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ON EXPLICIT VISCOSITY SOLUTIONS TO
NONCONVEX-NONCONCAVE HAMILTON-JACOBI
EQUATIONS

TRAN DUC VAN AND MAI DUC THANH

Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

ABSTRACT. We consider the Cauchy problem for Hamilton-Jacobi equations
in the case where the Hamiltonian is supposed to be a sum of a convex and a
concave function and to depend also on the unknown function. Hopf-Oleinik-
Lax-type formulas for viscosity sub- and super-solutions are presented. A
sharp estimate for the unique viscosity solution is established.

1. INTRODUCTION AND MAIN RESULTS

In this paper we study viscosity solutions of the Cauchy problem for Hamilton-
Jacobi equations of the form

(1.1) ut + H(u,Dgu) =0 in (0,7) x R",
(1.2) u(0,x) = up(r) in R",

where H,ug are continuous functions in R"*! and R", respectively.

Barron, Jensen and Liu have recently developed the theory of quasiconvex
duality aimed to solve some important problems in optimal control and Hamilton-
Jacobi equations (see [1, 16, 17, 5] and the references therein). To do that
they sucessefully used the level set technique. More precisely, assume that the
Hamiltonian H = H(~v,p),y € R,p € R", is nondecreasing in 7, convex and
positively homogeneous of degree one in p, the viscosity solution v of problem
(1.1)-(1.2) can be derived by

(1.3) o(tx) = = inf {H#(x;y) Vauo(y)},

where the quasiconvex dual H# is defined by
H7(q) == inf{y € R: H(y,p) > (p,q),Yp € R"},
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the notation (.,.) stands for the ordinary scalar product on R", and
a Vb := max{a,b}.

The formula (1.3) with bounded and Lipschitz continuous initial data ug was
found by Barron, Jensen and Liu [6].

Bardi and Faggian [4] studied an interesting problem: what happens if the
Hamiltonian H = H(p), p € R takes the form of being the sum of a convex and
a concave function? Using the familiar notion of convex duality, they presented
their Hopf-type estimates and formulas for the unique viscosity solution of the
Cauchy problem. This research motivates us to expect an analogous result for
Hamiltonians of the form H = H (v, p) using quasiconvex duality.

We consider here Problem (1.1)-(1.2) when the Hamiltonian H (v, p) is a non-
convex-nonconcave function in the variable p. A nonconvex-nonconcave function
is meant to be the sum of a convex and a concave function. This kind of functions
is known as d.c. functions and plays a very important role in global optimization
(see Tuy [12]).

The following hypotheses are assumed in this note:

(A) The Hamiltonian H(v,p), (v,p) € R x R", is a nonconvex-nonconcave
function in p, i.e.,

H(v,p) = Hi(v,p) + Ha(7,p), (7,p) €ERxR",

where Hy, Hy are continuous on R™"!, and for each fixed v € R, Hy(v,p) is
convex, Ho(y,p) is concave, Hi(v,p), Ha(7,p) are positively homogeneous of
degree one in p; for each fixed p € R™, Hy(~v,p), Ha(7,p) are nondecreasing

n 7;
(B) The initial function ug is continuous in .

The expected solutions of the problem (1.1)-(1.2) are:

(1.4) u-(t,w) == sup — inf {HF (y) V uo(z — t(y + 2))] A Hay(2)},

z

(t,z) € (0,T) x R™,

(1.5) u+(t,x) :=— inf — sup {HY () V [uo(z — t(y + 2)) A Hap(2)]},
(t,x) € (0,T) x R",
where the operations V, # are defined as in (1.3) and the operations A, 4 act as
aAb:=min{a,b}, and Hy(q) =sup{y € R: H(y,p) < (p,q),Vp € R"}.

We call (1.4) and (1.5) Hopf-Oleinik-Lax-type formulas. The following theorem
is the main result of the paper.
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Theorem 1.1. i) The function u_ determined by (1.4) is a viscosity subsolution
of the equation (1.1) and satisfies (1.2), i.e.,
(1.6) —  limu_(¢t,2') = uo(z), Vo eR™
(t,2")—(0,2)
ii) The function uy determined by (1.5) is a wviscosity supersolution of the
equation (1.1) and satisfies (1.2), i.e.,
(1.7) —  limuy(¢,2") = up(x), VreR"
(t,2")—(0,2)
Relying on the results of Theorem 1.1, we can obtain the upper and lower
bounds for the unique viscosity solution of the problem (1.1)-(1.2).

Corollary 1.1. If, in addition, uy € BUC(R™), then Problem (1.1)-(1.2) admits
a unique viscosity solution w in BUC([0,T] x R™) such that

(1.8) u- <u<wug, in [0,T] xR",
where u_ and uy are defined in (1.4) and (1.5) respectively.

Note that the two expressions in the brackets {.} in (1.4) and (1.5) are, in
general, not the same since the operations A and V are not “commutative”.
However, for every fixed (¢t,z) € (0,7") x R", the supremum in z and the infimum
in y may be taken over convex sets in which these two expressions coincide. The
min-max theorems then yield the coincidence of uy and u_ in many cases (see
Tuy [12], for example). In these cases, the unique viscosity solution of Problem
(1.1)-(1.2) can be easily computed.

By means of the above results, we can deduce several interesting conclusions:
if Hy = 0, then uy = u_ = u, u can be computed by the formula (1.3) and u
is a viscosity solution for the initial data ug, continuous in R™ (not necessarily
bounded and Lipschitz continuous as in [6]). If H; = 0, then u_ = u, and we get
a formula for viscosity solutions with a concave Hamiltonian. Actually, if Hy = 0,
then a direct calculation gives

400 if z=0
Hop(z) = {—oo if z#0

The formulas (1.4) and (1.5) then yield
u(t,z) =u_(t,x) = uy(t,x),V(t,z) € (0,T) x R"™.

We also note that the representation of generalized solutions of the Cauchy
problem for some Hamilton-Jacobi equations with nonconvex-nonconcave initial
data was obtained by Van, Hoang and Tsuji [13]. Barron, Jensen and Liu [7] pre-
sented their estimates for viscosity solutions of Problem (1.1)-(1.2) by a different
method. As Bardi and Faggian [4], they relied on the Kruzkov double variables
technique. As seen later on, we are to go directly from the formulas.

Finally, the reader is referred to [8, 2, 3, 10] for the general theory of vis-
cosity solutions, to [1, 5-7, 11, 12, 16, 17] for the properties of convexity and
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quasiconvexity, and to [9, 4, 6, 7, 10, 13, 14, 15] for the Hopf-Oleinik-Lax-type
formulas.

2. PROOFS OF THEOREM 1.1 AND COROLLARY 1.1

In order to prove Theorem 1.1, we need some properties of the quasiconvex
duality [1, 16, 17, 5, 6]. Let a continuous function H = H(v,p), (v,p) € R x R™,
be given.

Using the operations “(.)#”, “(.)x”, “A” and “V” in Section 1, we set
H™(y,p) :=sup{(p,q) : ¢ € R", H(q) <7}, (7.p) €ERXR",

and
Hy,(v,p) :==inf{(p,q) : € R", Hy(q) =7}, (7,p) ERxR™

Some basic features of this duality can be summarized in the following lemma.

Lemma 2.1. i) Let H be nondecreasing in -y, convexr and positively homogeneous
of degree one in p. Then H7 is quasiconvex, lower semicontinuous and

H#(2) = 400 as |z| =00, and H#* =H.
Moreover, there exists p* € R™ such that
H# (p*) = —o0.
i) Let H be nondecreasing in vy, concave and positively homogeneous of degree
one in p. Then Hy is quasiconcave, upper semicontinuous and
Hy(z) » —o0 as |z| =00, and Hy,=H.
Moreover, there exists ¢* € R™ such that
Hy(q") = +o0.
Proof. 1) The first assertion of i) was proved by Barron, Jensen and Liu [6]. Let

us verify that there exists a p* € R™ such that H#(p*) = —oo. Assume the
contrary, that

H#(2) > —00,Vz € R".

Since H# — 400 as |z| — oo, there exists N > 0 so that H#(z) > 0, for all
|z| > N. Thus, we get

2.1 —oco = — inf H#(z) = — inf H?(2).
(2.1) o= — in (2) \zENm (2)

Since H7 is lower semicontinuous, H7(z) > —o0, ¥z € R™, the function
h(z) := min{H?"(2),0}, zeR"
is clearly finite and lower semicontinuous on R"™. Hence,

— inf H#(z) > inf h(z) := M > —o0,
|2|<N l2|<N

which contradicts (2.1). This contradiction proved the second part of 1).
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i) Using [~ H (=7, —p)|# (2) = —[H4x(7, p)](2), we symmetrically obtain ii). [

To investigate the functions u_, u4 we need two auxiliary functions determined
by

(2.2) v(t, x) = inf {H#(Qj ; y) Vug(y)}, (t,z) € (0,T] x R™,

(2.3) w(t,z) = S SUP {Hg#(g) Auo(y)}, (t,@) € (0,T] x R™
y n
The continuity of v, w can be verified by the following lemma.
Lemma 2.2. The functions v, w are continuous on [0,T] x R™ with
v(0, ) := up(x), w(0,x) :=up(x), x€R".

Proof. We need only to the show that v is continuous on [0, 7] xR"™. The argument
for w would be similar.

It is convenient to rewrite the function v as
(2.4) v(t,x) = = inf {H#(z) V ug(z — tz)}, V(t,z) € (0,T] x R".
z€R™
By virtue of Lemma 2.1 i), we can take a point p* € R™ such that H#(p*) = —00

and keep it fixed. Let r > 0 be arbitrarily chosen. Then for each (¢,z) €
(0,7] x B(0;7),

v(t,x) < Hf&(p*) Vug(z —tp*) =up(z —tp*) < —  maxup(y) = K < 4o0.
ly|<r+Tp*|

Since H# (2) — 400 as |z| — oo, there exists a constant N > 0 such that
Hf(z)> K, V|z|>N.

Hence, the infimum in (2.4) has to be taken over the ball B(0; N) for all (t,z) €
(0,T] x B(0;r). Since the function z — (Hf&(z) Vug(r —t2)) AN K, 2z € B(0; N)
is finite (bounded) and lower semicontinuous on a compact set, it holds, for any
(t,x) € (0,T] x B(0;7),

u(t, ) :\ZEN inf {Hf&(z) Voug(x — tz)} NK

= — inf {[Hf(z)\/uo(a:—tz)] /\K}

2<N
- e 0 vt ] o)
:\z\—S)N min {H#(Z) Voug(z —t2)}.

Thus, for every (t,z) € (0,7] x B(0;7), the set

k(t, ) = {yo € R": HYf (yo) Vuo(x — tyo) = — inf{H] (2) V uo(x ~ tz)}}
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is not empty. Since r is arbitrary, we can extend the definition of k(¢,x) to the
whole domain (0,77 x R™. The above arguments show that

(2.5) |k(t, z)|| := sup{|yo| : yo € k(t,z)} <N, (t,x) € (0,T] x B(0;7).
For any (t,z), (t',2') € (0,T] x B(0;r), choosing & € k(t,z), |¢| < N (by virtue of
(2.5)), we get

v(t' 2" —v(t, z) = inf {H#(z) Voug(z' — t'z)} - H#(f) V ug(z — t€)

< H' (&) Vuo(a! =€) — HY (&) Vuo(x — t€)

(2.6) <Jug(x' — ') — ug(x — t&)|.

Exchanging (t,z) and (¢, 2"), we can select £’ € k(t',2'), |¢/| < N so that
(2.7) v(t,x) —v(t',2") < |up(x’ — ') — up(z — t&')).

The estimates (2.6) and (2.7) yield

(2.1) —  lim o(t,2") = v(t,z), V(t,z) € (0,T] x B(zg,r).

t',z")—(t,x)
Since r is arbitrary, it follows that v € C((0,7] x R™).

Next, let us verify that the function v is continuous until the boundary {0} xR",
ie.,

29 (t7$)——>()0,$0) im v(t,x) = uo(zo) o

Indeed, by what was shown above one has, for some fixed p* € R™ at which
HY (") = —oc,

v(t,z) < Hf(p*) Vug(x — tp*) = up(xz —tp*), V(t,x) € (0,T] x R™.

Consequently,
2.9 — limsupv(t,z) < — limun(z — t0*) = un(za).
(29) (t,x)—(0,x0) polt,z) (t,2)—(0,z0) of ) o(zo)

On the other hand, in view of (2.5) where r > 0 is arbitrarily given, one has

v(t,x) = H () Vug(x — 1) = uo(x — 1€),

for every (t,z) € (0,7] x B(0;7) with some fixed £ € k(t,z), |£] < N. Letting
(t,z) — (0,29), we have

2.10 — liminf v(t,z) > — lim wug(z — t&) = ug(xg).
(2.10) () l00) B2) 2 L o o(x — t§) = uo(zo)
The combination of (2.9) and (2.10) yields (2.8). The proof of Lemma 2.2 is
complete. O

Proof of Theorem 1.1. 1) First, we will show that u_ is continuous in (0, 7)) x R™.
Indeed, u_ can be rewritten as

u_(t,z) =— sup{v(t,x —tz) A Hoy(2)},
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where v(t,z) is defined by (2.2). By virtue of Lemma 2.2, there is ¢* € R",
Hyx(q*) = +oo. Hence, if |z| < M for some constant M > 0 then
u_(t,z) >v(t,x —tq") N Hap(¢") = v(t,z — tq*)

> — minv(s,y) == K > —o0.
s€[0,T],|y|<M+T]q|

Also, there is N > 0 such that Hay(2) < K V|z| > N. Therefore,
u_(t,x) = \:)N sup{v(t,x —tz) A Hop(z2)}, Vte[0,T],]z] < M.
z

Since both v and Hs4 are upper semicontinuous in the variable z € R", so is
their minimum. Hence, the last expression becomes

(2.11) w_(t,x) = — max{v(t,x —tz) AN Hoy(z)}, Vte[0,T],|z| <M.

|2|<N
By virtue of (2.11), let |z| < M, |2'| < M, and let, for some fixed zy € R™, |z| <
N,
u_(t,x) = v(t,x — tzo) A Hag(20).
Then
u_(t,x) —u_(t',2") = v(t,x — tzo) A Hap(z20)— |z|_§>N max{v(t', 2" — t'z) A Hoy(2)}
<w(t,r —tzo) A Hog(z0) — v(t' 2" — t'20) A Hap(20)
(2.12) <l 2 —t'z) —v(t,z — tz)|.

Interchanging (¢',2') and (¢, z) we get, for some z1,|2z1| < N,
(2.13) u_(t', ) —u_(t,z) < |vt', 2’ —t'z) —v(t,z —tz1)|.
The estimates (2.12), (2.13) and the continuity of v imply that u_ is continuous
on (0,7) x {z : |x| < M}. Since M is arbitrarily chosen, the continuity in
(0,T7) x R™ of u_ follows.

Next, we claim that for every (¢,z) € (0,7) x R", 0 < s < t,

r—z
— Vu_
T ) Ve (s,2)),

u_(t,x) <= inf{Hf(
where zy € R” such that
(2.14) u_(t,x) = v(t,x —tzo) A Han(20).
Actually, in view of (2.11), it holds
u_(t,x) = v(t,x —tzo) N Hax(20)

< [H#(m ; y_ Zo) \/UO(y)] A HQ#(Z()), Vy € R".

Since H # is quasiconvex, we have for each fixed z € R",

H#(l‘;y_z())SH#(?:SZ—,ZO)\/H#(%_ZO)’ vyeRn



402 VAN AND THANH

Thus,

u_(t,x) < [Hf(j —c_ zo) Vv Hf(% - zo) \/uo(y)} A Hou(z), VyeR™

By changing variable p := (z—vy)/s—z0, Vy € R™, we obtain from the last estimate

j:j —20) V (Hf(p) Vug(z — s(p+20)))] A Hag(20), VpeR"

Taking infimum in p € R™ of both sides, we obtain

u_(t,x) < [Hf(

z

u_(t,x) < [H#(j:s - Zo) Vu(s,z— szo)] N Hou(20)
< H#(j:j —20) V [v(s, 2 — 520) A Hap(20)]
< H#(j:j — Zo) Vu_(s,z).

Since z is arbitrary, the last inequality implies (2.14).

Next, the fact that u_ is a viscosity subsolution of the equation (1.1) will be
proved as follows. Without loss of generality, we may assume that the maximum
and the minimum in the definition of viscosity sub- and supersolutions are zero
and global. Assume the contrary that u_ is not a viscosity subsolution. Then
there exist a constant g > 0, and a point (tg,z9) € (0,7) x R™, a function
¢ € C', such that u_ — ¢ has zero as its maximum value at (tg,zg) and

wi(to, zo) + H(u—(to, zo), Da(to, z0)) > €o.

Set o := u_(tg,zp). Since H is continuous, there exists a number § > 0, such
that

QOt(t(],l‘O) + H(’YO - 57 Diw(t07$0)) > EO'

Using H"* = Hy, Hyu, = Hy from Lemma 2.1, we have

ot (to, o)+ — sup(p, D¢ (to, o))
{p:HY () <706}
— inf(q, Dz (to, o)) > €o-

{a:Hay(q)2v0—6}
Thus there exists pg € R™, with H # (po) < 70 — 0, such that
(2.15)  @y(to, zo) + (po + ¢, Dap(to, 20)) > €0, Vg € R", Haz(q) > 70 — 0.
On the other hand, let zy be selected and fixed at which the maximum in (2.11)
corresponding to (to, o) is attained, i.e.,
Yo = u—(to, o) = v(to, xo — tozo) N Hon(20) < Hau(20).
By virtue of (2.14) for every 0 < s < tg, p:=tg— s > 0,

Yo = u—(to, zo) <— inf{H#(fo = 20) Vu_(s,2)}.
z 0o— S




ON EXPLICIT VISCOSITY SOLUTIONS 403

Changing variable p := (z¢g — 2)/(to — ) — 20, Vz € R"™, and then replacing
s = tg — p in the right-hand side of the last inequality, we obtain

u_(to, o) < inf{H} (p) V u_(to — p1, z0 — pu(p + 20)}

(2.16) < H{ (po) V u_(to — 1, 0 — 14(po + 20))-

Besides, since u_(tg,zg) —9 > H# (po) and wu_ is continuous in (0,7") x R™, there
exists pg > 0 such that
H{ (po) < u—(to — p. 0 — pu(po + 20)), 0 < ¥pu < pao.

This coupled with (2.16) gives

¢(to, z0) =v0 < u—(to — p, xo — p(po + 20))

< p(to — ps w0 — ppo + 20)), 0 <V < po.

Consequently,

(to — 1, w0 — (o + 20)) — @(to, Zo)

—
Letting 4 — 0 in the last estimate, we see that
et(to, o) + (po + 20, Dx(to, x0)) < 0,

which contradicts (2.15) where zg plays the role of a ¢ € R™. This contradiction
proves that u_ is a viscosity subsolution of the equation (1.1). It remains to
prove (1.6). By Lemma 2.2, let ¢* € R™ be taken so that Hox(q*) = +00. Then

(2.17) u_(t,x) > Hop(q") Nv(t,x — t¢") = v(t,z — tq").

<0, 0<Vu<p.

Besides, it follows from (2.11) that for every |z| < M, there exists zg € R", |2g| <
N, at which

(2.18) u_(t,z) =v(t,x —tzo) N Hap(20) < v(t,z — tzp).

From (2.17) and (2.18), letting ¢ — 0 and using the continuity of v on [0,7] x R"
with v(0,z) = up(x), we obtain

u_(0,2) = up(x), |z|] <M.

Since M is arbitrary, (1.6) follows. The part i) of Theorem 1.1 is thus completely
proved.

ii) By a similar argument, we also get ii). Instead of (2.14), the following
estimate is invoked

r—y
u(t, o) Zj sup {H2#(: —y0) Aus(s,y)},
where yg € R" is arbitrary so that
ug(t,z) = w(t,x —tyy) V H#(yo).
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Proof of Corollary 1.1. If ug € BUC(R™), then we can choose the constant N
in (2.12) and (2.13) independent of (¢,x),(t',2') € [0,7] x R™ so that these
estimates still hold true. This implies that u_,u; € BUC([0,7] x R™). Hence,
the conclusion follows from Theorem IV.1 of Barles [2]. O

Example 1. Consider the following Cauchy problem

(2.19) ug + |Dyulshu =0 in (0,7) x R",
(2.20) u(0,x) = up(zr), in R",
where shx is the hyperbolic sine function
T _ —T
shx = u, z e R.
2
The Hamiltonian H (v, p) = |p|shy can be written as
e’ e 7
H=H+Hy, H(v,p):= ¥7 Hy(v,p) == — 2|p‘7 (v,p) € R xR,

meetting the assumption (A). A direct calculation yields
Y (q) =log2lal, Hap(q) = ~log2lgl, q€R"
Hence, it is derived from the formulas (1.4) and (1.5) that
u—(t,w) = sup — inf{{log 2|y| v uo(z — t(y + 2))] A (~log 2|2])},
u(t,w) = inf — sup{log 2|y| V [uo(z — t(y + 2)) A (~log 2|2])]},
(t,z) € (0,T) x R™.

Example 2. Let f(z),x € R, be an any continuous nondecreasing function. Our
results can be applied to a Hamiltonian of the form

H(v,p) == f(v)lpl, (v,p) € RxR",

Actually, we need only to determine

Hi(7,p) :== max{f(v),0}|pl,
Hj(7,p) :== min{f(7),0}p[, (v.p) € R xR™

Clearly, these functions satisfy the hypothesis (A).
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