ON EXPLICIT VISCOSITY SOLUTIONS TO NONCONVEX-NONCONCAVE HAMILTON-JACOBI EQUATIONS

TRAN DUC VAN AND MAI DUC THANH

Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

Abstract

We consider the Cauchy problem for Hamilton-Jacobi equations in the case where the Hamiltonian is supposed to be a sum of a convex and a concave function and to depend also on the unknown function. Hopf-Oleinik-Lax-type formulas for viscosity sub- and super-solutions are presented. A sharp estimate for the unique viscosity solution is established.

1. Introduction and main results

In this paper we study viscosity solutions of the Cauchy problem for HamiltonJacobi equations of the form

$$
\begin{align*}
u_{t}+H\left(u, D_{x} u\right) & =0 \quad \text { in } \quad(0, T) \times \mathbb{R}^{n}, \tag{1.1}\\
u(0, x) & =u_{0}(x) \quad \text { in } \quad \mathbb{R}^{n}, \tag{1.2}
\end{align*}
$$

where H, u_{0} are continuous functions in \mathbb{R}^{n+1} and \mathbb{R}^{n}, respectively.
Barron, Jensen and Liu have recently developed the theory of quasiconvex duality aimed to solve some important problems in optimal control and HamiltonJacobi equations (see $[1,16,17,5]$ and the references therein). To do that they sucessefully used the level set technique. More precisely, assume that the Hamiltonian $H=H(\gamma, p), \gamma \in \mathbb{R}, p \in \mathbb{R}^{n}$, is nondecreasing in γ, convex and positively homogeneous of degree one in p, the viscosity solution v of problem (1.1)-(1.2) can be derived by

$$
\begin{equation*}
v(t, x):=\underset{y \in \mathbb{R}^{n}}{\rightarrow} \inf \left\{H^{\#}\left(\frac{x-y}{t}\right) \vee u_{0}(y)\right\} \tag{1.3}
\end{equation*}
$$

where the quasiconvex dual $H^{\#}$ is defined by

$$
H^{\#}(q):=\inf \left\{\gamma \in \mathbb{R}: H(\gamma, p) \geq(p, q), \forall p \in \mathbb{R}^{n}\right\}
$$

[^0]the notation (.,.) stands for the ordinary scalar product on \mathbb{R}^{n}, and
$$
a \vee b:=\max \{a, b\} .
$$

The formula (1.3) with bounded and Lipschitz continuous initial data u_{0} was found by Barron, Jensen and Liu [6].

Bardi and Faggian [4] studied an interesting problem: what happens if the Hamiltonian $H=H(p), p \in \mathbb{R}$ takes the form of being the sum of a convex and a concave function? Using the familiar notion of convex duality, they presented their Hopf-type estimates and formulas for the unique viscosity solution of the Cauchy problem. This research motivates us to expect an analogous result for Hamiltonians of the form $H=H(\gamma, p)$ using quasiconvex duality.

We consider here Problem (1.1)-(1.2) when the Hamiltonian $H(\gamma, p)$ is a non-convex-nonconcave function in the variable p. A nonconvex-nonconcave function is meant to be the sum of a convex and a concave function. This kind of functions is known as d.c. functions and plays a very important role in global optimization (see Tuy [12]).

The following hypotheses are assumed in this note:
(A) The Hamiltonian $H(\gamma, p),(\gamma, p) \in \mathbb{R} \times \mathbb{R}^{n}$, is a nonconvex-nonconcave function in p, i.e.,

$$
H(\gamma, p)=H_{1}(\gamma, p)+H_{2}(\gamma, p), \quad(\gamma, p) \in \mathbb{R} \times \mathbb{R}^{n}
$$

where H_{1}, H_{2} are continuous on \mathbb{R}^{n+1}, and for each fixed $\gamma \in \mathbb{R}, H_{1}(\gamma, p)$ is convex, $H_{2}(\gamma, p)$ is concave, $H_{1}(\gamma, p), H_{2}(\gamma, p)$ are positively homogeneous of degree one in p; for each fixed $p \in \mathbb{R}^{n}, H_{1}(\gamma, p), H_{2}(\gamma, p)$ are nondecreasing in γ;
(B) The initial function u_{0} is continuous in x.

The expected solutions of the problem (1.1)-(1.2) are:

$$
\begin{array}{r}
u_{-}(t, x):=\rightarrow \underset{z}{\rightarrow} \sup \underset{y}{\rightarrow} \inf \left\{\left[H_{1}^{\#}(y) \vee u_{0}(x-t(y+z))\right] \wedge H_{2 \#}(z)\right\}, \tag{1.4}\\
(t, x) \in(0, T) \times \mathbb{R}^{n},
\end{array}
$$

and

$$
\begin{align*}
u_{+}(t, x):=\rightarrow \underset{y}{\rightarrow} \inf \underset{z}{\rightarrow} \sup \left\{H_{1}^{\#}(y) \vee\right. & {\left.\left[u_{0}(x-t(y+z)) \wedge H_{2 \#}(z)\right]\right\}, } \tag{1.5}\\
& (t, x) \in(0, T) \times \mathbb{R}^{n},
\end{align*}
$$

where the operations \vee, \# are defined as in (1.3) and the operations \wedge, \# act as

$$
a \wedge b:=\min \{a, b\}, \quad \text { and } \quad H_{\#}(q)=\sup \left\{\gamma \in \mathbb{R}: H(\gamma, p) \leq(p, q), \forall p \in \mathbb{R}^{n}\right\} .
$$

We call (1.4) and (1.5) Hopf-Oleinik-Lax-type formulas. The following theorem is the main result of the paper.

Theorem 1.1. i) The function u_{-}determined by (1.4) is a viscosity subsolution of the equation (1.1) and satisfies (1.2), i.e.,

$$
\begin{equation*}
\underset{\left(t, x^{\prime}\right) \rightarrow(0, x)}{\rightarrow} \lim u_{-}\left(t, x^{\prime}\right)=u_{0}(x), \quad \forall x \in \mathbb{R}^{n} . \tag{1.6}
\end{equation*}
$$

ii) The function u_{+}determined by (1.5) is a viscosity supersolution of the equation (1.1) and satisfies (1.2), i.e.,

$$
\begin{equation*}
\underset{\left(t, x^{\prime}\right) \rightarrow(0, x)}{\rightarrow} \lim u_{+}\left(t, x^{\prime}\right)=u_{0}(x), \quad \forall x \in \mathbb{R}^{n} \tag{1.7}
\end{equation*}
$$

Relying on the results of Theorem 1.1, we can obtain the upper and lower bounds for the unique viscosity solution of the problem (1.1)-(1.2).
Corollary 1.1. If, in addition, $u_{0} \in B U C\left(\mathbb{R}^{n}\right)$, then Problem (1.1)-(1.2) admits a unique viscosity solution u in $B U C\left([0, T] \times \mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
u_{-} \leq u \leq u_{+}, \quad \text { in } \quad[0, T] \times \mathbb{R}^{n} \tag{1.8}
\end{equation*}
$$

where u_{-}and u_{+}are defined in (1.4) and (1.5) respectively.
Note that the two expressions in the brackets \{.\} in (1.4) and (1.5) are, in general, not the same since the operations \wedge and \vee are not "commutative". However, for every fixed $(t, x) \in(0, T) \times \mathbb{R}^{n}$, the supremum in z and the infimum in y may be taken over convex sets in which these two expressions coincide. The min-max theorems then yield the coincidence of u_{+}and u_{-}in many cases (see Tuy [12], for example). In these cases, the unique viscosity solution of Problem (1.1)-(1.2) can be easily computed.

By means of the above results, we can deduce several interesting conclusions: if $H_{2}=0$, then $u_{+}=u_{-}=u, u$ can be computed by the formula (1.3) and u is a viscosity solution for the initial data u_{0}, continuous in \mathbb{R}^{n} (not necessarily bounded and Lipschitz continuous as in [6]). If $H_{1}=0$, then $u_{-}=u_{+}$and we get a formula for viscosity solutions with a concave Hamiltonian. Actually, if $H_{2}=0$, then a direct calculation gives

$$
H_{2 \#}(z)= \begin{cases}+\infty & \text { if } \quad z=0 \\ -\infty & \text { if } \quad z \neq 0\end{cases}
$$

The formulas (1.4) and (1.5) then yield

$$
u(t, x)=u_{-}(t, x)=u_{+}(t, x), \forall(t, x) \in(0, T) \times \mathbb{R}^{n} .
$$

We also note that the representation of generalized solutions of the Cauchy problem for some Hamilton-Jacobi equations with nonconvex-nonconcave initial data was obtained by Van, Hoang and Tsuji [13]. Barron, Jensen and Liu [7] presented their estimates for viscosity solutions of Problem (1.1)-(1.2) by a different method. As Bardi and Faggian [4], they relied on the Kruzkov double variables technique. As seen later on, we are to go directly from the formulas.

Finally, the reader is referred to $[8,2,3,10]$ for the general theory of viscosity solutions, to $[1,5-7,11,12,16,17]$ for the properties of convexity and
quasiconvexity, and to $[9,4,6,7,10,13,14,15]$ for the Hopf-Oleinik-Lax-type formulas.

2. Proofs of Theorem 1.1 and Corollary 1.1

In order to prove Theorem 1.1, we need some properties of the quasiconvex duality $[1,16,17,5,6]$. Let a continuous function $H=H(\gamma, p),(\gamma, p) \in \mathbb{R} \times \mathbb{R}^{n}$, be given.

Using the operations "(.) $\#$ ", "(.) $)$ ", " \wedge " and " V " in Section 1, we set

$$
H^{\# *}(\gamma, p):=\sup \left\{(p, q): q \in \mathbb{R}^{n}, H^{\#}(q) \leq \gamma\right\}, \quad(\gamma, p) \in \mathbb{R} \times \mathbb{R}^{n}
$$

and

$$
H_{\# *}(\gamma, p):=\inf \left\{(p, q): q \in \mathbb{R}^{n}, H_{\#}(q) \geq \gamma\right\}, \quad(\gamma, p) \in \mathbb{R} \times \mathbb{R}^{n} .
$$

Some basic features of this duality can be summarized in the following lemma.
Lemma 2.1. i) Let H be nondecreasing in γ, convex and positively homogeneous of degree one in p. Then $H^{\#}$ is quasiconvex, lower semicontinuous and

$$
H^{\#}(z) \rightarrow+\infty \quad \text { as } \quad|z| \rightarrow \infty, \quad \text { and } \quad H^{\# *}=H
$$

Moreover, there exists $p^{*} \in \mathbb{R}^{n}$ such that

$$
H^{\#}\left(p^{*}\right)=-\infty .
$$

ii) Let H be nondecreasing in γ, concave and positively homogeneous of degree one in p. Then $H_{\#}$ is quasiconcave, upper semicontinuous and

$$
H_{\#}(z) \rightarrow-\infty \quad \text { as } \quad|z| \rightarrow \infty, \quad \text { and } \quad H_{\# *}=H
$$

Moreover, there exists $q^{*} \in \mathbb{R}^{n}$ such that

$$
H_{\#}\left(q^{*}\right)=+\infty .
$$

Proof. i) The first assertion of i) was proved by Barron, Jensen and Liu [6]. Let us verify that there exists a $p^{*} \in \mathbb{R}^{n}$ such that $H^{\#}\left(p^{*}\right)=-\infty$. Assume the contrary, that

$$
H^{\#}(z)>-\infty, \forall z \in \mathbb{R}^{n}
$$

Since $H^{\#} \rightarrow+\infty$ as $|z| \rightarrow \infty$, there exists $N>0$ so that $H^{\#}(z)>0$, for all $|z|>N$. Thus, we get

$$
\begin{equation*}
-\infty=\underset{z \in \mathbb{R}^{n}}{ } \inf H^{\#}(z)=\underset{|z| \leq N}{\vec{N}} \inf H^{\#}(z) . \tag{2.1}
\end{equation*}
$$

Since $H^{\#}$ is lower semicontinuous, $H^{\#}(z)>-\infty, \forall z \in \mathbb{R}^{n}$, the function

$$
h(z):=\min \left\{H^{\#}(z), 0\right\}, \quad z \in \mathbb{R}^{n}
$$

is clearly finite and lower semicontinuous on \mathbb{R}^{n}. Hence,

$$
\mid \overrightarrow{|z| \leq N} \inf H^{\#}(z) \geq_{|z| \leq N} \inf h(z):=M>-\infty,
$$

which contradicts (2.1). This contradiction proved the second part of i).
ii) Using $[-H(-\gamma,-p)]^{\#}(z)=-\left[H_{\#}(\gamma, p)\right](z)$, we symmetrically obtain ii).

To investigate the functions u_{-}, u_{+}we need two auxiliary functions determined by

$$
\begin{array}{ll}
v(t, x):=\underset{y \in \mathbb{R}^{n}}{\rightarrow} \inf \left\{H_{1}^{\#}\left(\frac{x-y}{t}\right) \vee u_{0}(y)\right\}, \quad(t, x) \in(0, T] \times \mathbb{R}^{n}, \\
w(t, x):=\underset{y \in \mathbb{R}^{n}}{\vec{n}} \sup \left\{H_{2 \#}\left(\frac{x-y}{t}\right) \wedge u_{0}(y)\right\}, \quad(t, x) \in(0, T] \times \mathbb{R}^{n} . \tag{2.3}
\end{array}
$$

The continuity of v, w can be verified by the following lemma.
Lemma 2.2. The functions v, w are continuous on $[0, T] \times \mathbb{R}^{n}$ with

$$
v(0, x):=u_{0}(x), \quad w(0, x):=u_{0}(x), \quad x \in \mathbb{R}^{n} .
$$

Proof. We need only to the show that v is continuous on $[0, T] \times \mathbb{R}^{n}$. The argument for w would be similar.

It is convenient to rewrite the function v as

$$
\begin{equation*}
v(t, x)=\underset{z \in \mathbb{R}^{n}}{ } \inf \left\{H_{1}^{\#}(z) \vee u_{0}(x-t z)\right\}, \quad \forall(t, x) \in(0, T] \times \mathbb{R}^{n} \tag{2.4}
\end{equation*}
$$

By virtue of Lemma 2.1 i), we can take a point $p^{*} \in \mathbb{R}^{n}$ such that $H_{1}^{\#}\left(p^{*}\right)=-\infty$ and keep it fixed. Let $r>0$ be arbitrarily chosen. Then for each $(t, x) \in$ $(0, T] \times B(0 ; r)$,
$v(t, x) \leq H_{1}^{\#}\left(p^{*}\right) \vee u_{0}\left(x-t p^{*}\right)=u_{0}\left(x-t p^{*}\right) \leq \underset{|y| \leq r+T\left|p^{*}\right|}{ } \max u_{0}(y):=K<+\infty$.
Since $H_{1}^{\#}(z) \rightarrow+\infty$ as $|z| \rightarrow \infty$, there exists a constant $N>0$ such that

$$
H_{1}^{\#}(z)>K, \quad \forall|z| \geq N .
$$

Hence, the infimum in (2.4) has to be taken over the ball $\bar{B}(0 ; N)$ for all $(t, x) \in$ $(0, T] \times B(0 ; r)$. Since the function $z \mapsto\left(H_{1}^{\#}(z) \vee u_{0}(x-t z)\right) \wedge K, z \in \bar{B}(0 ; N)$ is finite (bounded) and lower semicontinuous on a compact set, it holds, for any $(t, x) \in(0, T] \times B(0 ; r)$,

$$
\begin{aligned}
v(t, x) & =\underset{|z| \leq N}{\vec{~}} \inf \left\{H_{1}^{\#}(z) \vee u_{0}(x-t z)\right\} \wedge K \\
& =\underset{|z| \leq N}{\vec{~}} \inf \left\{\left[H_{1}^{\#}(z) \vee u_{0}(x-t z)\right] \wedge K\right\} \\
& =\underset{|z| \leq N}{\rightarrow} \min \left\{\left[H_{1}^{\#}(z) \vee u_{0}(x-t z)\right] \wedge K\right\} \\
& =\underset{|z| \leq N}{\rightarrow} \min \left\{H_{1}^{\#}(z) \vee u_{0}(x-t z)\right\} .
\end{aligned}
$$

Thus, for every $(t, x) \in(0, T] \times B(0 ; r)$, the set

$$
k(t, x):=\left\{y_{0} \in \mathbb{R}^{n}: H_{1}^{\#}\left(y_{0}\right) \vee u_{0}\left(x-t y_{0}\right)=\underset{z \in \mathbb{R}^{n}}{ } \inf \left\{H_{1}^{\#}(z) \vee u_{0}(x-t z)\right\}\right\}
$$

is not empty. Since r is arbitrary, we can extend the definition of $k(t, x)$ to the whole domain $(0, T] \times \mathbb{R}^{n}$. The above arguments show that

$$
\begin{equation*}
\|k(t, x)\|:=\sup \left\{\left|y_{0}\right|: y_{0} \in k(t, x)\right\} \leq N, \quad(t, x) \in(0, T] \times B(0 ; r) \tag{2.5}
\end{equation*}
$$

For any $(t, x),\left(t^{\prime}, x^{\prime}\right) \in(0, T] \times B(0 ; r)$, choosing $\xi \in k(t, x),|\xi| \leq N$ (by virtue of (2.5)), we get

$$
\begin{align*}
v\left(t^{\prime}, x^{\prime}\right)-v(t, x) & =\underset{z \in \mathbb{R}^{n}}{ } \inf \left\{H_{1}^{\#}(z) \vee u_{0}\left(x^{\prime}-t^{\prime} z\right)\right\}-H_{1}^{\#}(\xi) \vee u_{0}(x-t \xi) \\
& \leq H_{1}^{\#}(\xi) \vee u_{0}\left(x^{\prime}-t^{\prime} \xi\right)-H_{1}^{\#}(\xi) \vee u_{0}(x-t \xi) \\
& \leq\left|u_{0}\left(x^{\prime}-t^{\prime} \xi\right)-u_{0}(x-t \xi)\right| . \tag{2.6}
\end{align*}
$$

Exchanging (t, x) and $\left(t^{\prime}, x^{\prime}\right)$, we can select $\xi^{\prime} \in k\left(t^{\prime}, x^{\prime}\right),\left|\xi^{\prime}\right| \leq N$ so that

$$
\begin{equation*}
v(t, x)-v\left(t^{\prime}, x^{\prime}\right) \leq\left|u_{0}\left(x^{\prime}-t^{\prime} \xi^{\prime}\right)-u_{0}\left(x-t \xi^{\prime}\right)\right| . \tag{2.7}
\end{equation*}
$$

The estimates (2.6) and (2.7) yield

$$
\begin{equation*}
\underset{\left(t^{\prime}, x^{\prime}\right) \rightarrow(t, x)}{\rightarrow} \lim v\left(t^{\prime}, x^{\prime}\right)=v(t, x), \quad \forall(t, x) \in(0, T] \times B\left(x_{0}, r\right) . \tag{2.1}
\end{equation*}
$$

Since r is arbitrary, it follows that $u \in C\left((0, T] \times \mathbb{R}^{n}\right)$.
Next, let us verify that the function v is continuous until the boundary $\{0\} \times \mathbb{R}^{n}$, i.e.,

$$
\begin{equation*}
\underset{(t, x) \rightarrow\left(0, x_{0}\right)}{\rightarrow} \lim v(t, x)=u_{0}\left(x_{0}\right), \quad \forall x_{0} \in \mathbb{R}^{n} . \tag{2.8}
\end{equation*}
$$

Indeed, by what was shown above one has, for some fixed $p^{*} \in \mathbb{R}^{n}$ at which $H_{1}^{\#}\left(p^{*}\right)=-\infty$,

$$
v(t, x) \leq H_{1}^{\#}\left(p^{*}\right) \vee u_{0}\left(x-t p^{*}\right)=u_{0}\left(x-t p^{*}\right), \quad \forall(t, x) \in(0, T] \times \mathbb{R}^{n}
$$

Consequently,

$$
\begin{equation*}
\underset{(t, x) \rightarrow\left(0, x_{0}\right)}{\rightarrow} \lim \sup v(t, x) \leq \underset{(t, x) \rightarrow\left(0, x_{0}\right)}{\rightarrow} \lim u_{0}\left(x-t p^{*}\right)=u_{0}\left(x_{0}\right) . \tag{2.9}
\end{equation*}
$$

On the other hand, in view of (2.5) where $r>0$ is arbitrarily given, one has

$$
v(t, x)=H_{1}^{\#}(\xi) \vee u_{0}(x-t \xi) \geq u_{0}(x-t \xi)
$$

for every $(t, x) \in(0, T] \times B(0 ; r)$ with some fixed $\xi \in k(t, x),|\xi| \leq N$. Letting $(t, x) \rightarrow\left(0, x_{0}\right)$, we have

$$
\begin{equation*}
\underset{(t, x) \rightarrow\left(0, x_{0}\right)}{\rightarrow} \liminf v(t, x) \geq_{(t, x) \rightarrow\left(0, x_{0}\right)}^{\rightarrow} \lim u_{0}(x-t \xi)=u_{0}\left(x_{0}\right) . \tag{2.10}
\end{equation*}
$$

The combination of (2.9) and (2.10) yields (2.8). The proof of Lemma 2.2 is complete.

Proof of Theorem 1.1. i) First, we will show that u_{-}is continuous in $(0, T) \times \mathbb{R}^{n}$. Indeed, u_{-}can be rewritten as

$$
u_{-}(t, x)=\underset{z}{\rightarrow} \sup \left\{v(t, x-t z) \wedge H_{2 \#}(z)\right\},
$$

where $v(t, x)$ is defined by (2.2). By virtue of Lemma 2.2 , there is $q^{*} \in \mathbb{R}^{n}$, $H_{2 \#}\left(q^{*}\right)=+\infty$. Hence, if $|x| \leq M$ for some constant $M>0$ then

$$
\begin{aligned}
u_{-}(t, x) & \geq v\left(t, x-t q^{*}\right) \wedge H_{2 \#}\left(q^{*}\right)=v\left(t, x-t q^{*}\right) \\
& \geq_{s \in[0, T],|y| \leq M+T\left|q^{*}\right|} \min v(s, y):=K>-\infty .
\end{aligned}
$$

Also, there is $N>0$ such that $H_{2 \#}(z)<K \quad \forall|z|>N$. Therefore,

$$
u_{-}(t, x)=\underset{|z| \leq N}{\vec{~}} \sup \left\{v(t, x-t z) \wedge H_{2 \#}(z)\right\}, \quad \forall t \in[0, T],|x| \leq M .
$$

Since both v and $H_{2 \#}$ are upper semicontinuous in the variable $z \in \mathbb{R}^{n}$, so is their minimum. Hence, the last expression becomes

$$
\begin{equation*}
u_{-}(t, x)=\underset{|z| \leq N}{\rightarrow} \max \left\{v(t, x-t z) \wedge H_{2 \#}(z)\right\}, \quad \forall t \in[0, T],|x| \leq M \tag{2.11}
\end{equation*}
$$

By virtue of (2.11), let $|x| \leq M,\left|x^{\prime}\right| \leq M$, and let, for some fixed $z_{0} \in \mathbb{R}^{n},\left|z_{0}\right| \leq$ N,

$$
u_{-}(t, x)=v\left(t, x-t z_{0}\right) \wedge H_{2 \#}\left(z_{0}\right) .
$$

Then

$$
\begin{aligned}
u_{-}(t, x)-u_{-}\left(t^{\prime}, x^{\prime}\right) & =v\left(t, x-t z_{0}\right) \wedge H_{2 \#}\left(z_{0}\right)-\underset{|z| \leq N}{\vec{~}} \max \left\{v\left(t^{\prime}, x^{\prime}-t^{\prime} z\right) \wedge H_{2 \#}(z)\right\} \\
& \leq v\left(t, x-t z_{0}\right) \wedge H_{2 \#}\left(z_{0}\right)-v\left(t^{\prime}, x^{\prime}-t^{\prime} z_{0}\right) \wedge H_{2 \#}\left(z_{0}\right) \\
& \leq\left|v\left(t^{\prime}, x^{\prime}-t^{\prime} z_{0}\right)-v\left(t, x-t z_{0}\right)\right| .
\end{aligned}
$$

Interchanging $\left(t^{\prime}, x^{\prime}\right)$ and (t, x) we get, for some $z_{1},\left|z_{1}\right| \leq N$,

$$
\begin{equation*}
u_{-}\left(t^{\prime}, x^{\prime}\right)-u_{-}(t, x) \leq\left|v\left(t^{\prime}, x^{\prime}-t^{\prime} z_{1}\right)-v\left(t, x-t z_{1}\right)\right| . \tag{2.13}
\end{equation*}
$$

The estimates (2.12), (2.13) and the continuity of v imply that u_{-}is continuous on $(0, T) \times\{x:|x| \leq M\}$. Since M is arbitrarily chosen, the continuity in $(0, T) \times \mathbb{R}^{n}$ of u_{-}follows.

Next, we claim that for every $(t, x) \in(0, T) \times \mathbb{R}^{n}, 0<s<t$,

$$
u_{-}(t, x) \leq \underset{z}{\rightarrow} \inf \left\{H_{1}^{\#}\left(\frac{x-z}{t-s}-z_{0}\right) \vee u_{-}(s, z)\right\},
$$

where $z_{0} \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
u_{-}(t, x)=v\left(t, x-t z_{0}\right) \wedge H_{2 \#}\left(z_{0}\right) . \tag{2.14}
\end{equation*}
$$

Actually, in view of (2.11), it holds

$$
\begin{aligned}
u_{-}(t, x) & =v\left(t, x-t z_{0}\right) \wedge H_{2 \#}\left(z_{0}\right) \\
& \leq\left[H_{1}^{\#}\left(\frac{x-y}{t}-z_{0}\right) \vee u_{0}(y)\right] \wedge H_{2 \#}\left(z_{0}\right), \quad \forall y \in \mathbb{R}^{n} .
\end{aligned}
$$

Since $H_{1}^{\#}$ is quasiconvex, we have for each fixed $z \in \mathbb{R}^{n}$,

$$
H_{1}^{\#}\left(\frac{x-y}{t}-z_{0}\right) \leq H_{1}^{\#}\left(\frac{x-z}{t-s}-z_{0}\right) \vee H_{1}^{\#}\left(\frac{z-y}{s}-z_{0}\right), \quad \forall y \in \mathbb{R}^{n}
$$

Thus,

$$
u_{-}(t, x) \leq\left[H_{1}^{\#}\left(\frac{x-z}{t-s}-z_{0}\right) \vee H_{1}^{\#}\left(\frac{z-y}{s}-z_{0}\right) \vee u_{0}(y)\right] \wedge H_{2 \#}\left(z_{0}\right), \quad \forall y \in \mathbb{R}^{n} .
$$

By changing variable $p:=(z-y) / s-z_{0}, \forall y \in \mathbb{R}^{n}$, we obtain from the last estimate
$u_{-}(t, x) \leq\left[H_{1}^{\#}\left(\frac{x-z}{t-s}-z_{0}\right) \vee\left(H_{1}^{\#}(p) \vee u_{0}\left(z-s\left(p+z_{0}\right)\right)\right)\right] \wedge H_{2 \#}\left(z_{0}\right), \quad \forall p \in \mathbb{R}^{n}$.
Taking infimum in $p \in \mathbb{R}^{n}$ of both sides, we obtain

$$
\begin{aligned}
u_{-}(t, x) & \leq\left[H_{1}^{\#}\left(\frac{x-z}{t-s}-z_{0}\right) \vee v\left(s, z-s z_{0}\right)\right] \wedge H_{2 \#}\left(z_{0}\right) \\
& \leq H_{1}^{\#}\left(\frac{x-z}{t-s}-z_{0}\right) \vee\left[v\left(s, z-s z_{0}\right) \wedge H_{2 \#}\left(z_{0}\right)\right] \\
& \leq H_{1}^{\#}\left(\frac{x-z}{t-s}-z_{0}\right) \vee u_{-}(s, z) .
\end{aligned}
$$

Since z is arbitrary, the last inequality implies (2.14).
Next, the fact that u_{-}is a viscosity subsolution of the equation (1.1) will be proved as follows. Without loss of generality, we may assume that the maximum and the minimum in the definition of viscosity sub- and supersolutions are zero and global. Assume the contrary that u_{-}is not a viscosity subsolution. Then there exist a constant $\varepsilon_{0}>0$, and a point $\left(t_{0}, x_{0}\right) \in(0, T) \times \mathbb{R}^{n}$, a function $\varphi \in C^{1}$, such that $u_{-}-\varphi$ has zero as its maximum value at $\left(t_{0}, x_{0}\right)$ and

$$
\varphi_{t}\left(t_{0}, x_{0}\right)+H\left(u_{-}\left(t_{0}, x_{0}\right), D_{x} \varphi\left(t_{0}, x_{0}\right)\right)>\varepsilon_{0} .
$$

Set $\gamma_{0}:=u_{-}\left(t_{0}, x_{0}\right)$. Since H is continuous, there exists a number $\delta>0$, such that

$$
\varphi_{t}\left(t_{0}, x_{0}\right)+H\left(\gamma_{0}-\delta, D_{x} \varphi\left(t_{0}, x_{0}\right)\right)>\varepsilon_{0} .
$$

Using $H_{1}^{\# *}=H_{1}, H_{2 \# *}=H_{2}$ from Lemma 2.1, we have

$$
\begin{aligned}
\varphi_{t}\left(t_{0}, x_{0}\right)+ & \underset{\left\{p: H_{1}^{\#}(p) \leq \gamma_{0}-\delta\right\}}{\rightarrow} \\
& \sup \left(p, D_{x} \varphi\left(t_{0}, x_{0}\right)\right) \\
& +\underset{\left\{q: H_{2 \#}(q) \geq \gamma_{0}-\delta\right\}}{\vec{~}} \inf \left(q, D_{x} \varphi\left(t_{0}, x_{0}\right)\right)>\varepsilon_{0} .
\end{aligned}
$$

Thus there exists $p_{0} \in \mathbb{R}^{n}$, with $H_{1}^{\#}\left(p_{0}\right) \leq \gamma_{0}-\delta$, such that

$$
\begin{equation*}
\varphi_{t}\left(t_{0}, x_{0}\right)+\left(p_{0}+q, D_{x} \varphi\left(t_{0}, x_{0}\right)\right)>\varepsilon_{0}, \quad \forall q \in \mathbb{R}^{n}, H_{2 \#}(q) \geq \gamma_{0}-\delta . \tag{2.15}
\end{equation*}
$$

On the other hand, let z_{0} be selected and fixed at which the maximum in (2.11) corresponding to $\left(t_{0}, x_{0}\right)$ is attained, i.e.,

$$
\gamma_{0}=u_{-}\left(t_{0}, x_{0}\right)=v\left(t_{0}, x_{0}-t_{0} z_{0}\right) \wedge H_{2 \#}\left(z_{0}\right) \leq H_{2 \#}\left(z_{0}\right) .
$$

By virtue of (2.14) for every $0<s<t_{0}, \mu:=t_{0}-s>0$,

$$
\gamma_{0}=u_{-}\left(t_{0}, x_{0}\right) \leq \underset{z}{\rightarrow} \inf \left\{H_{1}^{\#}\left(\frac{x_{0}-z}{t_{0}-s}-z_{0}\right) \vee u_{-}(s, z)\right\} .
$$

Changing variable $p:=\left(x_{0}-z\right) /\left(t_{0}-s\right)-z_{0}, \forall z \in \mathbb{R}^{n}$, and then replacing $s=t_{0}-\mu$ in the right-hand side of the last inequality, we obtain

$$
\begin{align*}
u_{-}\left(t_{0}, x_{0}\right) & \leq \rightarrow \underset{p}{\inf }\left\{H_{1}^{\#}(p) \vee u_{-}\left(t_{0}-\mu, x_{0}-\mu\left(p+z_{0}\right)\right\}\right. \\
& \leq H_{1}^{\#}\left(p_{0}\right) \vee u_{-}\left(t_{0}-\mu, x_{0}-\mu\left(p_{0}+z_{0}\right)\right) . \tag{2.16}
\end{align*}
$$

Besides, since $u_{-}\left(t_{0}, x_{0}\right)-\delta \geq H_{1}^{\#}\left(p_{0}\right)$ and u_{-}is continuous in $(0, T) \times \mathbb{R}^{n}$, there exists $\mu_{0}>0$ such that

$$
H_{1}^{\#}\left(p_{0}\right)<u_{-}\left(t_{0}-\mu, x_{0}-\mu\left(p_{0}+z_{0}\right)\right), \quad 0<\forall \mu<\mu_{0} .
$$

This coupled with (2.16) gives

$$
\begin{aligned}
\varphi\left(t_{0}, x_{0}\right)=\gamma_{0} & \leq u_{-}\left(t_{0}-\mu, x_{0}-\mu\left(p_{0}+z_{0}\right)\right) \\
& \leq \varphi\left(t_{0}-\mu, x_{0}-\mu\left(p_{0}+z_{0}\right)\right), \quad 0<\forall \mu<\mu_{0} .
\end{aligned}
$$

Consequently,

$$
\frac{\varphi\left(t_{0}-\mu, x_{0}-\mu\left(p_{0}+z_{0}\right)\right)-\varphi\left(t_{0}, x_{0}\right)}{-\mu} \leq 0, \quad 0<\forall \mu<\mu_{0}
$$

Letting $\mu \rightarrow 0$ in the last estimate, we see that

$$
\varphi_{t}\left(t_{0}, x_{0}\right)+\left(p_{0}+z_{0}, D_{x} \varphi\left(t_{0}, x_{0}\right)\right) \leq 0
$$

which contradicts (2.15) where z_{0} plays the role of a $q \in \mathbb{R}^{n}$. This contradiction proves that u_{-}is a viscosity subsolution of the equation (1.1). It remains to prove (1.6). By Lemma 2.2 , let $q^{*} \in \mathbb{R}^{n}$ be taken so that $H_{2 \#}\left(q^{*}\right)=+\infty$. Then

$$
\begin{equation*}
u_{-}(t, x) \geq H_{2 \#}\left(q^{*}\right) \wedge v\left(t, x-t q^{*}\right)=v\left(t, x-t q^{*}\right) \tag{2.17}
\end{equation*}
$$

Besides, it follows from (2.11) that for every $|x|<M$, there exists $z_{0} \in \mathbb{R}^{n},\left|z_{0}\right| \leq$ N, at which

$$
\begin{equation*}
u_{-}(t, x)=v\left(t, x-t z_{0}\right) \wedge H_{2 \#}\left(z_{0}\right) \leq v\left(t, x-t z_{0}\right) \tag{2.18}
\end{equation*}
$$

From (2.17) and (2.18), letting $t \rightarrow 0$ and using the continuity of v on $[0, T] \times \mathbb{R}^{n}$ with $v(0, x)=u_{0}(x)$, we obtain

$$
u_{-}(0, x)=u_{0}(x), \quad|x| \leq M .
$$

Since M is arbitrary, (1.6) follows. The part i) of Theorem 1.1 is thus completely proved.
ii) By a similar argument, we also get ii). Instead of (2.14), the following estimate is invoked

$$
u_{+}(t, x) \geq \underset{z}{\rightarrow} \sup \left\{H_{2 \#}\left(\frac{x-y}{t-s}-y_{0}\right) \wedge u_{+}(s, y)\right\},
$$

where $y_{0} \in \mathbb{R}^{n}$ is arbitrary so that

$$
u_{+}(t, x)=w\left(t, x-t y_{0}\right) \vee H_{1}^{\#}\left(y_{0}\right) .
$$

Proof of Corollary 1.1. If $u_{0} \in \operatorname{BUC}\left(\mathbb{R}^{n}\right)$, then we can choose the constant N in (2.12) and (2.13) independent of $(t, x),\left(t^{\prime}, x^{\prime}\right) \in[0, T] \times \mathbb{R}^{n}$ so that these estimates still hold true. This implies that $u_{-}, u_{+} \in B U C\left([0, T] \times \mathbb{R}^{n}\right)$. Hence, the conclusion follows from Theorem IV. 1 of Barles [2].

Example 1. Consider the following Cauchy problem

$$
\begin{align*}
u_{t}+\left|D_{x} u\right| \operatorname{sh} u & =0 \quad \text { in } \quad(0, T) \times \mathbb{R}^{n}, \tag{2.19}\\
u(0, x) & =u_{0}(x), \quad \text { in } \quad \mathbb{R}^{n}, \tag{2.20}
\end{align*}
$$

where $\operatorname{sh} x$ is the hyperbolic sine function

$$
\operatorname{sh} x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}, \quad x \in \mathbb{R} .
$$

The Hamiltonian $H(\gamma, p)=|p| \operatorname{sh} \gamma$ can be written as

$$
H=H_{1}+H_{2}, \quad H_{1}(\gamma, p):=\frac{\mathrm{e}^{\gamma}|p|}{2}, \quad H_{2}(\gamma, p):=-\frac{\mathrm{e}^{-\gamma}|p|}{2}, \quad(\gamma, p) \in \mathbb{R} \times \mathbb{R}^{n},
$$

meetting the assumption (A). A direct calculation yields

$$
H_{1}^{\#}(q)=\log 2|q|, \quad H_{2 \#}(q)=-\log 2|q|, \quad q \in \mathbb{R}^{n} .
$$

Hence, it is derived from the formulas (1.4) and (1.5) that

$$
\begin{gathered}
u_{-}(t, x)=\underset{z}{\rightarrow} \sup \underset{y}{\rightarrow} \inf \left\{\left[\log 2|y| \vee u_{0}(x-t(y+z))\right] \wedge(-\log 2|z|)\right\}, \\
u_{+}(t, x)=\underset{y}{\rightarrow} \inf \underset{z}{\rightarrow} \sup \left\{\log 2|y| \vee\left[u_{0}(x-t(y+z)) \wedge(-\log 2|z|)\right]\right\}, \\
(t, x) \in(0, T) \times \mathbb{R}^{n} .
\end{gathered}
$$

Example 2. Let $f(x), x \in \mathbb{R}$, be an any continuous nondecreasing function. Our results can be applied to a Hamiltonian of the form

$$
H(\gamma, p):=f(\gamma)|p|, \quad(\gamma, p) \in \mathbb{R} \times \mathbb{R}^{n}
$$

Actually, we need only to determine

$$
\begin{aligned}
H_{1}(\gamma, p) & :=\max \{f(\gamma), 0\}|p|, \\
H_{2}(\gamma, p) & :=\min \{f(\gamma), 0\}|p|, \quad(\gamma, p) \in \mathbb{R} \times \mathbb{R}^{n} .
\end{aligned}
$$

Clearly, these functions satisfy the hypothesis (A).

References

[1] M. Avriel, W. Diewert, S. Schaible and I. Zang, Generalized Concavity, Plenum, New York, 1987.
[2] G. Barles, Uniqueness and regularity results for first-order Hamilton-Jacobi equations, Indiana Univ. Math. J. 39 (1990), 443-466.
[3] M. Bardi, M. G. Crandall, L. C. Evans, H. M. Soner and P. E. Souganidis, Viscosity Solutions and Applications, Springer-Verlag, Berlin, 1997.
[4] M. Bardi and S. Faggian, Hopf-type estimates and formulas for non-convex non-concave Hamilton-Jacobi equations, SIAM J. Math. Anal. 29 (5) (1998), 1067-1086.
[5] E. N. Barron and W. Liu, Calculus of variations in L^{∞}, Appl. Math. Optimization 35 (1997), 237-263.
[6] E. N. Barron, R. Jensen, and W. Liu, Hopf-Lax-type formula for $u_{t}+H(u, D u)=0$, J. Differ. Equations 126 (1996), 48-61.
[7] E. N. Barron, R. Jensen, and W. Liu, Applications of the Hopf-Lax formula for $u_{t}+$ $H(u, D u)=0$, SIAM J. Math. Anal. 29 (4) (1998), 1022-1039.
[8] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42.
[9] E. Hopf, Generalized solutions of nonlinear equations of first order, J. Math. Mech. 14 (1965), 951-973.
[10] P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, 1982.
[11] T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1970.
[12] H. Tuy, Convex Analysis and Global Optimization, Kluwer, Boston, 1998.
[13] T. D. Van, N. Hoang and M. Tsuji, On Hopf's formula for Lipschitz solutions of the Cauchy problem for Hamilton-Jacobi equations, Nonlinear Anal., Theory Methods Appl. 29 (1997), 1145-1159.
[14] T. D. Van and M. D. Thanh, The Oleinik-Lax-type formulas for multi-time Hamilton-Jacobi equations, Adv. Math. Sci. Appl. 10 (2000), 239-264.
[15] T. D. Van, M. Tsuji and N.D.T. Son, The Characteristic Method and Its Generalizations for First-Order Nonlinear Partial Differential Equations, Chapman \& Hall, CRC Press, 1999.
[16] I. E. Martinez-Legaz, Quasiconvex duality theory by generalized conjugation methods, Optimization 19 (1988), 603-652.
[17] J. P. Penot and M. Volle, On quasiconvex duality, Math. Oper. Res. 15 (1990), 597-625.
Hanoi Institute of Mathematics
P.O. Box 631 BoHo, 10.000 Hanoi, Vietnam

E-mail address: tdvan thevinh.ncst.ac.vn, mdthanh thevinh.ncst.ac.vn.

[^0]: Received October 16, 2000.
 1991 Mathematics Subject Classification. 35A05; 35F25.
 Key words and phrases. Hopf-Oleinik-Lax-type formulas, viscosity solutions, HamiltonJacobi equations, quasiconvex dual, nonconvex-nonconcave functions.

 This research was supported in part by National Basic Research Program, Vietnam.

