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ABSTRACT. A function f: D — R is said to be symmetrically y-convex w.r.t.
the roughness degree v > 0 if the Jensen inequality

@) < (L= X)f(zo) + Af(z1), ax:= (1= ANzo+ Az
is fulfilled for all xo, 21 € D satisfying ||xo — 1] > v and for

=7 and A=1-— S .
llz1 — ol llz1 — ol

Such a function also has some analytical properties which are similar to those
of convex functions. For instance, if it is bounded above on some sphere
{x € X : |Jx — 2*|| = v} C D then it is bounded on the ball U, (z*) := {x €
X :|lz —z"|| < v} and bounded below on each bounded subset of D. If the
domain D is so large that its interior contains some ball U, (z*), and if the
symmetrically v-convex function considered is locally bounded above at some
interior point of D, then it is locally bounded in the interior of D.

1. INTRODUCTION

Let D be a nonempty convex subset of some normed space X. A function
f D — R is said to be convex if the Jensen inequality

(1.1) f(l‘)\) < (1 — )\)f(xo) + )\f(l‘l), Ty ‘= (1 — )\)xo + )\xl
is fulfilled

(1.2) for all xg,21 € D and for all X € [0,1].

One of the most interesting aspects of convex functions is that the algebraic
condition (1.1)-(1.2) implies many nice analytical properties. For instance, if a
convex function is locally bounded above at some interior point of D then it
is locally Lipschitzian in int D, and if X = R" then it is differentiable almost
everywhere in int D (see [9]).
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A natural question is if generalized convex functions still possess similar ana-
lytical properties. Our particular attention is paid to some kind of rough convex-
ities, for which the Jensen inequality (1.1) is not required to be fulfilled for all
x0, 71 € D like in (1.2) but only for all xg, z; € D satisfying ||zo —x1]| > r, where
r > 0 is given and called as roughness degree. Such an investigation was already
done by Hartwig [2] and Sollner [10] for p-convex functions which have to fulfill
(1.1) for all zg,xz1 € D satisfying ||zg — x1|| > r and for all A € [0,1] (or, with
other words, for all z) € [zg,x1]).

If (1.1) holds true for all xg, z; € D satisfying ||zo—x1|| > r and for z) € [z¢, z1]
satisfying ||zx — xo|| > 7/2 and ||xy — z1]] > 7/2 then f is called §-convez, as
introduced by Hu, Klee and Larman in [3]. The boundedness and the continuity
of such roughly convex functions were considered in [6].

In the following, let v > 0 be a given roughness degree. For a pair of given
points g and x1 in X, denote

= a0+ = (1 )t ey
r1 — & xr1 — & xr1 — &
(13) 1 0 1 0 1 0
lz1 — 2ol [lw1 — @ol| lz1 — 0|
Due to (1.1), we have
xy =z for A=—T  and
|21 — o]
7y

xllzx,\ for Azl—m

As established in [4-5], f: D — R is said to be y-convez if
(L4)  f(ap) + (@) < flzo) + f(z1) whenever [lzg — z1]| = 7,

which yields that (1.1) is satisfied at z) = xf, or at x) = 2. [7-8] showed that
such roughly convex functions have some interesting analytical properties, but
there exist y-convex functions which are nowhere continuous and nowhere locally

bounded.

To obtain analytical properties which are similar to those of convex functions,
in [1] we defined a special class of y-convex functions satisfying

Flap) < (1= ) f(wo) +

lz1 — ol

(1.5) fat) < T flwo) + (1= =) f(1)

=z — 2o lz1 — ol

—————f(x1) and
1 — 2ol

whenever ||zg — 1] > 7.

Obviously, (1.4) is fulfilled and (1.1) holds true at both x) = z{, and x\ = x. For
that reason, such a function is said to be symmetrically v-convex. It was shown in
[1] that though symmetrically y-convex functions only have to fulfill the Jensen
inequality (1.1) at two points z(, and | (defined in (1.3)) in [zg, 2] (satisfying
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|lxg — x1|| > =), they already have some similar continuity properties as those of
convex functions.

This paper continues the investigation in [1] and presents some sufficient con-
ditions for the boundedness (in Section 2) and for the locally boundedness (in
Section 3) of symmetrically y-convex functions.

2. SUFFICIENT CONDITIONS FOR BOUNDEDNESS

Let us denote
Sp(x) ={yeX:|y—uzl=r}
Up(z) :={ye X :|ly—zll <r}, and
Up(z) :={yeX:|y—zl <r}.

The following theorem states a sufficient condition for the boundedness of a
symmetrically «-convex function on some given subsets.

Theorem 2.1. Suppose that f : D — R is symmetrically ~v-convexr and bounded
above on some sphere Sy(x*) C D. Then
(a) f is bounded on the closed ball U (z*) and

(2.1) sup f(z)= sup f(x);
z€U~ (z*) TESy(z*)

(b) f is bounded below on each bounded subset of D.

Proof. (a) Since f is bounded above on Sy (z*), we have

M:= sup f(z)< +oo.
€S~ (™)

Assume that (2.1) is false, then there exists zg € U, (z*) such that
(2.2) f(xo) > M > f(z) forall zeS,(z%).

If dim X > 2 then there exist x1, 29 € S,(z*) such that zg € [z1,22] and ||zg —
x1]| = . By the symmetrical y-convexity of f, we get f(xo) < max{f(z1), f(z2)},
a contradiction. However, if dim X = 1 the sphere S, (z*) is disconnected, there-
fore such z; and x2 do not exist. So we present here a proof which is valid in
both cases.

For o', 2" € 8, (2*) satisfying 2* = (2/ +2") /2, the symmetrical y-convexity of
f implies

1 1
fla) < SF@) + 51" < M.
Hence zy # z* follows from (2.2). Let

r1:i=xo+ 7y
x
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then ||x; — z¢|| = v and

for =1l = | (g — )" —20)

- =~ —||z" — 29

ie., 1 € Uy(z*) \ {z*}. Define

* ’)/(J}* - .1‘()) and z:=z*+ ’)/(J}* - .1‘())

Y=z — T —
Iz = o [l = o]

then y,z € S,(z*) and xg,21,2* € [y,2]. Thus (2.2) implies f(xo) > f(y) and
f(xo) > f(z). By the symmetrical y-convexity of f, we get

) o — ol
A ey LSy pessay LSS
) Iz — ol
29 R i MM PR L
and
v 21 — 2|
flz1) < mf(Z) + mf(ﬂfo)
y e = 2|
DR ey EAC by P B
(2.4) = [(20).

(2.3) implies f(xg) < f(x1), which contradicts (2.4). Therefore, (2.1) must be
true. Consequently, by using (b) which we are going to prove next, f is bounded
on U (z*).

(b) Assume that D’ is some bounded subset of D and = € D"\ {z*}. Let

d:= sup ||z* —2'|| and y::a:*—i—yx —7

2'eD’ [Ead

then

d<4oo and ye€ S, (z).

Since f is symmetrically y-convex and z* € [x,y], we have

: ) " ]
e P AN P LA
) =" ]
S e =’ e —a
Hence,
f(.l‘) > (1 + Hx‘* _xH)f(JL‘*) o ||l‘* _-THM > _(1 + g)‘f(l‘*” N éM
N Y Y N Y Y

Thus f is bounded below on D’. O
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[1, Proposition 3.1] stated that if a symmetrically v-convex function is bounded
on some ball U, (z*) C D with r > ~ then it is locally Lipschitzian at z*. Com-
bining this and Theorem 2.1 we have

Corollary 2.1. Suppose f : D C X — R is symmetrically v-convex. If [ is
bounded above on some ball U, (x*) C D with r > ~ then it is locally Lipschitzian
at x*.

Let us consider the special case X = R.

Corollary 2.2. Suppose that f : D C R — R is symmetrically v-convex.
(a) If [a,b] C D and b — a = 27 then f is bounded on |a,b] and

f(z) <max{f(a), f(b)} forall x € [a,b].

(b) If diam D > 27 then f is bounded on each closed interval of D.

Proof. (a) Assume that [a,b] C D and b —a = 2vy. Let z* = (a + b)/2, then
S,(z*) = {a,b} and hence, f is bounded on S, (z*). Theorem 2.1 yields that f is
bounded on U (z*) = [a, b] and

f(z) <max{f(a), f(b)} forall =z€ [a,b].

(b) Assume [a, §] C D. If § —«a < 27 then since diam D > 2, there exists an
interval [a, b] such that [, 3] C [a,b] C D and b —a = 2v. By (a), f is bounded
on [a,b] and sois f on [, f]. If B —a > 2y we define

0 — «
2y

(where [o] denotes the integer part of the real number o). Then a;1; — a; <
27y, 0 < i <mn. Since f is bounded on each interval [, ;11], 0 <i < m, sois f
on [a, 8] = Ui gai, cviqa]- O

a; = a+ 2y for Ogiﬁn::[ ] and apqq =0

Note that the assertion (b) of the above corollary was stated in [1, Proposition
3.4] where the proof was more complicated.

The following examples show that the hypothesis of Corollary 2.2 cannot be
weakened.

Example 2.1. Consider the function

J1/(0+2)-In(1+=x) if ze€]-1,0]
f@y_{—mx it ze)o,1].

We now show that f is symmetrically «-convex for v = 1. Assume zg,z; € |—1,1]
and 1 — zg > 1. Then

—1<:C0<m'1::x1—1§0 and x1>m6::m0—|—1>0.
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Therefore,

f(wo) = —In(1+ ), f(wo+1) = —In(1 + x0),

14z

1
f(.l‘l) = —Inuzy, f(xl - 1) = .I‘_l —Inz;.
Since f is continuous on [zg + 1,21] C]0,1] and differentiable on |z¢ + 1,z [, we
have
flx1) = flzo+1)

.1‘1—%‘0—1

1
= 1§ = “f for some & € xg+ 1,21 .
Consequently, it follows from

flxo+1) = f(wo) = —

1 1
< —— for >x9+ 1
T+ ¢ § > 0

that
f(x1) = f(zo+1)

1‘1—3:0—1

)

flzo+1) = f(wo) <

which is equivalent to

fah) = flao+1) < (1~ ) (o) + far).
1 — Xo T1 — X0
Analogously,
fer - —fl@o) o 1 1 -
21— a0 —1 = f(0) = 1502 110 for some 6 € |z, x1 — 1]
and
1 1 1 1 1
- - ——m < —-—== - —1) f 1
(1+6)2 1+9< m% x1< 1 flx1) = f(z yfor0 <146 <1
imply

Sz —1) — f(xo)

l‘l—l‘o—l

< flz1) = f(z1 - 1),
which is equivalent to
F(at) = o1 =1) < o P o) + (1= o) F ).

Hence, f is symmetrically ~-convex for v = 1.

r1T — T

However, it is clear that diam| — 1,1] = 2 = 2v but f is not bounded on
| —1,1]. This example shows that the conclusion of Corollary 2.2 (a) does not
hold any more if the closed interval [a,b] is replaced by ]a, b].

Example 2.2. Suppose D = [a,b] and 0 < b —a < 27v. If b —a < v then every
function f on [a,b] is symmetrically v-convex. Hence we can say nothing about
the boundedness of f. If v < b—a < 2, consider a function f on [a, b] satisfying

f(x)=0 for z€a,b—~]Ula+"~,b].
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Suppose z,y € [a,b] and x —y > ~y. Since
b—y>xz—v>y>a and a+y<y+v<zx<Dh,

we have

fl@)=flx—v)=fly+~) = fly)=0.

Thus f is symmetrically y-convex on [a, b]. Since values of f on |b—-, a+~[ do not
influence the symmetrical y-convexity of f, f may be unbounded above and/or
unbounded below on [a,b]. Hence, the assumption diam D > 2 of Corollary 2.2
is really needed.

In addition to the above consideration, let us mention that if a convex function
is bounded on an affine set then it is constant. This property remains true for
symmetrically y-convex functions.

Proposition 2.1. If f is symmetrically v-convex and bounded above on an affine
set A then f is constant on A.

Proof. It is worth noting that the assertion of this proposition is also valid for
v-convex functions but only if dim A > 2 (see [7]). Moreover, Proposition 2.1 is
also an easy corollary of [7, Theorem 3.5] and [1, Proposition 2.4]. However, we
want to present here a direct proof.

Assume the contrary that there exist x,y € A such that f(z) < f(y). Let

si= 277 and 2 =y +7s.
ly — ||

Then

y Iy — 21
R A e L

and f(x) < f(y) imply f(y) < f(2). Therefore,

f(2) < (1 — %)f(y) n %f(y tts) for t>7

yields

t

fly+ts) > 5 (f(z) = fW)+ fly) = +oco as t— +oo,

which contradicts the boundedness above of f on A. The proof is complete.

3. SUFFICIENT CONDITIONS FOR LOCALLY BOUNDEDNESS

As mentioned in Section 1, if a convex function is locally bounded above at
some interior point of D then it is locally Lipschitzian in int D, that means at
least: it is locally bounded there. The next theorem states a similar property
of symmetrically y-convex functions defined on some convex domain which is so
large such that it contains some ball of radius greater than ~.
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Theorem 3.1. Suppose that a symmetrically v-convex function f : D — R is
locally bounded above at some y € int D. Then the following assertions hold true.

(a) f is locally bounded at each interior point x of D satisfying ||x —y|| /v € N.
(b) If int D contains some ball U~ (z*) then f is locally bounded in int D.

Proof. (a) Assume that x € int D, ||z — y|| =+, and f is locally bounded above
at y € int D. Then there exist two positive numbers p and K satisfying

Uy(r) C D, Uyy)C D, and sup f(y)<K.
Yy €Up(y)

[1, Lemma 3.1] shows that there are two points

x/’ m” 6 D’ x/ = — pu’ m” = _|_ pu
[l =yl [l =yl
and a ball U, (z) C U ,(z) such that for each z € U, (x), both
_ ! R/
Zi=a2 - : J:, and 2" ::z—l—yiz J:”
|z — 2] Iz — "]

are in U ,(y). Without loss of generality we can assume
K > max{|f(2")], [f(=")[}.

Since f is symmetrically y-convex, it holds for each z € U, (z)

Iz — =" Iz — 2"

f(z) < (1 - m)f(fﬁ”) + mf(z”)
< max{ ("), /(")) < K
and
K S ) S (- )4l () S (1= )+l for = I

By
|z —a'|| < [lz =zl + lz —2'[ <o+ p < 2p
it follows that

1 2|z — 2’ 4
f(z)z_ﬂK:_(HM)KZ_(H_P)K
L—p g Y

Thus f is locally bounded at x.
If ||z — y|| = nvy for some n € N then z, y € int D implies
T —
To =yl
(see [11, Theorem 2.23]) and = = y,,. By the proof above, f is locally bounded at
y1 and hence, locally bounded at ys,y3,... Finally, f is locally bounded at x = ,,.

Yi =y iy cintD for 1<i<n

(b) If dimX = 1 then the assertion follows immediately from Corollary 2.2.
Assume now dim X > 2. Since the sphere S, (z*) is connected, there is a y' €
S, (x*) such that ||y —¢/||/y € N. By (a), f is locally bounded at y’. Thus f
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is locally bounded at z* and therefore, so is f at each z € Sy(z*). Finally, if
x € int D, there exists z € S, («*) satisfying ||z — z||/y € N. Consequently, f is
locally bounded at x. The proof is complete. O

It is easy to show that the assertion (a) in Theorem 3.1 is false for y-convex
functions, but a similar result was also stated in [1].

In a finite dimensional space X, a symmetrically y-convex function f : D C
X — R is locally bounded in

int, D := {x € D : there exists r = r(x) > ~ such that U,(xz) C D}

(see [1]). Therefore, Theorem 3.1 yields that f is locally bounded in int D if
int, D # 0. In fact, we can obtain a stronger result, namely

Proposition 3.1. If dim X < 400, f: D C X — R is symmetrically ~-convex
and if inty D # () then f is bounded on each compact subset of int D.

Proof. Suppose that K C int D. For each x € K, there exists an open ball U(x)
centered at x such that f is bounded on U(x). If K is compact then there exist
finite balls U (x;), ¢ = 1,2, ...,n which form a covering of K. Thus, for very x € K,

|[f(@)] < M := max sup {|f(y)] : y € U(z;)} < +o0,
i.e., f is bounded on K. O
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