
ACTA MATHEMATICA VIETNAMICA 395
Volume 26, Number 3, 2001, pp. 395-405

ON EXPLICIT VISCOSITY SOLUTIONS TO

NONCONVEX-NONCONCAVE HAMILTON-JACOBI

EQUATIONS

TRAN DUC VAN AND MAI DUC THANH

Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

Abstract. We consider the Cauchy problem for Hamilton-Jacobi equations
in the case where the Hamiltonian is supposed to be a sum of a convex and a
concave function and to depend also on the unknown function. Hopf-Oleinik-
Lax-type formulas for viscosity sub- and super-solutions are presented. A
sharp estimate for the unique viscosity solution is established.

1. Introduction and main results

In this paper we study viscosity solutions of the Cauchy problem for Hamilton-
Jacobi equations of the form

ut + H(u,Dxu) = 0 in (0, T ) × R
n,(1.1)

u(0, x) = u0(x) in R
n,(1.2)

where H,u0 are continuous functions in R
n+1 and R

n, respectively.

Barron, Jensen and Liu have recently developed the theory of quasiconvex
duality aimed to solve some important problems in optimal control and Hamilton-
Jacobi equations (see [1, 16, 17, 5] and the references therein). To do that
they sucessefully used the level set technique. More precisely, assume that the
Hamiltonian H = H(γ, p), γ ∈ R, p ∈ R

n, is nondecreasing in γ, convex and
positively homogeneous of degree one in p, the viscosity solution v of problem
(1.1)-(1.2) can be derived by

v(t, x) := →
y∈Rn

inf
{

H#
(x − y

t

)

∨ u0(y)
}

,(1.3)

where the quasiconvex dual H# is defined by

H#(q) := inf{γ ∈ R : H(γ, p) ≥ (p, q),∀p ∈ R
n},
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the notation (., .) stands for the ordinary scalar product on R
n, and

a ∨ b := max{a, b}.

The formula (1.3) with bounded and Lipschitz continuous initial data u0 was
found by Barron, Jensen and Liu [6].

Bardi and Faggian [4] studied an interesting problem: what happens if the
Hamiltonian H = H(p), p ∈ R takes the form of being the sum of a convex and
a concave function? Using the familiar notion of convex duality, they presented
their Hopf-type estimates and formulas for the unique viscosity solution of the
Cauchy problem. This research motivates us to expect an analogous result for
Hamiltonians of the form H = H(γ, p) using quasiconvex duality.

We consider here Problem (1.1)-(1.2) when the Hamiltonian H(γ, p) is a non-
convex-nonconcave function in the variable p. A nonconvex-nonconcave function
is meant to be the sum of a convex and a concave function. This kind of functions
is known as d.c. functions and plays a very important role in global optimization
(see Tuy [12]).

The following hypotheses are assumed in this note:

(A) The Hamiltonian H(γ, p), (γ, p) ∈ R × R
n, is a nonconvex-nonconcave

function in p, i.e.,

H(γ, p) = H1(γ, p) + H2(γ, p), (γ, p) ∈ R × R
n,

where H1,H2 are continuous on R
n+1, and for each fixed γ ∈ R, H1(γ, p) is

convex, H2(γ, p) is concave, H1(γ, p), H2(γ, p) are positively homogeneous of
degree one in p; for each fixed p ∈ R

n, H1(γ, p),H2(γ, p) are nondecreasing
in γ;

(B) The initial function u0 is continuous in x.

The expected solutions of the problem (1.1)-(1.2) are:

u−(t, x) :=→
z

sup →
y

inf
{

[H#
1 (y) ∨ u0(x − t(y + z))] ∧ H2#(z)

}

,(1.4)

(t, x) ∈ (0, T ) × R
n,

and

u+(t, x) :=→
y

inf →
z

sup
{

H#
1 (y) ∨ [u0(x − t(y + z)) ∧ H2#(z)]

}

,(1.5)

(t, x) ∈ (0, T ) × R
n,

where the operations ∨, # are defined as in (1.3) and the operations ∧, # act as

a ∧ b := min{a, b}, and H#(q) = sup{γ ∈ R : H(γ, p) ≤ (p, q),∀p ∈ R
n}.

We call (1.4) and (1.5) Hopf-Oleinik-Lax-type formulas. The following theorem
is the main result of the paper.
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Theorem 1.1. i) The function u− determined by (1.4) is a viscosity subsolution

of the equation (1.1) and satisfies (1.2), i.e.,

→
(t,x′)→(0,x)

lim u−(t, x′) = u0(x), ∀x ∈ R
n.(1.6)

ii) The function u+ determined by (1.5) is a viscosity supersolution of the

equation (1.1) and satisfies (1.2), i.e.,

→
(t,x′)→(0,x)

lim u+(t, x′) = u0(x), ∀x ∈ R
n.(1.7)

Relying on the results of Theorem 1.1, we can obtain the upper and lower
bounds for the unique viscosity solution of the problem (1.1)-(1.2).

Corollary 1.1. If, in addition, u0 ∈ BUC(Rn), then Problem (1.1)-(1.2) admits

a unique viscosity solution u in BUC([0, T ] × R
n) such that

u− ≤ u ≤ u+, in [0, T ] × R
n,(1.8)

where u− and u+ are defined in (1.4) and (1.5) respectively.

Note that the two expressions in the brackets {.} in (1.4) and (1.5) are, in
general, not the same since the operations ∧ and ∨ are not “commutative”.
However, for every fixed (t, x) ∈ (0, T )×R

n, the supremum in z and the infimum
in y may be taken over convex sets in which these two expressions coincide. The
min-max theorems then yield the coincidence of u+ and u− in many cases (see
Tuy [12], for example). In these cases, the unique viscosity solution of Problem
(1.1)-(1.2) can be easily computed.

By means of the above results, we can deduce several interesting conclusions:
if H2 = 0, then u+ = u− = u, u can be computed by the formula (1.3) and u
is a viscosity solution for the initial data u0, continuous in R

n (not necessarily
bounded and Lipschitz continuous as in [6]). If H1 = 0, then u− = u+ and we get
a formula for viscosity solutions with a concave Hamiltonian. Actually, if H2 = 0,
then a direct calculation gives

H2#(z) =

{

+∞ if z = 0

−∞ if z 6= 0.

The formulas (1.4) and (1.5) then yield

u(t, x) = u−(t, x) = u+(t, x),∀(t, x) ∈ (0, T ) × R
n.

We also note that the representation of generalized solutions of the Cauchy
problem for some Hamilton-Jacobi equations with nonconvex-nonconcave initial
data was obtained by Van, Hoang and Tsuji [13]. Barron, Jensen and Liu [7] pre-
sented their estimates for viscosity solutions of Problem (1.1)-(1.2) by a different
method. As Bardi and Faggian [4], they relied on the Kruzkov double variables
technique. As seen later on, we are to go directly from the formulas.

Finally, the reader is referred to [8, 2, 3, 10] for the general theory of vis-
cosity solutions, to [1, 5-7, 11, 12, 16, 17] for the properties of convexity and
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quasiconvexity, and to [9, 4, 6, 7, 10, 13, 14, 15] for the Hopf-Oleinik-Lax-type
formulas.

2. Proofs of Theorem 1.1 and Corollary 1.1

In order to prove Theorem 1.1, we need some properties of the quasiconvex
duality [1, 16, 17, 5, 6]. Let a continuous function H = H(γ, p), (γ, p) ∈ R × R

n,
be given.

Using the operations “(.)#”, “(.)#”, “∧” and “∨” in Section 1, we set

H#∗(γ, p) := sup{(p, q) : q ∈ R
n,H#(q) ≤ γ}, (γ, p) ∈ R × R

n,

and

H#∗(γ, p) := inf{(p, q) : q ∈ R
n,H#(q) ≥ γ}, (γ, p) ∈ R × R

n.

Some basic features of this duality can be summarized in the following lemma.

Lemma 2.1. i) Let H be nondecreasing in γ, convex and positively homogeneous

of degree one in p. Then H# is quasiconvex, lower semicontinuous and

H#(z) → +∞ as |z| → ∞, and H#∗ = H.

Moreover, there exists p∗ ∈ R
n such that

H#(p∗) = −∞.

ii) Let H be nondecreasing in γ, concave and positively homogeneous of degree

one in p. Then H# is quasiconcave, upper semicontinuous and

H#(z) → −∞ as |z| → ∞, and H#∗ = H.

Moreover, there exists q∗ ∈ R
n such that

H#(q∗) = +∞.

Proof. i) The first assertion of i) was proved by Barron, Jensen and Liu [6]. Let
us verify that there exists a p∗ ∈ R

n such that H#(p∗) = −∞. Assume the
contrary, that

H#(z) > −∞,∀z ∈ R
n.

Since H# → +∞ as |z| → ∞, there exists N > 0 so that H#(z) > 0, for all
|z| > N. Thus, we get

−∞ = →
z∈Rn

inf H#(z) = →
|z|≤N

inf H#(z).(2.1)

Since H# is lower semicontinuous, H#(z) > −∞,∀z ∈ R
n, the function

h(z) := min{H#(z), 0}, z ∈ R
n

is clearly finite and lower semicontinuous on R
n. Hence,

→
|z|≤N

inf H#(z) ≥ →
|z|≤N

inf h(z) := M > −∞,

which contradicts (2.1). This contradiction proved the second part of i).
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ii) Using [−H(−γ,−p)]#(z) = −[H#(γ, p)](z), we symmetrically obtain ii).

To investigate the functions u−, u+ we need two auxiliary functions determined
by

v(t, x) := →
y∈Rn

inf
{

H#
1

(x − y

t

)

∨ u0(y)
}

, (t, x) ∈ (0, T ] × R
n,(2.2)

w(t, x) := →
y∈Rn

sup
{

H2#

(x − y

t

)

∧ u0(y)
}

, (t, x) ∈ (0, T ] × R
n.(2.3)

The continuity of v, w can be verified by the following lemma.

Lemma 2.2. The functions v, w are continuous on [0, T ] × R
n with

v(0, x) := u0(x), w(0, x) := u0(x), x ∈ R
n.

Proof. We need only to the show that v is continuous on [0, T ]×R
n. The argument

for w would be similar.

It is convenient to rewrite the function v as

v(t, x) = →
z∈Rn

inf
{

H#
1 (z) ∨ u0(x − tz)

}

, ∀(t, x) ∈ (0, T ] × R
n.(2.4)

By virtue of Lemma 2.1 i), we can take a point p∗ ∈ R
n such that H#

1 (p∗) = −∞
and keep it fixed. Let r > 0 be arbitrarily chosen. Then for each (t, x) ∈
(0, T ] × B(0; r),

v(t, x) ≤ H#
1 (p∗) ∨ u0(x − tp∗) = u0(x − tp∗) ≤ →

|y|≤r+T |p∗|
max u0(y) := K < +∞.

Since H#
1 (z) → +∞ as |z| → ∞, there exists a constant N > 0 such that

H#
1 (z) > K, ∀|z| ≥ N.

Hence, the infimum in (2.4) has to be taken over the ball B(0;N) for all (t, x) ∈

(0, T ] × B(0; r). Since the function z 7→ (H#
1 (z) ∨ u0(x − tz)) ∧ K, z ∈ B(0;N)

is finite (bounded) and lower semicontinuous on a compact set, it holds, for any
(t, x) ∈ (0, T ] × B(0; r),

v(t, x) = →
|z|≤N

inf
{

H#
1 (z) ∨ u0(x − tz)

}

∧ K

= →
|z|≤N

inf
{

[

H#
1 (z) ∨ u0(x − tz)

]

∧ K
}

= →
|z|≤N

min
{

[

H#
1 (z) ∨ u0(x − tz)

]

∧ K
}

= →
|z|≤N

min {H#
1 (z) ∨ u0(x − tz)}.

Thus, for every (t, x) ∈ (0, T ] × B(0; r), the set

k(t, x) :=

{

y0 ∈ R
n : H#

1 (y0) ∨ u0(x − ty0) = →
z∈Rn

inf{H#
1 (z) ∨ u0(x − tz)}

}
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is not empty. Since r is arbitrary, we can extend the definition of k(t, x) to the
whole domain (0, T ] × R

n. The above arguments show that

‖k(t, x)‖ := sup{|y0| : y0 ∈ k(t, x)} ≤ N, (t, x) ∈ (0, T ] × B(0; r).(2.5)

For any (t, x), (t′, x′) ∈ (0, T ]×B(0; r), choosing ξ ∈ k(t, x), |ξ| ≤ N (by virtue of
(2.5)), we get

v(t′, x′) − v(t, x) = →
z∈Rn

inf
{

H#
1 (z) ∨ u0(x

′ − t′z)
}

− H#
1 (ξ) ∨ u0(x − tξ)

≤ H#
1 (ξ) ∨ u0(x

′ − t′ξ) − H#
1 (ξ) ∨ u0(x − tξ)

≤ |u0(x
′ − t′ξ) − u0(x − tξ)|.(2.6)

Exchanging (t, x) and (t′, x′), we can select ξ′ ∈ k(t′, x′), |ξ′| ≤ N so that

v(t, x) − v(t′, x′) ≤ |u0(x
′ − t′ξ′) − u0(x − tξ′)|.(2.7)

The estimates (2.6) and (2.7) yield

→
(t′,x′)→(t,x)

lim v(t′, x′) = v(t, x), ∀(t, x) ∈ (0, T ] × B(x0, r).(2.1)

Since r is arbitrary, it follows that u ∈ C((0, T ] × R
n).

Next, let us verify that the function v is continuous until the boundary {0}×R
n,

i.e.,

→
(t,x)→(0,x0)

lim v(t, x) = u0(x0), ∀x0 ∈ R
n.(2.8)

Indeed, by what was shown above one has, for some fixed p∗ ∈ R
n at which

H#
1 (p∗) = −∞,

v(t, x) ≤ H#
1 (p∗) ∨ u0(x − tp∗) = u0(x − tp∗), ∀(t, x) ∈ (0, T ] × R

n.

Consequently,

→
(t,x)→(0,x0)

lim sup v(t, x) ≤ →
(t,x)→(0,x0)

limu0(x − tp∗) = u0(x0).(2.9)

On the other hand, in view of (2.5) where r > 0 is arbitrarily given, one has

v(t, x) = H#
1 (ξ) ∨ u0(x − tξ) ≥ u0(x − tξ),

for every (t, x) ∈ (0, T ] × B(0; r) with some fixed ξ ∈ k(t, x), |ξ| ≤ N . Letting
(t, x) → (0, x0), we have

→
(t,x)→(0,x0)

lim inf v(t, x) ≥ →
(t,x)→(0,x0)

lim u0(x − tξ) = u0(x0).(2.10)

The combination of (2.9) and (2.10) yields (2.8). The proof of Lemma 2.2 is
complete.

Proof of Theorem 1.1. i) First, we will show that u− is continuous in (0, T )×R
n.

Indeed, u− can be rewritten as

u−(t, x) =→
z

sup{v(t, x − tz) ∧ H2#(z)},
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where v(t, x) is defined by (2.2). By virtue of Lemma 2.2, there is q∗ ∈ R
n,

H2#(q∗) = +∞. Hence, if |x| ≤ M for some constant M > 0 then

u−(t, x) ≥ v(t, x − tq∗) ∧ H2#(q∗) = v(t, x − tq∗)

≥ →
s∈[0,T ],|y|≤M+T |q∗|

min v(s, y) := K > −∞.

Also, there is N > 0 such that H2#(z) < K ∀|z| > N . Therefore,

u−(t, x) = →
|z|≤N

sup{v(t, x − tz) ∧ H2#(z)}, ∀t ∈ [0, T ], |x| ≤ M.

Since both v and H2# are upper semicontinuous in the variable z ∈ R
n, so is

their minimum. Hence, the last expression becomes

u−(t, x) = →
|z|≤N

max{v(t, x − tz) ∧ H2#(z)}, ∀t ∈ [0, T ], |x| ≤ M.(2.11)

By virtue of (2.11), let |x| ≤ M, |x′| ≤ M , and let, for some fixed z0 ∈ R
n, |z0| ≤

N ,

u−(t, x) = v(t, x − tz0) ∧ H2#(z0).

Then

u−(t, x) − u−(t′, x′) = v(t, x − tz0) ∧ H2#(z0)− →
|z|≤N

max{v(t′, x′ − t′z) ∧ H2#(z)}

≤ v(t, x − tz0) ∧ H2#(z0) − v(t′, x′ − t′z0) ∧ H2#(z0)

≤ |v(t′, x′ − t′z0) − v(t, x − tz0)|.(2.12)

Interchanging (t′, x′) and (t, x) we get, for some z1, |z1| ≤ N ,

u−(t′, x′) − u−(t, x) ≤ |v(t′, x′ − t′z1) − v(t, x − tz1)|.(2.13)

The estimates (2.12), (2.13) and the continuity of v imply that u− is continuous
on (0, T ) × {x : |x| ≤ M}. Since M is arbitrarily chosen, the continuity in
(0, T ) × R

n of u− follows.

Next, we claim that for every (t, x) ∈ (0, T ) × R
n, 0 < s < t,

u−(t, x) ≤→
z

inf{H#
1

(x − z

t − s
− z0

)

∨ u−(s, z)},

where z0 ∈ R
n such that

u−(t, x) = v(t, x − tz0) ∧ H2#(z0).(2.14)

Actually, in view of (2.11), it holds

u−(t, x) = v(t, x − tz0) ∧ H2#(z0)

≤
[

H#
1

(x − y

t
− z0

)

∨ u0(y)
]

∧ H2#(z0), ∀y ∈ R
n.

Since H#
1 is quasiconvex, we have for each fixed z ∈ R

n,

H#
1

(x − y

t
− z0

)

≤ H#
1

(x − z

t − s
− z0

)

∨ H#
1

(z − y

s
− z0

)

, ∀y ∈ R
n.
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Thus,

u−(t, x) ≤
[

H#
1

(x − z

t − s
− z0

)

∨ H#
1

(z − y

s
− z0

)

∨ u0(y)
]

∧ H2#(z0), ∀y ∈ R
n.

By changing variable p := (z−y)/s−z0,∀y ∈ R
n, we obtain from the last estimate

u−(t, x) ≤
[

H#
1

(x − z

t − s
− z0

)

∨
(

H#
1 (p) ∨ u0(z − s(p + z0))

)]

∧ H2#(z0), ∀p ∈ R
n.

Taking infimum in p ∈ R
n of both sides, we obtain

u−(t, x) ≤
[

H#
1

(x − z

t − s
− z0

)

∨ v(s, z − sz0)
]

∧ H2#(z0)

≤ H#
1

(x − z

t − s
− z0

)

∨
[

v(s, z − sz0) ∧ H2#(z0)
]

≤ H#
1

(x − z

t − s
− z0

)

∨ u−(s, z).

Since z is arbitrary, the last inequality implies (2.14).

Next, the fact that u− is a viscosity subsolution of the equation (1.1) will be
proved as follows. Without loss of generality, we may assume that the maximum
and the minimum in the definition of viscosity sub- and supersolutions are zero
and global. Assume the contrary that u− is not a viscosity subsolution. Then
there exist a constant ε0 > 0, and a point (t0, x0) ∈ (0, T ) × R

n, a function
ϕ ∈ C1, such that u− − ϕ has zero as its maximum value at (t0, x0) and

ϕt(t0, x0) + H(u−(t0, x0),Dxϕ(t0, x0)) > ε0.

Set γ0 := u−(t0, x0). Since H is continuous, there exists a number δ > 0, such
that

ϕt(t0, x0) + H(γ0 − δ,Dxϕ(t0, x0)) > ε0.

Using H#∗
1 = H1, H2#∗ = H2 from Lemma 2.1, we have

ϕt(t0, x0)+ →
{p:H#

1 (p)≤γ0−δ}
sup(p,Dxϕ(t0, x0))

+ →
{q:H2#(q)≥γ0−δ}

inf(q,Dxϕ(t0, x0)) > ε0.

Thus there exists p0 ∈ R
n, with H#

1 (p0) ≤ γ0 − δ, such that

ϕt(t0, x0) + (p0 + q,Dxϕ(t0, x0)) > ε0, ∀q ∈ R
n,H2#(q) ≥ γ0 − δ.(2.15)

On the other hand, let z0 be selected and fixed at which the maximum in (2.11)
corresponding to (t0, x0) is attained, i.e.,

γ0 = u−(t0, x0) = v(t0, x0 − t0z0) ∧ H2#(z0) ≤ H2#(z0).

By virtue of (2.14) for every 0 < s < t0, µ := t0 − s > 0,

γ0 = u−(t0, x0) ≤→
z

inf{H#
1

(x0 − z

t0 − s
− z0

)

∨ u−(s, z)}.
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Changing variable p := (x0 − z)/(t0 − s) − z0, ∀z ∈ R
n, and then replacing

s = t0 − µ in the right-hand side of the last inequality, we obtain

u−(t0, x0) ≤→
p

inf{H#
1 (p) ∨ u−(t0 − µ, x0 − µ(p + z0)}

≤ H#
1 (p0) ∨ u−(t0 − µ, x0 − µ(p0 + z0)).(2.16)

Besides, since u−(t0, x0)− δ ≥ H#
1 (p0) and u− is continuous in (0, T )×R

n, there
exists µ0 > 0 such that

H#
1 (p0) < u−(t0 − µ, x0 − µ(p0 + z0)), 0 < ∀µ < µ0.

This coupled with (2.16) gives

ϕ(t0, x0) = γ0 ≤ u−(t0 − µ, x0 − µ(p0 + z0))

≤ ϕ(t0 − µ, x0 − µ(p0 + z0)), 0 < ∀µ < µ0.

Consequently,

ϕ(t0 − µ, x0 − µ(p0 + z0)) − ϕ(t0, x0)

−µ
≤ 0, 0 < ∀µ < µ0.

Letting µ → 0 in the last estimate, we see that

ϕt(t0, x0) + (p0 + z0,Dxϕ(t0, x0)) ≤ 0,

which contradicts (2.15) where z0 plays the role of a q ∈ R
n. This contradiction

proves that u− is a viscosity subsolution of the equation (1.1). It remains to
prove (1.6). By Lemma 2.2, let q∗ ∈ R

n be taken so that H2#(q∗) = +∞. Then

u−(t, x) ≥ H2#(q∗) ∧ v(t, x − tq∗) = v(t, x − tq∗).(2.17)

Besides, it follows from (2.11) that for every |x| < M , there exists z0 ∈ R
n, |z0| ≤

N , at which

u−(t, x) = v(t, x − tz0) ∧ H2#(z0) ≤ v(t, x − tz0).(2.18)

From (2.17) and (2.18), letting t → 0 and using the continuity of v on [0, T ]×R
n

with v(0, x) = u0(x), we obtain

u−(0, x) = u0(x), |x| ≤ M.

Since M is arbitrary, (1.6) follows. The part i) of Theorem 1.1 is thus completely
proved.

ii) By a similar argument, we also get ii). Instead of (2.14), the following
estimate is invoked

u+(t, x) ≥→
z

sup
{

H2#

(x − y

t − s
− y0

)

∧ u+(s, y)
}

,

where y0 ∈ R
n is arbitrary so that

u+(t, x) = w(t, x − ty0) ∨ H#
1 (y0).
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Proof of Corollary 1.1. If u0 ∈ BUC(Rn), then we can choose the constant N
in (2.12) and (2.13) independent of (t, x), (t′, x′) ∈ [0, T ] × R

n so that these
estimates still hold true. This implies that u−, u+ ∈ BUC([0, T ] × R

n). Hence,
the conclusion follows from Theorem IV.1 of Barles [2].

Example 1. Consider the following Cauchy problem

ut + |Dxu|shu = 0 in (0, T ) × R
n,(2.19)

u(0, x) = u0(x), in R
n,(2.20)

where shx is the hyperbolic sine function

shx =
ex − e−x

2
, x ∈ R.

The Hamiltonian H(γ, p) = |p|shγ can be written as

H = H1 + H2, H1(γ, p) :=
eγ |p|

2
, H2(γ, p) := −

e−γ |p|

2
, (γ, p) ∈ R × R

n,

meetting the assumption (A). A direct calculation yields

H#
1 (q) = log 2|q|, H2#(q) = − log 2|q|, q ∈ R

n.

Hence, it is derived from the formulas (1.4) and (1.5) that

u−(t, x) =→
z

sup →
y

inf{[log 2|y| ∨ u0(x − t(y + z))] ∧ (− log 2|z|)},

u+(t, x) =→
y

inf →
z

sup{log 2|y| ∨ [u0(x − t(y + z)) ∧ (− log 2|z|)]},

(t, x) ∈ (0, T ) × R
n.

Example 2. Let f(x), x ∈ R, be an any continuous nondecreasing function. Our
results can be applied to a Hamiltonian of the form

H(γ, p) := f(γ)|p|, (γ, p) ∈ R × R
n.

Actually, we need only to determine

H1(γ, p) := max{f(γ), 0}|p|,

H2(γ, p) := min{f(γ), 0}|p|, (γ, p) ∈ R × R
n.

Clearly, these functions satisfy the hypothesis (A).

References

[1] M. Avriel, W. Diewert, S. Schaible and I. Zang, Generalized Concavity, Plenum, New York,
1987.

[2] G. Barles, Uniqueness and regularity results for first-order Hamilton-Jacobi equations, In-
diana Univ. Math. J. 39 (1990), 443-466.

[3] M. Bardi, M. G. Crandall, L. C. Evans, H. M. Soner and P. E. Souganidis, Viscosity

Solutions and Applications, Springer-Verlag, Berlin, 1997.
[4] M. Bardi and S. Faggian, Hopf-type estimates and formulas for non-convex non-concave

Hamilton-Jacobi equations, SIAM J. Math. Anal. 29 (5) (1998), 1067-1086.
[5] E. N. Barron and W. Liu, Calculus of variations in L∞, Appl. Math. Optimization 35

(1997), 237-263.



ON EXPLICIT VISCOSITY SOLUTIONS 405

[6] E. N. Barron, R. Jensen, and W. Liu, Hopf-Lax-type formula for ut + H(u, Du) = 0, J.
Differ. Equations 126 (1996), 48-61.

[7] E. N. Barron, R. Jensen, and W. Liu, Applications of the Hopf-Lax formula for ut +
H(u, Du) = 0, SIAM J. Math. Anal. 29 (4) (1998), 1022-1039.

[8] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.
Amer. Math. Soc. 277 (1983), 1-42.

[9] E. Hopf, Generalized solutions of nonlinear equations of first order, J. Math. Mech. 14

(1965), 951-973.
[10] P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, 1982.
[11] T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1970.
[12] H. Tuy, Convex Analysis and Global Optimization, Kluwer, Boston, 1998.
[13] T. D. Van, N. Hoang and M. Tsuji, On Hopf’s formula for Lipschitz solutions of the Cauchy

problem for Hamilton-Jacobi equations, Nonlinear Anal., Theory Methods Appl. 29 (1997),
1145-1159.

[14] T. D. Van and M. D. Thanh, The Oleinik-Lax-type formulas for multi-time Hamilton-Jacobi

equations, Adv. Math. Sci. Appl. 10 (2000), 239–264.
[15] T. D. Van, M. Tsuji and N.D.T. Son, The Characteristic Method and Its Generalizations

for First-Order Nonlinear Partial Differential Equations, Chapman & Hall, CRC Press,
1999.

[16] I. E. Martinez-Legaz, Quasiconvex duality theory by generalized conjugation methods, Op-
timization 19 (1988), 603-652.

[17] J. P. Penot and M. Volle, On quasiconvex duality, Math. Oper. Res. 15 (1990), 597-625.

Hanoi Institute of Mathematics

P.O. Box 631 BoHo, 10.000 Hanoi, Vietnam

E-mail address: tdvan thevinh.ncst.ac.vn, mdthanh thevinh.ncst.ac.vn.


