v + w for any x = u + v + w, where u ∈ L, v ∈ M ′ and
w ∈ M ′′, we claim that

A ∈ AK \ A0.(4.2)

Indeed, let x = u + v + w, where u ∈ L, v ∈ M ′ and w ∈ M ′′, be an arbitrary
unit vector from SH . We have ‖Ax‖ = ‖x‖ = 1 and

〈Ax, x〉 = 〈u − v + w, u + v + w〉 = ‖u‖2 − ‖v‖2 + ‖w‖2,

‖KAx‖ = ‖K(u − v + w)‖ = ‖ − Kv + Kw‖.

Therefore

f(x) := 〈Ax, x〉 + ‖Ax‖ + ‖KAx‖

= ‖u‖2 − ‖v‖2 + ‖w‖2 + 1 + ‖ − Kv + Kw‖

= 2 − 2‖v‖2 + ‖ − Kv + Kw‖.
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Fix a value ε̄ ∈ (0, 1) as small as

(1 − ε̄)‖Kv̄‖ − ‖K‖
(

2ε̄ − ε̄2
)1/2

> 0.(4.3)

We have

inf
x∈SH

f(x) = min

{

inf
x∈SH , 0≤‖v‖≤1−ε̄

f(x), inf
x∈SH , 1−ε̄≤‖v‖≤1

f(x)

}

.(4.4)

It is obvious that

inf
x∈SH , 0≤‖v‖≤1−ε̄

f(x) ≥ inf
0≤‖v‖≤1−ε̄

(2 − 2‖v‖2)

= 2 − 2(1 − ε̄)2 = 2ε̄(2 − ε̄).(4.5)

Besides,

inf
x∈SH , 1−ε̄≤‖v‖≤1

f(x) ≥ inf
x∈SH , 1−ε̄≤‖v‖≤1

‖ − Kv + Kw‖

≥ inf
x∈SH , 1−ε̄≤‖v‖≤1

(‖Kv‖ − ‖K‖‖w‖)

≥ (1 − ε̄)‖Kv̄‖ − ‖K‖
(

1 − (1 − ε̄)2
)1/2

= (1 − ε̄)‖Kv̄‖ − ‖K‖
(

2ε̄ − ε̄2
)1/2

.

Combining this with (4.3)–(4.5) yields

inf
x∈SH

(〈Ax, x〉 + ‖Ax‖ + ‖KAx‖) > 0,

hence A ∈ AK . Since

〈Av̄, v̄〉 + ‖Av̄‖ = 0,

(2.5) is violated. So A /∈ A0. We have thus obtained (4.2), and the proof is
complete.

The next statement gives necessary conditions for the inclusion A ∈ AK to
hold.

Theorem 4.2. Suppose that H is a Hilbert space over the reals, K : H → H
is a nonzero continuous linear operator, and A : H → H is a continuous linear
operator. Then A ∈ AK only if the following two conditions are satisfied

(i) There exists a constant ρ > 0 such that

‖Ax‖ ≥ ρ ∀x ∈ SH ,(4.6)

(ii) There exists a constant µ > −1 such that

cos(Ax, x) ≥ µ ∀x ∈ SH ∩ A−(kerK),(4.7)

where A−(kerK) = {x ∈ H : Ax ∈ kerK}.

Proof. The proof runs similarly as the first part of the proof of Theorem 3.2.
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One may conjecture that the conditions (4.6) and (4.7) are not sufficient for
having the inclusion A ∈ AK . It would be desirable to obtain a complete char-
acterization for the operators of AK but we have not been able to do this.
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