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BOUNDEDNESS OF SYMMETRICALLY γ-CONVEX

FUNCTIONS

NGUYEN NGOC HAI AND HOANG XUAN PHU

Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

Abstract. A function f : D → R is said to be symmetrically γ-convex w.r.t.
the roughness degree γ > 0 if the Jensen inequality

f(xλ) ≤ (1 − λ)f(x0) + λf(x1), xλ := (1 − λ)x0 + λx1

is fulfilled for all x0, x1 ∈ D satisfying ‖x0 − x1‖ ≥ γ and for

λ =
γ

‖x1 − x0‖
and λ = 1 −

γ

‖x1 − x0‖
.

Such a function also has some analytical properties which are similar to those
of convex functions. For instance, if it is bounded above on some sphere
{x ∈ X : ‖x − x∗‖ = γ} ⊂ D then it is bounded on the ball Uγ(x∗) := {x ∈
X : ‖x − x∗‖ ≤ γ} and bounded below on each bounded subset of D. If the
domain D is so large that its interior contains some ball Uγ(x∗), and if the
symmetrically γ-convex function considered is locally bounded above at some
interior point of D, then it is locally bounded in the interior of D.

1. Introduction

Let D be a nonempty convex subset of some normed space X. A function
f : D → R is said to be convex if the Jensen inequality

f(xλ) ≤ (1 − λ)f(x0) + λf(x1), xλ := (1 − λ)x0 + λx1(1.1)

is fulfilled

for all x0, x1 ∈ D and for all λ ∈ [0, 1].(1.2)

One of the most interesting aspects of convex functions is that the algebraic
condition (1.1)-(1.2) implies many nice analytical properties. For instance, if a
convex function is locally bounded above at some interior point of D then it
is locally Lipschitzian in int D, and if X = R

n then it is differentiable almost
everywhere in int D (see [9]).
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A natural question is if generalized convex functions still possess similar ana-
lytical properties. Our particular attention is paid to some kind of rough convex-

ities, for which the Jensen inequality (1.1) is not required to be fulfilled for all
x0, x1 ∈ D like in (1.2) but only for all x0, x1 ∈ D satisfying ‖x0−x1‖ ≥ r, where
r > 0 is given and called as roughness degree. Such an investigation was already
done by Hartwig [2] and Söllner [10] for ρ-convex functions which have to fulfill
(1.1) for all x0, x1 ∈ D satisfying ‖x0 − x1‖ ≥ r and for all λ ∈ [0, 1] (or, with
other words, for all xλ ∈ [x0, x1]).

If (1.1) holds true for all x0, x1 ∈ D satisfying ‖x0−x1‖ ≥ r and for xλ ∈ [x0, x1]
satisfying ‖xλ − x0‖ ≥ r/2 and ‖xλ − x1‖ ≥ r/2 then f is called δ-convex, as
introduced by Hu, Klee and Larman in [3]. The boundedness and the continuity
of such roughly convex functions were considered in [6].

In the following, let γ > 0 be a given roughness degree. For a pair of given
points x0 and x1 in X, denote

x′
0 := x0 + γ

x1 − x0

‖x1 − x0‖
=

(

1 −
γ

‖x1 − x0‖

)

x0 +
γ

‖x1 − x0‖
x1 and

(1.3)

x′
1 := x1 − γ

x1 − x0

‖x1 − x0‖
=

γ

‖x1 − x0‖
x0 +

(

1 −
γ

‖x1 − x0‖

)

x1.

Due to (1.1), we have

x′
0 = xλ for λ =

γ

‖x1 − x0‖
and

x′
1 = xλ for λ = 1 −

γ

‖x1 − x0‖
.

As established in [4-5], f : D → R is said to be γ-convex if

f(x′
0) + f(x′

1) ≤ f(x0) + f(x1) whenever ‖x0 − x1‖ ≥ γ,(1.4)

which yields that (1.1) is satisfied at xλ = x′
0 or at xλ = x′

1. [7-8] showed that
such roughly convex functions have some interesting analytical properties, but
there exist γ-convex functions which are nowhere continuous and nowhere locally
bounded.

To obtain analytical properties which are similar to those of convex functions,
in [1] we defined a special class of γ-convex functions satisfying

f(x′
0) ≤

(

1 −
γ

‖x1 − x0‖

)

f(x0) +
γ

‖x1 − x0‖
f(x1) and

f(x′
1) ≤

γ

‖x1 − x0‖
f(x0) +

(

1 −
γ

‖x1 − x0‖

)

f(x1)(1.5)

whenever ‖x0 − x1‖ ≥ γ.

Obviously, (1.4) is fulfilled and (1.1) holds true at both xλ = x′
0 and xλ = x′

1. For
that reason, such a function is said to be symmetrically γ-convex. It was shown in
[1] that though symmetrically γ-convex functions only have to fulfill the Jensen
inequality (1.1) at two points x′

0 and x′
1 (defined in (1.3)) in [x0, x1] (satisfying
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‖x0 − x1‖ ≥ γ), they already have some similar continuity properties as those of
convex functions.

This paper continues the investigation in [1] and presents some sufficient con-
ditions for the boundedness (in Section 2) and for the locally boundedness (in
Section 3) of symmetrically γ-convex functions.

2. Sufficient conditions for boundedness

Let us denote

Sr(x) := {y ∈ X : ‖y − x‖ = r},

Ur(x) := {y ∈ X : ‖y − x‖ < r}, and

Ur(x) := {y ∈ X : ‖y − x‖ ≤ r}.

The following theorem states a sufficient condition for the boundedness of a
symmetrically γ-convex function on some given subsets.

Theorem 2.1. Suppose that f : D → R is symmetrically γ-convex and bounded

above on some sphere Sγ(x∗) ⊂ D. Then

(a) f is bounded on the closed ball Uγ(x∗) and

sup
x∈Uγ(x∗)

f(x) = sup
x∈Sγ(x∗)

f(x);(2.1)

(b) f is bounded below on each bounded subset of D.

Proof. (a) Since f is bounded above on Sγ(x∗), we have

M := sup
x∈Sγ(x∗)

f(x) < +∞.

Assume that (2.1) is false, then there exists x0 ∈ Uγ(x∗) such that

f(x0) > M ≥ f(x) for all x ∈ Sγ(x∗).(2.2)

If dim X ≥ 2 then there exist x1, x2 ∈ Sγ(x∗) such that x0 ∈ [x1, x2] and ‖x0 −
x1‖ = γ. By the symmetrical γ-convexity of f , we get f(x0) ≤ max{f(x1), f(x2)},
a contradiction. However, if dimX = 1 the sphere Sγ(x∗) is disconnected, there-
fore such x1 and x2 do not exist. So we present here a proof which is valid in
both cases.

For x′, x′′ ∈ Sγ(x∗) satisfying x∗ = (x′ +x′′)/2, the symmetrical γ-convexity of
f implies

f(x∗) ≤
1

2
f(x′) +

1

2
f(x′′) ≤ M.

Hence x0 6= x∗ follows from (2.2). Let

x1 := x0 + γ
x∗ − x0

‖x∗ − x0‖
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then ‖x1 − x0‖ = γ and

‖x1 − x∗‖ =

∥

∥

∥

∥

( γ

‖x∗ − x0‖
− 1

)

(x∗ − x0)

∥

∥

∥

∥

= γ − ‖x∗ − x0‖,

i.e., x1 ∈ Uγ(x∗) \ {x∗}. Define

y := x∗ −
γ(x∗ − x0)

‖x∗ − x0‖
and z := x∗ +

γ(x∗ − x0)

‖x∗ − x0‖

then y, z ∈ Sγ(x∗) and x0, x1, x
∗ ∈ [y, z]. Thus (2.2) implies f(x0) > f(y) and

f(x0) > f(z). By the symmetrical γ-convexity of f , we get

f(x0) ≤
γ

γ + ‖x0 − y‖
f(y) +

‖x0 − y‖

γ + ‖x0 − y‖
f(x1)

<
γ

γ + ‖x0 − y‖
f(x0) +

‖x0 − y‖

γ + ‖x0 − y‖
f(x1)(2.3)

and

f(x1) ≤
γ

γ + ‖x1 − z‖
f(z) +

‖x1 − z‖

γ + ‖x1 − z‖
f(x0)

<
γ

γ + ‖x1 − z‖
f(x0) +

‖x1 − z‖

γ + ‖x1 − z‖
f(x0)

= f(x0).(2.4)

(2.3) implies f(x0) < f(x1), which contradicts (2.4). Therefore, (2.1) must be
true. Consequently, by using (b) which we are going to prove next, f is bounded
on Uγ(x∗).

(b) Assume that D′ is some bounded subset of D and x ∈ D′ \ {x∗}. Let

d := sup
x′∈D′

‖x∗ − x′‖ and y := x∗ + γ
x∗ − x

‖x∗ − x‖
,

then

d < +∞ and y ∈ Sγ(x∗).

Since f is symmetrically γ-convex and x∗ ∈ [x, y], we have

f(x∗) ≤
γ

γ + ‖x∗ − x‖
f(x) +

‖x∗ − x‖

γ + ‖x∗ − x‖
f(y)

≤
γ

γ + ‖x∗ − x‖
f(x) +

‖x∗ − x‖

γ + ‖x∗ − x‖
M.

Hence,

f(x) ≥
(

1 +
‖x∗ − x‖

γ

)

f(x∗) −
‖x∗ − x‖

γ
M ≥ −

(

1 +
d

γ

)

|f(x∗)| −
d

γ
M.

Thus f is bounded below on D′.
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[1, Proposition 3.1] stated that if a symmetrically γ-convex function is bounded
on some ball Ur(x

∗) ⊂ D with r > γ then it is locally Lipschitzian at x∗. Com-
bining this and Theorem 2.1 we have

Corollary 2.1. Suppose f : D ⊂ X → R is symmetrically γ-convex. If f is

bounded above on some ball Ur(x
∗) ⊂ D with r > γ then it is locally Lipschitzian

at x∗.

Let us consider the special case X = R.

Corollary 2.2. Suppose that f : D ⊂ R → R is symmetrically γ-convex.

(a) If [a, b] ⊂ D and b − a = 2γ then f is bounded on [a, b] and

f(x) ≤ max{f(a), f(b)} for all x ∈ [a, b].

(b) If diam D > 2γ then f is bounded on each closed interval of D.

Proof. (a) Assume that [a, b] ⊂ D and b − a = 2γ. Let x∗ = (a + b)/2, then
Sγ(x∗) = {a, b} and hence, f is bounded on Sγ(x∗). Theorem 2.1 yields that f is

bounded on Uγ(x∗) = [a, b] and

f(x) ≤ max{f(a), f(b)} for all x ∈ [a, b].

(b) Assume [α, β] ⊂ D. If β −α ≤ 2γ then since diam D > 2γ, there exists an
interval [a, b] such that [α, β] ⊂ [a, b] ⊂ D and b − a = 2γ. By (a), f is bounded
on [a, b] and so is f on [α, β]. If β − α > 2γ we define

αi := α + 2iγ for 0 ≤ i ≤ n :=
[β − α

2γ

]

and αn+1 := β

(where [σ] denotes the integer part of the real number σ). Then αi+1 − αi ≤
2γ, 0 ≤ i ≤ n. Since f is bounded on each interval [αi, αi+1], 0 ≤ i ≤ n, so is f
on [α, β] = ∪n

i=0[αi, αi+1].

Note that the assertion (b) of the above corollary was stated in [1, Proposition
3.4] where the proof was more complicated.

The following examples show that the hypothesis of Corollary 2.2 cannot be
weakened.

Example 2.1. Consider the function

f(x) :=

{

1/(1 + x) − ln(1 + x) if x ∈ ] − 1, 0]

− ln x if x ∈ ]0, 1].

We now show that f is symmetrically γ-convex for γ = 1. Assume x0, x1 ∈ ]−1, 1]
and x1 − x0 > 1. Then

−1 < x0 < x′
1 := x1 − 1 ≤ 0 and x1 > x′

0 := x0 + 1 > 0.
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Therefore,

f(x0) =
1

1 + x0
− ln(1 + x0), f(x0 + 1) = − ln(1 + x0),

f(x1) = − ln x1, f(x1 − 1) =
1

x1
− ln x1.

Since f is continuous on [x0 + 1, x1] ⊂ ]0, 1] and differentiable on ]x0 + 1, x1[ , we
have

f(x1) − f(x0 + 1)

x1 − x0 − 1
= f ′(ξ) = −

1

ξ
for some ξ ∈ ]x0 + 1, x1[ .

Consequently, it follows from

f(x0 + 1) − f(x0) = −
1

1 + x0
< −

1

ξ
for ξ > x0 + 1

that

f(x0 + 1) − f(x0) <
f(x1) − f(x0 + 1)

x1 − x0 − 1
,

which is equivalent to

f(x′
0) = f(x0 + 1) <

(

1 −
γ

x1 − x0

)

f(x0) +
γ

x1 − x0
f(x1).

Analogously,

f(x1 − 1) − f(x0)

x1 − x0 − 1
= f ′(θ) = −

1

(1 + θ)2
−

1

1 + θ
for some θ ∈ ]x0, x1 − 1[

and

−
1

(1 + θ)2
−

1

1 + θ
< −

1

x2
1

−
1

x1
< −

1

x1
= f(x1) − f(x1 − 1) for 0 < 1 + θ < x1

imply

f(x1 − 1) − f(x0)

x1 − x0 − 1
< f(x1) − f(x1 − 1),

which is equivalent to

f(x′
1) = f(x1 − 1) <

γ

x1 − x0
f(x0) +

(

1 −
γ

x1 − x0

)

f(x1).

Hence, f is symmetrically γ-convex for γ = 1.

However, it is clear that diam ] − 1, 1] = 2 = 2γ but f is not bounded on
] − 1, 1]. This example shows that the conclusion of Corollary 2.2 (a) does not
hold any more if the closed interval [a,b] is replaced by ]a, b].

Example 2.2. Suppose D = [a, b] and 0 < b − a < 2γ. If b − a ≤ γ then every
function f on [a, b] is symmetrically γ-convex. Hence we can say nothing about
the boundedness of f . If γ < b− a < 2γ, consider a function f on [a, b] satisfying

f(x) = 0 for x ∈ [a, b − γ] ∪ [a + γ, b].
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Suppose x, y ∈ [a, b] and x − y ≥ γ. Since

b − γ ≥ x − γ ≥ y ≥ a and a + γ ≤ y + γ ≤ x ≤ b,

we have

f(x) = f(x − γ) = f(y + γ) = f(y) = 0.

Thus f is symmetrically γ-convex on [a, b]. Since values of f on ]b−γ, a+γ[ do not
influence the symmetrical γ-convexity of f , f may be unbounded above and/or
unbounded below on [a, b]. Hence, the assumption diam D > 2γ of Corollary 2.2
is really needed.

In addition to the above consideration, let us mention that if a convex function
is bounded on an affine set then it is constant. This property remains true for
symmetrically γ-convex functions.

Proposition 2.1. If f is symmetrically γ-convex and bounded above on an affine

set A then f is constant on A.

Proof. It is worth noting that the assertion of this proposition is also valid for
γ-convex functions but only if dimA ≥ 2 (see [7]). Moreover, Proposition 2.1 is
also an easy corollary of [7, Theorem 3.5] and [1, Proposition 2.4]. However, we
want to present here a direct proof.

Assume the contrary that there exist x, y ∈ A such that f(x) < f(y). Let

s :=
y − x

‖y − x‖
and z := y + γs.

Then

f(y) ≤
γ

γ + ‖y − x‖
f(x) +

‖y − x‖

γ + ‖y − x‖
f(z)

and f(x) < f(y) imply f(y) < f(z). Therefore,

f(z) ≤
(

1 −
γ

t

)

f(y) +
γ

t
f(y + ts) for t > γ

yields

f(y + ts) ≥
t

γ
(f(z) − f(y)) + f(y) → +∞ as t → +∞,

which contradicts the boundedness above of f on A. The proof is complete.

3. Sufficient conditions for locally boundedness

As mentioned in Section 1, if a convex function is locally bounded above at
some interior point of D then it is locally Lipschitzian in int D, that means at
least: it is locally bounded there. The next theorem states a similar property
of symmetrically γ-convex functions defined on some convex domain which is so
large such that it contains some ball of radius greater than γ.
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Theorem 3.1. Suppose that a symmetrically γ-convex function f : D → R is

locally bounded above at some y ∈ intD. Then the following assertions hold true.

(a) f is locally bounded at each interior point x of D satisfying ‖x−y‖/γ ∈ N.

(b) If int D contains some ball Uγ(x∗) then f is locally bounded in int D.

Proof. (a) Assume that x ∈ intD, ‖x − y‖ = γ, and f is locally bounded above
at y ∈ intD. Then there exist two positive numbers ρ and K satisfying

Uρ(x) ⊂ D, Uρ(y) ⊂ D, and sup
y′∈Uρ(y)

f(y′) ≤ K.

[1, Lemma 3.1] shows that there are two points

x′, x′′ ∈ D, x′ := x − ρ
x − y

‖x − y‖
, x′′ := x + ρ

x − y

‖x − y‖

and a ball Uσ(x) ⊂ Uρ(x) such that for each z ∈ Uσ(x), both

z′ := x′ − γ
z − x′

‖z − x′‖
and z′′ := z + γ

z − x′′

‖z − x′′‖

are in Uρ(y). Without loss of generality we can assume

K ≥ max{|f(x′)|, |f(x′′)|}.

Since f is symmetrically γ-convex, it holds for each z ∈ Uσ(x)

f(z) ≤
(

1 −
‖z − x′′‖

γ + ‖z − x′′‖

)

f(x′′) +
‖z − x′′‖

γ + ‖z − x′′‖
f(z′′)

≤ max{f(x′′), f(z′′)} ≤ K

and

−K ≤ f(x′) ≤ (1 − µ)f(z) + µf(z′) ≤ (1 − µ)f(z) + µK for µ =
‖z − x′‖

γ + ‖z − x′‖
·

By

‖z − x′‖ ≤ ‖z − x‖ + ‖x − x′‖ ≤ σ + ρ ≤ 2ρ

it follows that

f(z) ≥ −
1 + µ

1 − µ
K = −

(

1 +
2‖z − x′‖

γ

)

K ≥ −
(

1 +
4ρ

γ

)

K

Thus f is locally bounded at x.

If ‖x − y‖ = nγ for some n ∈ N then x, y ∈ int D implies

yi := y + iγ
x − y

‖x − y‖
∈ int D for 1 ≤ i ≤ n

(see [11, Theorem 2.23]) and x = yn. By the proof above, f is locally bounded at
y1 and hence, locally bounded at y2, y3,... Finally, f is locally bounded at x = yn.

(b) If dimX = 1 then the assertion follows immediately from Corollary 2.2.
Assume now dimX ≥ 2. Since the sphere Sγ(x∗) is connected, there is a y′ ∈
Sγ(x∗) such that ‖y − y′‖/γ ∈ N. By (a), f is locally bounded at y′. Thus f
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is locally bounded at x∗ and therefore, so is f at each z ∈ Sγ(x∗). Finally, if
x ∈ int D, there exists z ∈ Sγ(x∗) satisfying ‖x − z‖/γ ∈ N. Consequently, f is
locally bounded at x. The proof is complete.

It is easy to show that the assertion (a) in Theorem 3.1 is false for γ-convex
functions, but a similar result was also stated in [1].

In a finite dimensional space X, a symmetrically γ-convex function f : D ⊂
X → R is locally bounded in

intγD := {x ∈ D : there exists r = r(x) > γ such that Ur(x) ⊂ D}

(see [1]). Therefore, Theorem 3.1 yields that f is locally bounded in int D if
intγ D 6= 0. In fact, we can obtain a stronger result, namely

Proposition 3.1. If dim X < +∞, f : D ⊂ X → R is symmetrically γ-convex

and if intγ D 6= ∅ then f is bounded on each compact subset of int D.

Proof. Suppose that K ⊂ intD. For each x ∈ K, there exists an open ball U(x)
centered at x such that f is bounded on U(x). If K is compact then there exist
finite balls U(xi), i = 1, 2, ..., n which form a covering of K. Thus, for very x ∈ K,

|f(x)| ≤ M := max
1≤i≤n

sup {|f(y)| : y ∈ U(xi)} < +∞,

i.e., f is bounded on K.

References

[1] N. N. Hai and H. X. Phu, Symmetrically γ-convex functions, Optimization 46 (1999), 1-23.
[2] H. Hartwig, Local boundedness and continuity of generalized convex functions, Optimization

26 (1992), 1-13.
[3] T. C. Hu, V. Klee, and D. Larman, Optimization of globally convex functions, SIAM J.

Control Optimization 27 (1989), 1026-1047.
[4] H. X. Phu, γ-Subdifferential and γ-convexity of functions on the real line, Appl. Math.

Optimization 27 (1993), 145-160.
[5] H. X. Phu, γ-Subdifferential and γ-convex functions on a normed space, J. Optimization

Theory Appl. 85 (1995), 649-676.
[6] H. X. Phu, Some properties of globally δ-convex functions, Optimization 35 (1995), 23-41.
[7] H. X. Phu, Six kinds of roughly convex functions, J. Optimization Theory Appl. 92 (1997),

357-375.
[8] H. X. Phu and N. N. Hai, Some analytical properties of γ-convex functions on the real line,

J. Optimization Theory Appl. 91 (1996), 671-694.
[9] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York and

London, 1973.
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