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MEAN VALUE THEOREMS FOR CORRESPONDENCES

JEAN-PAUL PENOT

Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

Abstract. We prove mean value estimates yielding Lipschitz rate for mul-
timappings using coderivatives and subdifferential calculus.

1. Introduction

Mean value theorems have proved to be very useful in smooth and nonsmooth
analysis. In particular, they allows to get estimates. Leaving apart the case of
differentiable or convex functions ([14]-[16], [45]), the first appearance of a mean
value theorem is due to Lebourg in the case of Lipschitz functions, by making
use of the Clarke subdifferential ([29]). In [32] the author proved such a result
for lower semicontinuous (l.s.c.) functions using contingent (or Hadamard) direc-
tional derivatives; the new features involved the replacement of the point ensuring
a mean property by a sequence of points and the key fact that these points may
be outside of the segment. Shortly after that extension, Zagrodny ([47]-[48]; see
also [44]), adopting these new features and using the Ekeland variational principle
instead of the equivalent Drop theorem returned to a more strinking and usable
dual point of view with the Clarke-Rockafellar subdifferential. The applicability
of such a result has been extended by Loewen [30] to Fréchet subdifferentials and
by the author to a general class of subdifferentials [36].

The notion of pseudo-Lipschitz behavior (or Aubin property) is an important
generalization to multimappings of the notion of Lipschitz mapping. For several
applications, it is a realistic notion, whereas a genuine Lipschitz behavior does
not hold in general. The same can be said for the notion of sub-Lipschitzian
behavior introduced by Rockafellar in [41] and for the notion of boundedly Lip-
schitzian behavior considered here. Recall that a multimapping (or correspon-
dence) F : X →→Y between two metric spaces is said to be pseudo-Lipschitzian
around (x0, y0) ∈ F is there exist c > 0 and neighborhoods U, V of x0, y0 in X
and Y respectively such that for any x, x′ ∈ U and any y ∈ F (x) ∩ V one has

d(y, F (x′)) ≤ cd(x, x′).
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It is the purpose of this note to present criteria for such Lipschitzian properties
in terms of coderivatives and coderivative sprouts, a notion we introduce in the
next section. It is designed for quantitative purposes. We use it for getting
estimates of Lipschitz rates. Let us note that the main applications of mean
value inequalities are of quantitative nature as well as of qualitative character
(see [8]-[13], [39], [40], [43], [44], [46] for instance). Our main results are given
in section 3; the methods are close to the ones used in [24], [26], [27], [37] and
elsewhere. This is not surprising because it is known that Lipschitz properties
and metric regularity are intimately linked (however, the results we give may have
a global character which is not shared by known results dealing with openness
and metric regularity). In particular, these methods are quite different from the
methods used by Pham Huu Sach in his study of calmness and regularity ([42]).
We end the paper with some comparisons and open problems.

2. Normals and normal sprouts

The appearance of various concepts in nonsmooth analysis has created a need
to work in a unified framework depending on a few basic properties adopted as ax-
ioms. Up to now, only the analytical side of nonsmooth analysis has received such
a general treatment (see [12], [17], [19]-[23], [28], [36], [50] for example) although
a number of properties deal with set-theoretical concept such as normal cones
and tangent cones (see [4], [3], [6] for characterizations of generalized convexity
properties by means of normal cones to sublevel sets). Here we propose a similar
framework for the geometric side which can also provide a general approach. In
fact, many constructions of subdifferentials for lower semicontinuous functions
use a passage through normal cones to epigraphs. The following conditions are
met by usual normal cones:

(N1) if S, S′ are two subsets of a Banach space X such that S ∩ V = S′ ∩ V for
some neighborhood V of x, then N(S, x) = N(S′, x);

(N2) if S ⊂ X is convex and x ∈ cl S, then

N(S, x) = {x∗ ∈ X∗ : ∀u ∈ S 〈x∗, u − x〉 ≤ 0} ;

(N3) if S ⊂ h−1(] −∞, c]) with h ∈ X∗, c ∈ IR and h(x) = c then h ∈ N(S, x).

The following notion of normal sprout fulfils a quantitative concern. The idea
of taking just a part of the normal cone instead of the whole normal cone has
already been used by Ioffe [21], [24], Jourani and Jourani and Thibault [26], [27].
Let us define it formally.

Definition 2.1. A normal sprout is a correspondence which associates to each

point x of the closure cl S of a subset S of a Banach space X a subset N̂(S, x)
of the unit ball B∗ := BX∗ of the dual space, in such a way that the following
conditions are satisfied:

(NS1) if S, S′ are two subsets such that S ∩ V = S′ ∩ V for some neighborhood

V of x, then N̂(S, x) = N̂(S′, x);
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(NS2) if S is convex and x ∈ cl S, then

N̂(S, x) = {x∗ ∈ B∗ : ∀u ∈ S 〈x∗, u − x〉 ≤ 0} ;

(NS3) if S ⊂ h−1(]−∞, c]) with h ∈ B∗, c ∈ IR and h(x) = c then h ∈ N̂(S, x).

Clearly if N is a normal cone satisfying properties (N1)-(N3), then N̂ given

by N̂(S, x) = N(S, x) ∩ B∗ satisfies properties (NS1)-(NS3). Conversely, given

a normal sprout N̂ , the normal cone N associated with N̂ given by N(S, x) =

R+N̂(S, x) satisfies properties (N1)-(N3). We call N the normal cone generated

by N̂ .

The following example is the main source of normal sprouts.

Example. Let ∂ be a subdifferential satisfying the usual conditions:

(S1) if f , f ′ are two functions which coincide on some neighborhood of x, then
∂f(x) = ∂f ′(x);

(S2) if f is convex, then ∂f(x) = {x∗ ∈ X∗ : ∀u ∈ X 〈x∗, u − x〉 ≤ f(u) − f(x)} ;

(S3) if for some x∗ ∈ X the function f − x∗ attains its infimum at x then x∗ ∈
∂f(x).

Then, setting N̂(S, x) := ∂dS(x), where dS(w) := infz∈S ‖w − z‖ , we obtain
a notion of normal sprout. In fact, condition (NS2) is a consequence of the fact
that for any convex set S and any x ∈ S one has

∂dS(x) = {x∗ ∈ B∗ : ∀u ∈ S 〈x∗, u − x〉 ≤ 0} .

Now if S ⊂ h−1(] − ∞, c]) with h ∈ B∗, c ∈ IR and h(x) = c as in (NS3), the
function −h attains its infimum over S at x, so that −h + dS attains its infimum
over X at x and by (S3) h ∈ ∂dS(x). Condition (NS1) being obviously satisfied,
one gets a normal sprout.

Conversely, given a normal sprout N̂ , the subdifferential ∂ associated with N̂
given for a function f finite at x by

∂f(x) = {x∗ ∈ X∗ : (0,−1) ∈ N̂(Ef−x∗ , xf−x∗)},

where xf−x∗ := (x, (f − x∗)(x)), Ef−x∗ := {(x, r) ∈ X × R : r ≥ f(x) − x∗(x)}
satisfies properties (S1)-(S3). The assertion is obvious for (S1) and (S2). Now
assume that, as in (S3), for some x∗ ∈ X the function f−x∗ attains its infimum at
x. Then Ef−x∗ is contained in h−1(]−∞, c]) with h := (0,−1) ∈ (X × IR)∗, c :=
−f(x) + x∗(x), so that x∗ ∈ ∂f(x) in view of (NS3) and of the definition above.

Example. (Fréchet normal sprout) It is defined in the following way: x∗ ∈

N̂(S, x) if ‖x∗‖ ≤ 1 and lim supw→x, w∈S〈x
∗, w−x〉/ ‖w − x‖ ≤ 0. Then N̂(S, x) =

∂dS(x), where ∂dS(x) is the Fréchet subdifferential of dS at x ([22] Lemma 3, [38]
Lemma 1, for example).

Example. (Hadamard or contingent or directional normal sprout) It is given

by N̂(S, x) = N(S, x) ∩ B∗ where N(S, x) := (T (S, x))o is the polar cone of the
tangent (or contingent) cone T (S, x) of S at x, with T (S, x) := lim supt→0+

1
t
(S−
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x). Then, if X is finite dimensional, N̂(S, x) = ∂dS(x), where ∂dS(x) is the
Hadamard (or contingent) subdifferential of dS at x.

Another track yielding normals and normal sprouts is geometrical. It can be
traced back to the works of Bony and Federer.

Example. (Proximal normal sprout) When X is reflexive one can take

N̂(S, x) := {x∗ ∈ BX∗ : ∃v ∈ X\{0}, dS(x + v) = ‖v‖, 〈x∗, v〉 = ‖x∗‖‖v‖} .

We leave to the reader the task of checking properties (NS1)-(NS3), using the
Ascoli formula.

Example. (Quadratic normal sprout)

N̂(S, x) :=
{
x∗ ∈ BX∗ : ∃c, r ∈]0,∞[,

〈x∗, w − x〉 ≤ c‖w − x‖2 ∀w ∈ S ∩ B(x, r)
}
.

When X is a Hilbert space, this sprout coincides with the preceding one and
is associated with the proximal subdifferential of dS at x : one has the relation

N̂(S, x) = ∂dS(x), where ∂dS(x) is the proximal subdifferential of dS at x.

Example. The sprout given by N̂(S, x) := N↑(S, x)∩B∗, where N↑(S, x) is the
Clarke normal cone to S at x is not associated with the Clarke subdifferential
∂↑dS(x) of dS : the relation N↑(S, x) ∩ B∗ = ∂↑dS(x) is not always valid.

Example. (Stabilized or limiting normal sprout) Given any normal sprout N̂

one gets another normal sprout N̂ by taking the set N̂(S, x) of weak∗ limit points

of sequences (x∗
n) such that x∗

n ∈ N̂(S, xn) for some sequence (xn) in S with limit
x. One can also convexify a given normal sprout. We leave to the reader the easy
task of checking conditions (NS1)-(NS3) in each of these two cases.

Additional conditions to (NS1)-(NS3) may be useful for different purposes; for
instance, one may impose an invariance property with respect to translations or
that the normal sprout to a product is the product of the normal sprouts to its
factors. In fact, we will not impose any condition at all but the following basic
minimization principle contained in the following definition (which is close to a
notion introduced in [34] and is modelled on the concept of trustworthiness due
to A.D. Ioffe [18]). The terminology we chose reflects the fact that we do not
know whether the condition exactly corresponds to trustworthiness.

Definition 1. A normal sprout N̂ is said to be amiable with respect to a subset
S of a Banach space Z at z ∈ S if for any convex function g on Z which is
Lipschitzian with rate one and attains its infimum on S at z and for any ε > 0
there exists z′, z′′ ∈ B(z, ε) := εBZ + z with z′′ ∈ S such that

0 ∈ ∂g
(
z′

)
+ N̂

(
S, z′′

)
+ εBZ∗ .

If N̂ is amiable with S at any point z of S, N̂ is said to be amiable with S.
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Here ∂g (z′) denotes the usual subdifferential of g at z′ in the sense of convex

analysis. If one can take ε = 0 in what precedes, N̂ is said to be exactly amiable.
It is said to be amiable on X with respect to a class C of subsets of X if it is
amiable with respect to S for each S in the class C. In particular, if C is the
whole family of closed subsets of X, it is said to be amiable on X. It is said to
be amiable on a family of Banach spaces X if for any X in X it is amiable on
X. Usually, this condition is satisfied for a whole class C of subsets (for instance
the class of convex subsets or the class of all closed subsets of an appropriate

class Z of spaces). When N̂ is the Fréchet normal sprout, one can take for Z the

class of Asplund spaces. When N̂ is the stabilized (or limiting) Hadamard (or
contingent) normal sprout, one can take for Z the class of all separable spaces.

When N̂ is the normal sprout deduced from the approximate subdifferential of
A.D. Ioffe ([21]) or in the sense of Clarke ([7]), one can take for Z the class of all
Banach spaces. The Hadamard (or contingent) normal sprout is also amiable at
z with a subset S of an arbitrary Banach space if the tangent cone (or contingent
cone) TzS to S at z is convex.

Definition 2. If F : X →→Y is a multimapping, the coderivative sprout of F at

z ∈ F is defined as the multimapping D̂∗F (z) : Y ∗ →→X∗ given by

D̂F (z)(y∗) :=
{

x∗ : (x∗,−y∗) ∈ N̂(F, z)
}

,

where F is identified with its graph. The coderivative of F is the multimapping
D∗F (z) : Y ∗→→X∗given by

D∗F (z)(y∗) := {x∗ : (x∗,−y∗) ∈ N(F, z)} .

This last concept is a flexible tool for the study of multimappings and a number
of recent papers have been devoted to it. Let us observe that when F : X → Y
is a differentiable mapping in the sense of Hadamard, i.e. when there exists a
continuous linear mapping DF (x) : X → Y such that for any u ∈ X

1

t

(
F (x + tu′) − F (x)

)
→ DF (x)(u)

as t → 0, u′ → u, the coderivative of F at (x, F (x)) associated with the normal
cone (i.e. the polar of the tangent cone) is the transpose of DF (x). A similar
assertion holds for the Fréchet derivative and the coderivative associated with the
Fréchet normal cone. For the proximal coderivative and the Clarke coderivative,
more stringent assumptions would be required.

3. Mean value theorems for multimappings

Given s ∈ (0, 1) and a multimapping H : V →→W between two normed spaces,
let us set (with the usual conventions 0−1 = ∞, inf ∅ = +∞)

‖H‖s := sup
{
s‖v‖−1 : v ∈ V, w ∈ H(v), ‖w‖ ≥ s

}
.

When H is positively homogeneous, ‖H‖s does not depend on s, so that we write
‖H‖ which is then the least constant c such that ‖w‖ ≤ c‖v‖ for each v ∈ V and
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each w ∈ H(v). Let us note that this definition differs from the one given by S.
Robinson for convex processes.

Given a subset C of the Banach space Y and β > 0, we denote by B(C, β) the
set C + βBY . The excess of C over a subset D of Y is given by

e(C,D) := inf{ε > 0 : C ⊂ B(D, ε)} = sup
x∈C

d(x,D).

The Pompeiu-Hausdorff distance is defined by d(C,D) := max(e(C,D), e(D,C)).
Given r > 0 and a point y0 of Y we set

er,y0
(C,D) : = e(C ∩ B(y0, r),D),

dr,y0
(C,D) = max(er,y0

(C,D), er,y0
(D,C)).

These notions have been extensively used during the last few years to study the
variations of families of subsets (see for instance [1], [5], [33]).

The following result is a versatile tool which yields various Lipschitzian proper-
ties, depending of different choices of the subset V one makes. In the statements

which follow the assumption that N̂ is amiable with respect to the graph of F is

satisfied if N̂ is adapted to the class of spaces to which X belongs, as explained
above, or if F belongs to a sufficiently regular class of multimappings (for in-
stance the class of multimappings whose graphs are tangentially convex, in the
sense that the tangent cones to their graphs are convex).

Theorem 3.1. Suppose N̂ is amiable with respect to F and there exist s ∈ (0, 1),
c ≥ s, α, β > 0, x0 ∈ X and a nonempty subset V of Y such that

‖D̂∗F (x, y)‖s ≤ c for any x ∈ B := B(x0, α), y ∈ F (x) ∩ B(V, β).

Then there exists ρ ∈]0, α[ depending only on α, β and c such that the multimap-
ping F satisfies the Lipschitz type property

e(F (x) ∩ V, F (x′)) ≤ c‖x − x′‖ ∀x, x′ ∈ U := B(x0, ρ).

Taking V = Y, β > 0 arbitrary, we get the following Lipschitz estimate.

Corollary 3.1. Suppose N̂ is amiable with respect to F and there exist s ∈ (0, 1),
c ≥ s, α > 0, x0 ∈ X such that

‖D̂∗F (x, y)‖s ≤ c for any x ∈ B := B(x0, α), y ∈ F (x).

Then there exists ρ ∈ (0, α) such that the multimapping F satisfies the following
Lipschitz property with respect to the Pompeiu-Hausdorff distance

d(F (x), F (x′)) ≤ c‖x − x′‖ ∀x, x′ ∈ U := B(x0, ρ).

It is more realistic to look for estimates on balls.

Corollary 3.2. Suppose N̂ is amiable with respect to F and there exist r >
0, s ∈ (0, 1), c ≥ s, α, β > 0, x0 ∈ X, y0 ∈ Y such that

‖D̂∗F (x, y)‖s ≤ c for any x ∈ B := B(x0, α), y ∈ F (x) ∩ B(y0, r + β).
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Then there exists ρ > 0 depending on α, β, c only such that F satisfies the Lip-
schitz type property

dr,y0
(F (x), F (x′)) ≤ c‖x − x′‖ ∀x, x′ ∈ U := B(x0, ρ).

When one considers the coderivative of F instead of a coderivative sprout, one
can suppress any reference to s. In such a case, the proof below becomes simpler.

Proof of the theorem. Let ρ > 0 be such that ρ < α/3, ρ < β/3c. Let us
show that for any c′ ∈]c, s−1c[ with c′ < 3c/2 and any u, u′ ∈ U := B(x0, ρ), v ∈
F (u) ∩ V one has

d(v, F (u′)) ≤ c′‖u − u′‖.

Since c′ can be arbitrarily close to c, this inequality will prove the result. Let
us set b := 1/c′ < 1/c and let us pick m ∈]1, s−1[ with m > c−1, m > s−1bc,
m > 2(s + 1)−1(this is possible since s−1 > c−1, bc < 1, s−1 > 2(s + 1)−1). Let
us take a ∈]0,m − 1[ with a < 1 − ms (this is possible since m < s−1). Suppose
on the contrary there exist c′ ∈]c, s−1c[, u, u′ ∈ B(x0, ρ), v ∈ F (u) ∩ V such that

d(v, F (u′)) > c′‖u − u′‖.(3.1)

Then we have u 6= u′. Applying Ekeland’s theorem to f : (x, y) 7→ ‖x − u′‖ on
F with X × Y endowed with the norm given by ‖(x, y)‖ = a‖x‖ + b‖y‖, we get
some z1 := (u1, v1) ∈ F such that for each (x, y) ∈ F

∥∥u1 − u′
∥∥ ≤

∥∥x − u′
∥∥ + a ‖x − u1‖ + b ‖y − v1‖(3.2)

∥∥u1 − u′
∥∥ ≤

∥∥u − u′
∥∥ − a ‖u − u1‖ − b ‖v − v1‖ .(3.3)

If we had u1 = u′, this last relation would yield

d(v, F (u′)) ≤ ‖v − v1‖ ≤ b−1 (1 − a)
∥∥u − u′

∥∥ ,

a contradiction with u 6= u′, (3.1) and the choice c′ = b−1 > b−1 (1 − a). More-
over, ‖u1 − u′‖ ≤ ‖u − u′‖ ≤ 2ρ and ‖u1 − x0‖ ≤ 3ρ < α, hence u1 ∈ B(x0, α)
and ‖v − v1‖ ≤ b−1 ‖u − u′‖ ≤ 3cρ < β.

Since m ≥ 1 + a, m ≥ c−1 ≥ b, the function g given by

g (x, y) = m−1
(∥∥x − u′

∥∥ + a ‖x − u1‖ + b‖y − v1‖
)
,

is Lipschitzian with rate 1 on X × Y endowed with the sum norm. Let ε > 0 be
such that

ε <
∥∥u1 − u′

∥∥ , 3ρ + ε < α, 3cρ + ε < β,

m−1b + ε < c−1s, m−1(1 − a) − ε > s

(note that this is possible since bc < ms < 1−a). We note that (3.2) means that

g attains its infimum over F at z1 := (u1, v1). Using the amiability of N̂ with
respect to F, we can find some z2 := (u2, v2), z3 := (u3, v3) in B(z1, ε) and some
z∗2 , z∗3 ∈ Z∗ with

z∗2 ∈ ∂g (z2) , z∗3 ∈ N̂ (F, z3) , ‖z∗2 + z∗3‖ ≤ ε.
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Then we have u2, u3 ∈ B(x0, α) and v3 ∈ B(v1, ε) ⊂ B(v, 3cρ + ε) ⊂ B(v, β) ⊂
B(V, β).

The familiar subdifferential calculus rules for convex continuous functions pro-
vides u∗

2 ∈ m−1aBX∗ , v∗2 ∈ m−1bBY ∗ and w∗
2 ∈ m−1SX∗ such that z∗2 =

(w∗
2, 0) + (u∗

2, 0) + (0, v∗2) (note that u2 − u′ 6= 0). Then, if z∗3 := (u∗
3, v

∗
3), one

has u∗
3 ∈ D̂F (z3) (−v∗3) and ‖v∗3‖ ≤ ‖v∗2‖ + ε ≤ m−1b + ε < c−1s, ‖u∗

3‖ ≥
‖u∗

2 + w∗
2‖ − ε ≥ m−1(1 − a) − ε > s, a contradiction with our assumption

‖D̂F (u3, v3)‖s ≤ c.

The estimate of Corollary 3.1 can be applied when for some continuously dif-
ferentiable mapping g : B → Y one has

‖D∗F (x, y) − Dg(x)T ‖ ≤ c for any x ∈ B := B(x0, α), y ∈ F (x)

D∗ being the coderivative associated with a subdifferential amiable on X × Y .
Then, for some ρ > 0, for any c′ > c and any x, x′ ∈ B(x0, ρ) one has

F (x) ⊂ F (x′) + g(x) − g(x′) + B(0, c′‖x − x′‖).

Similar consequences are available for the other results we gave.

4. Related results and open problems

A. The ordinary mean value theorem for a nonsmooth function f provides
estimates about the variation f(x)− f(x′) using some information on the subdif-
ferential ∂f of f around the segment [x, x′]. Therefore it is not directly comparable
to the results above which require some information on an open set and do not
involve any element of ∂f. However, both results share a common ground. Let
us first observe that to any function f : X → R∪{+∞} we can associate its epi-
graph multimapping F : X →→R given by F (x) := [f(x),+∞[ whose graph is the

epigraph of f. Then, if N̂ is the normal sprout associated with a subdifferential
∂ satisfying (S1)-(S3) and if f is continuous on an open convex subset U of X,
for x ∈ U, y = f(x) we have

x∗ ∈ D̂∗F (x, y)(y∗) ⇔ x∗ ∈ ∂f(x), y∗ = 1

and D̂∗F (x, y) is empty if y 6= f(x). It follows that for x ∈ U, y = f(x), s ∈]0, 1[,
one has ∥∥∥D̂∗F (x, y)

∥∥∥
s

= sup{‖x∗‖ : x∗ ∈ ∂f(x)}

if the set {x∗ ∈ ∂f(x) : ‖x∗‖ ≥ s} is not empty, 0 otherwise. Therefore, can
deduce from the preceding section a result known under slightly different as-
sumptions (compare with [8], [11], [13]).

Corollary 4.1. Suppose the normal sprout associated with a subdifferential ∂ is
amiable. Let f be a lower semicontinuous function on some open convex subset
U of X such that sup{‖u∗‖ : u ∈ U, u∗ ∈ ∂f(u)} ≤ c for some c > 0. Then f is
Lipschitzian with rate c.
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B. The multidirectional mean value theorems which appeared during the last
few years represent an important step forward in nonsmooth analysis ([10]-[11],
[31]1, [49]). It is known that they are equivalent to several fuzzy calculus rules
([23], [28], [50]). One way wonder whether the mean value estimates of the
preceding section also imply such rules. Moreover, putting some light on the
relationships between these results and multidirectional inequalities would be of
interest.

C. Mean value properties have been used in connection with order properties
(see [10]-[11] for instance). The following proposition gives the flavour of what
can be expected in this direction. Let us raise the question of a possible extension
of such a property to multimappings. Let us suppose the Banach spaces X, Y
are pre-ordered by closed convex cones X+ and Y+ respectively. We denote by
Qo the polar cone of a cone Q. We say that a set-valued mapping F : X →→Y is
homotone (resp. antitone) if for any x, x′ ∈ X, with x ≤ x′, y ∈ F (x), y′ ∈ F (x′),
we have y ≤ y′ (resp. y ≥ y′). Here x ≤ x′ (resp. y ≤ y′) means that x′−x ∈ X+

(resp. y′ − y ∈ Y+) and again we identify F with its graph. The conclusion of
the following easy result can be established under various assumptions.

Lemma 4.1. Suppose that for some open subset W of X × Y, for each z =
(x, y) ∈ F ∩W and for each u ∈ X+ there exist some v ∈ Y , (vn) → v, (tn) → 0+

such that (u, v) ∈ N(F, z)o and y+tnvn ∈ F (x+tnu) for each n. If F is homotone,
then, for each z = (x, y) ∈ F ∩ W one has D∗F (x, y)(Y o

+) ⊂ Xo
+.

When Y is finite dimensional and N is the contingent normal cone, the as-
sumption is satisfied whenever for each z = (x, y) ∈ F ∩ W and for each u ∈ X+

one has lim sup
t↘0

t−1d(y, F (x + tu)) < ∞.

Proof. It suffices to check that for any (x∗,−y∗) ∈ N(F, z) with y∗ ∈ Y o
+ one

has x∗ ∈ Xo
+. Given u ∈ X+, let v ∈ Y , (vn) → v, (tn) → 0+ be such that

(u, v) ∈ N(F, z)o and y + tnvn ∈ F (x + tnu) for each n. Since F is homotone, we
have tnvn ∈ Y+; moreover (u, v) ∈ N(F, z)o, hence

〈x∗, u〉 ≤ 〈y∗, v〉 = lim
n
〈y∗, vn〉 ≤ 0.

Thus x∗ ∈ Xo
+.

Let us turn to the converse which is more interesting. Here we suppose that
N is derived from a reliable subdifferential ∂ in the sense of [36].

Proposition 4.1. Suppose F is a continuous mapping from an open convex sub-
set U of X into Y such that D∗F (x, y)(Y o

+) ⊂ Xo
+ for each (x, y) = (x, F (x)) ∈

U × Y . If the following scalarization formula

∂(y∗ ◦ F )(x) ⊂ D∗F (x, y)(y∗)

1The idea of multidirectional mean value theorems has also been independently developped
by D.T. Luc who presented his results at a seminar in the University of Pau during his stay in
1992 and at the international conference “Applied Analysis and its Applications” in Hanoi in
September 1993.
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holds for any (x, y) = (x, F (x)) ∈ U × Y and for any y∗ ∈ Y o
+ (as it is the case

with most subdifferentials), then F is homotone on U.

Proof. Suppose, on the contrary, that there exist a, b ∈ U such that b−a ∈ X+ and
F (b) − F (a) /∈ Y+. The Hahn-Banach separation theorem yields some y∗ ∈ Y o

+

such that 〈y∗, F (b) − F (a)〉 > 0. The mean value theorem of [36] ensures the
existence of c ∈ [a, b], (cn) → c, c∗n ∈ ∂(y∗ ◦ F )(cn) such that

lim inf
n
〈c∗n, b − a〉 ≥ (y∗ ◦ F )(b) − (y∗ ◦ F )(a).

Thus, for n large enough one has 〈c∗n, b− a〉 > 0, a contradiction with our scalar-
ization assumption which yields

c∗n ∈ ∂(y∗ ◦ F )(cn) ⊂ D∗F (cn, F (cn))(y∗) ⊂ Xo
+.

D. In [42] Pham Huu Sach studied differentiability properties of multimappings
and established calmness (and regularity) criteria. It would be interesting to
compare the results of the present paper with the ones in [42]. One can observe
that here we do not assume that the values of the multifunction F are closed
convex. Therefore the use of the support functions of these values does not reflects
accurately their behavior. However, some links between the two approaches may
exist.
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