BOUNDEDNESS OF SYMMETRICALLY γ-CONVEX FUNCTIONS

NGUYEN NGOC HAI AND HOANG XUAN PHU

Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

Abstract. A function $f: D \rightarrow \mathbb{R}$ is said to be symmetrically γ-convex w.r.t. the roughness degree $\gamma>0$ if the Jensen inequality

$$
f\left(x_{\lambda}\right) \leq(1-\lambda) f\left(x_{0}\right)+\lambda f\left(x_{1}\right), \quad x_{\lambda}:=(1-\lambda) x_{0}+\lambda x_{1}
$$

is fulfilled for all $x_{0}, x_{1} \in D$ satisfying $\left\|x_{0}-x_{1}\right\| \geq \gamma$ and for

$$
\lambda=\frac{\gamma}{\left\|x_{1}-x_{0}\right\|} \quad \text { and } \quad \lambda=1-\frac{\gamma}{\left\|x_{1}-x_{0}\right\|}
$$

Such a function also has some analytical properties which are similar to those of convex functions. For instance, if it is bounded above on some sphere $\left\{x \in X:\left\|x-x^{*}\right\|=\gamma\right\} \subset D$ then it is bounded on the ball $\overline{\mathcal{U}}_{\gamma}\left(x^{*}\right):=\{x \in$ $\left.X:\left\|x-x^{*}\right\| \leq \gamma\right\}$ and bounded below on each bounded subset of D. If the domain D is so large that its interior contains some ball $\overline{\mathcal{U}}_{\gamma}\left(x^{*}\right)$, and if the symmetrically γ-convex function considered is locally bounded above at some interior point of D, then it is locally bounded in the interior of D.

1. Introduction

Let D be a nonempty convex subset of some normed space X. A function $f: D \rightarrow \mathbb{R}$ is said to be convex if the Jensen inequality

$$
\begin{equation*}
f\left(x_{\lambda}\right) \leq(1-\lambda) f\left(x_{0}\right)+\lambda f\left(x_{1}\right), \quad x_{\lambda}:=(1-\lambda) x_{0}+\lambda x_{1} \tag{1.1}
\end{equation*}
$$

is fulfilled

$$
\begin{equation*}
\text { for all } x_{0}, x_{1} \in D \text { and for all } \lambda \in[0,1] . \tag{1.2}
\end{equation*}
$$

One of the most interesting aspects of convex functions is that the algebraic condition (1.1)-(1.2) implies many nice analytical properties. For instance, if a convex function is locally bounded above at some interior point of D then it is locally Lipschitzian in int D, and if $X=\mathbb{R}^{n}$ then it is differentiable almost everywhere in int D (see [9]).

[^0]A natural question is if generalized convex functions still possess similar analytical properties. Our particular attention is paid to some kind of rough convexities, for which the Jensen inequality (1.1) is not required to be fulfilled for all $x_{0}, x_{1} \in D$ like in (1.2) but only for all $x_{0}, x_{1} \in D$ satisfying $\left\|x_{0}-x_{1}\right\| \geq r$, where $r>0$ is given and called as roughness degree. Such an investigation was already done by Hartwig [2] and Söllner [10] for ρ-convex functions which have to fulfill (1.1) for all $x_{0}, x_{1} \in D$ satisfying $\left\|x_{0}-x_{1}\right\| \geq r$ and for all $\lambda \in[0,1]$ (or, with other words, for all $\left.x_{\lambda} \in\left[x_{0}, x_{1}\right]\right)$.

If (1.1) holds true for all $x_{0}, x_{1} \in D$ satisfying $\left\|x_{0}-x_{1}\right\| \geq r$ and for $x_{\lambda} \in\left[x_{0}, x_{1}\right]$ satisfying $\left\|x_{\lambda}-x_{0}\right\| \geq r / 2$ and $\left\|x_{\lambda}-x_{1}\right\| \geq r / 2$ then f is called δ-convex, as introduced by Hu , Klee and Larman in [3]. The boundedness and the continuity of such roughly convex functions were considered in [6].

In the following, let $\gamma>0$ be a given roughness degree. For a pair of given points x_{0} and x_{1} in X, denote

$$
\begin{align*}
& x_{0}^{\prime}:=x_{0}+\gamma \frac{x_{1}-x_{0}}{\left\|x_{1}-x_{0}\right\|}=\left(1-\frac{\gamma}{\left\|x_{1}-x_{0}\right\|}\right) x_{0}+\frac{\gamma}{\left\|x_{1}-x_{0}\right\|} x_{1} \quad \text { and } \tag{1.3}\\
& x_{1}^{\prime}:=x_{1}-\gamma \frac{x_{1}-x_{0}}{\left\|x_{1}-x_{0}\right\|}=\frac{\gamma}{\left\|x_{1}-x_{0}\right\|} x_{0}+\left(1-\frac{\gamma}{\left\|x_{1}-x_{0}\right\|}\right) x_{1} .
\end{align*}
$$

Due to (1.1), we have

$$
\begin{array}{ll}
x_{0}^{\prime}=x_{\lambda} & \text { for } \quad \lambda=\frac{\gamma}{\left\|x_{1}-x_{0}\right\|} \quad \text { and } \\
x_{1}^{\prime}=x_{\lambda} & \text { for } \quad \lambda=1-\frac{\gamma}{\left\|x_{1}-x_{0}\right\|} .
\end{array}
$$

As established in [4-5], $f: D \rightarrow \mathbb{R}$ is said to be γ-convex if

$$
\begin{equation*}
f\left(x_{0}^{\prime}\right)+f\left(x_{1}^{\prime}\right) \leq f\left(x_{0}\right)+f\left(x_{1}\right) \quad \text { whenever } \quad\left\|x_{0}-x_{1}\right\| \geq \gamma, \tag{1.4}
\end{equation*}
$$

which yields that (1.1) is satisfied at $x_{\lambda}=x_{0}^{\prime}$ or at $x_{\lambda}=x_{1}^{\prime}$. [7-8] showed that such roughly convex functions have some interesting analytical properties, but there exist γ-convex functions which are nowhere continuous and nowhere locally bounded.

To obtain analytical properties which are similar to those of convex functions, in [1] we defined a special class of γ-convex functions satisfying

$$
\begin{align*}
& f\left(x_{0}^{\prime}\right) \leq\left(1-\frac{\gamma}{\left\|x_{1}-x_{0}\right\|}\right) f\left(x_{0}\right)+\frac{\gamma}{\left\|x_{1}-x_{0}\right\|} f\left(x_{1}\right) \text { and } \\
& f\left(x_{1}^{\prime}\right) \leq \frac{\gamma}{\left\|x_{1}-x_{0}\right\|} f\left(x_{0}\right)+\left(1-\frac{\gamma}{\left\|x_{1}-x_{0}\right\|}\right) f\left(x_{1}\right) \tag{1.5}\\
& \text { whenever } \quad\left\|x_{0}-x_{1}\right\| \geq \gamma .
\end{align*}
$$

Obviously, (1.4) is fulfilled and (1.1) holds true at both $x_{\lambda}=x_{0}^{\prime}$ and $x_{\lambda}=x_{1}^{\prime}$. For that reason, such a function is said to be symmetrically γ-convex. It was shown in [1] that though symmetrically γ-convex functions only have to fulfill the Jensen inequality (1.1) at two points x_{0}^{\prime} and x_{1}^{\prime} (defined in (1.3)) in $\left[x_{0}, x_{1}\right]$ (satisfying
$\left\|x_{0}-x_{1}\right\| \geq \gamma$), they already have some similar continuity properties as those of convex functions.

This paper continues the investigation in [1] and presents some sufficient conditions for the boundedness (in Section 2) and for the locally boundedness (in Section 3) of symmetrically γ-convex functions.

2. Sufficient conditions for boundedness

Let us denote

$$
\begin{aligned}
\mathcal{S}_{r}(x) & :=\{y \in X:\|y-x\|=r\}, \\
\mathcal{U}_{r}(x) & :=\{y \in X:\|y-x\|<r\}, \quad \text { and } \\
\overline{\mathcal{U}}_{r}(x) & :=\{y \in X:\|y-x\| \leq r\} .
\end{aligned}
$$

The following theorem states a sufficient condition for the boundedness of a symmetrically γ-convex function on some given subsets.

Theorem 2.1. Suppose that $f: D \rightarrow \mathbb{R}$ is symmetrically γ-convex and bounded above on some sphere $\mathcal{S}_{\gamma}\left(x^{*}\right) \subset D$. Then
(a) f is bounded on the closed ball $\overline{\mathcal{U}}_{\gamma}\left(x^{*}\right)$ and

$$
\begin{equation*}
\sup _{x \in \overline{\mathcal{U}}_{\gamma}\left(x^{*}\right)} f(x)=\sup _{x \in \mathcal{S}_{\gamma}\left(x^{*}\right)} f(x) ; \tag{2.1}
\end{equation*}
$$

(b) f is bounded below on each bounded subset of D.

Proof. (a) Since f is bounded above on $\mathcal{S}_{\gamma}\left(x^{*}\right)$, we have

$$
M:=\sup _{x \in \mathcal{S}_{\gamma}\left(x^{*}\right)} f(x)<+\infty .
$$

Assume that (2.1) is false, then there exists $x_{0} \in \mathcal{U}_{\gamma}\left(x^{*}\right)$ such that

$$
\begin{equation*}
f\left(x_{0}\right)>M \geq f(x) \quad \text { for all } \quad x \in \mathcal{S}_{\gamma}\left(x^{*}\right) . \tag{2.2}
\end{equation*}
$$

If $\operatorname{dim} X \geq 2$ then there exist $x_{1}, x_{2} \in \mathcal{S}_{\gamma}\left(x^{*}\right)$ such that $x_{0} \in\left[x_{1}, x_{2}\right]$ and $\| x_{0}-$ $x_{1} \|=\gamma$. By the symmetrical γ-convexity of f, we get $f\left(x_{0}\right) \leq \max \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$, a contradiction. However, if $\operatorname{dim} X=1$ the sphere $\mathcal{S}_{\gamma}\left(x^{*}\right)$ is disconnected, therefore such x_{1} and x_{2} do not exist. So we present here a proof which is valid in both cases.

For $x^{\prime}, x^{\prime \prime} \in \mathcal{S}_{\gamma}\left(x^{*}\right)$ satisfying $x^{*}=\left(x^{\prime}+x^{\prime \prime}\right) / 2$, the symmetrical γ-convexity of f implies

$$
f\left(x^{*}\right) \leq \frac{1}{2} f\left(x^{\prime}\right)+\frac{1}{2} f\left(x^{\prime \prime}\right) \leq M .
$$

Hence $x_{0} \neq x^{*}$ follows from (2.2). Let

$$
x_{1}:=x_{0}+\gamma \frac{x^{*}-x_{0}}{\left\|x^{*}-x_{0}\right\|}
$$

then $\left\|x_{1}-x_{0}\right\|=\gamma$ and

$$
\left\|x_{1}-x^{*}\right\|=\left\|\left(\frac{\gamma}{\left\|x^{*}-x_{0}\right\|}-1\right)\left(x^{*}-x_{0}\right)\right\|=\gamma-\left\|x^{*}-x_{0}\right\|,
$$

i.e., $x_{1} \in \mathcal{U}_{\gamma}\left(x^{*}\right) \backslash\left\{x^{*}\right\}$. Define

$$
y:=x^{*}-\frac{\gamma\left(x^{*}-x_{0}\right)}{\left\|x^{*}-x_{0}\right\|} \quad \text { and } \quad z:=x^{*}+\frac{\gamma\left(x^{*}-x_{0}\right)}{\left\|x^{*}-x_{0}\right\|}
$$

then $y, z \in \mathcal{S}_{\gamma}\left(x^{*}\right)$ and $x_{0}, x_{1}, x^{*} \in[y, z]$. Thus (2.2) implies $f\left(x_{0}\right)>f(y)$ and $f\left(x_{0}\right)>f(z)$. By the symmetrical γ-convexity of f, we get

$$
\begin{align*}
f\left(x_{0}\right) & \leq \frac{\gamma}{\gamma+\left\|x_{0}-y\right\|} f(y)+\frac{\left\|x_{0}-y\right\|}{\gamma+\left\|x_{0}-y\right\|} f\left(x_{1}\right) \\
& <\frac{\gamma}{\gamma+\left\|x_{0}-y\right\|} f\left(x_{0}\right)+\frac{\left\|x_{0}-y\right\|}{\gamma+\left\|x_{0}-y\right\|} f\left(x_{1}\right) \tag{2.3}
\end{align*}
$$

and

$$
\begin{align*}
f\left(x_{1}\right) & \leq \frac{\gamma}{\gamma+\left\|x_{1}-z\right\|} f(z)+\frac{\left\|x_{1}-z\right\|}{\gamma+\left\|x_{1}-z\right\|} f\left(x_{0}\right) \\
& <\frac{\gamma}{\gamma+\left\|x_{1}-z\right\|} f\left(x_{0}\right)+\frac{\left\|x_{1}-z\right\|}{\gamma+\left\|x_{1}-z\right\|} f\left(x_{0}\right) \\
& =f\left(x_{0}\right) . \tag{2.4}
\end{align*}
$$

(2.3) implies $f\left(x_{0}\right)<f\left(x_{1}\right)$, which contradicts (2.4). Therefore, (2.1) must be true. Consequently, by using (b) which we are going to prove next, f is bounded on $\overline{\mathcal{U}}_{\gamma}\left(x^{*}\right)$.
(b) Assume that D^{\prime} is some bounded subset of D and $x \in D^{\prime} \backslash\left\{x^{*}\right\}$. Let

$$
d:=\sup _{x^{\prime} \in D^{\prime}}\left\|x^{*}-x^{\prime}\right\| \quad \text { and } \quad y:=x^{*}+\gamma \frac{x^{*}-x}{\left\|x^{*}-x\right\|},
$$

then

$$
d<+\infty \quad \text { and } \quad y \in S_{\gamma}\left(x^{*}\right) .
$$

Since f is symmetrically γ-convex and $x^{*} \in[x, y]$, we have

$$
\begin{aligned}
f\left(x^{*}\right) & \leq \frac{\gamma}{\gamma+\left\|x^{*}-x\right\|} f(x)+\frac{\left\|x^{*}-x\right\|}{\gamma+\left\|x^{*}-x\right\|} f(y) \\
& \leq \frac{\gamma}{\gamma+\left\|x^{*}-x\right\|} f(x)+\frac{\left\|x^{*}-x\right\|}{\gamma+\left\|x^{*}-x\right\|} M .
\end{aligned}
$$

Hence,

$$
f(x) \geq\left(1+\frac{\left\|x^{*}-x\right\|}{\gamma}\right) f\left(x^{*}\right)-\frac{\left\|x^{*}-x\right\|}{\gamma} M \geq-\left(1+\frac{d}{\gamma}\right)\left|f\left(x^{*}\right)\right|-\frac{d}{\gamma} M .
$$

Thus f is bounded below on D^{\prime}.
[1, Proposition 3.1] stated that if a symmetrically γ-convex function is bounded on some ball $\mathcal{U}_{r}\left(x^{*}\right) \subset D$ with $r>\gamma$ then it is locally Lipschitzian at x^{*}. Combining this and Theorem 2.1 we have

Corollary 2.1. Suppose $f: D \subset X \rightarrow \mathbb{R}$ is symmetrically γ-convex. If f is bounded above on some ball $\mathcal{U}_{r}\left(x^{*}\right) \subset D$ with $r>\gamma$ then it is locally Lipschitzian at x^{*}.

Let us consider the special case $X=\mathbb{R}$.
Corollary 2.2. Suppose that $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$ is symmetrically γ-convex.
(a) If $[a, b] \subset D$ and $b-a=2 \gamma$ then f is bounded on $[a, b]$ and

$$
f(x) \leq \max \{f(a), f(b)\} \quad \text { for all } x \in[a, b] .
$$

(b) If $\operatorname{diam} D>2 \gamma$ then f is bounded on each closed interval of D.

Proof. (a) Assume that $[a, b] \subset D$ and $b-a=2 \gamma$. Let $x^{*}=(a+b) / 2$, then $\mathcal{S}_{\gamma}\left(x^{*}\right)=\{a, b\}$ and hence, f is bounded on $\mathcal{S}_{\gamma}\left(x^{*}\right)$. Theorem 2.1 yields that f is bounded on $\overline{\mathcal{U}}_{\gamma}\left(x^{*}\right)=[a, b]$ and

$$
f(x) \leq \max \{f(a), f(b)\} \quad \text { for all } \quad x \in[a, b] .
$$

(b) Assume $[\alpha, \beta] \subset D$. If $\beta-\alpha \leq 2 \gamma$ then since diam $D>2 \gamma$, there exists an interval $[a, b]$ such that $[\alpha, \beta] \subset[a, b] \subset D$ and $b-a=2 \gamma$. By (a), f is bounded on $[a, b]$ and so is f on $[\alpha, \beta]$. If $\beta-\alpha>2 \gamma$ we define

$$
\alpha_{i}:=\alpha+2 i \gamma \quad \text { for } \quad 0 \leq i \leq n:=\left[\frac{\beta-\alpha}{2 \gamma}\right] \quad \text { and } \quad \alpha_{n+1}:=\beta
$$

(where $[\sigma]$ denotes the integer part of the real number σ). Then $\alpha_{i+1}-\alpha_{i} \leq$ $2 \gamma, 0 \leq i \leq n$. Since f is bounded on each interval $\left[\alpha_{i}, \alpha_{i+1}\right], 0 \leq i \leq n$, so is f on $[\alpha, \beta]=\cup_{i=0}^{n}\left[\alpha_{i}, \alpha_{i+1}\right]$.

Note that the assertion (b) of the above corollary was stated in [1, Proposition 3.4] where the proof was more complicated.

The following examples show that the hypothesis of Corollary 2.2 cannot be weakened.

Example 2.1. Consider the function

$$
f(x):=\left\{\begin{array}{lll}
1 /(1+x)-\ln (1+x) & \text { if } & x \in]-1,0] \\
-\ln x & \text { if } & x \in] 0,1]
\end{array}\right.
$$

We now show that f is symmetrically γ-convex for $\gamma=1$. Assume $\left.\left.x_{0}, x_{1} \in\right]-1,1\right]$ and $x_{1}-x_{0}>1$. Then

$$
-1<x_{0}<x_{1}^{\prime}:=x_{1}-1 \leq 0 \quad \text { and } \quad x_{1}>x_{0}^{\prime}:=x_{0}+1>0 .
$$

Therefore,

$$
\begin{aligned}
& f\left(x_{0}\right)=\frac{1}{1+x_{0}}-\ln \left(1+x_{0}\right), f\left(x_{0}+1\right)=-\ln \left(1+x_{0}\right), \\
& f\left(x_{1}\right)=-\ln x_{1}, f\left(x_{1}-1\right)=\frac{1}{x_{1}}-\ln x_{1} .
\end{aligned}
$$

Since f is continuous on $\left.\left.\left[x_{0}+1, x_{1}\right] \subset\right] 0,1\right]$ and differentiable on $] x_{0}+1, x_{1}[$, we have

$$
\left.\frac{f\left(x_{1}\right)-f\left(x_{0}+1\right)}{x_{1}-x_{0}-1}=f^{\prime}(\xi)=-\frac{1}{\xi} \quad \text { for some } \quad \xi \in\right] x_{0}+1, x_{1}[
$$

Consequently, it follows from

$$
f\left(x_{0}+1\right)-f\left(x_{0}\right)=-\frac{1}{1+x_{0}}<-\frac{1}{\xi} \quad \text { for } \quad \xi>x_{0}+1
$$

that

$$
f\left(x_{0}+1\right)-f\left(x_{0}\right)<\frac{f\left(x_{1}\right)-f\left(x_{0}+1\right)}{x_{1}-x_{0}-1},
$$

which is equivalent to

$$
f\left(x_{0}^{\prime}\right)=f\left(x_{0}+1\right)<\left(1-\frac{\gamma}{x_{1}-x_{0}}\right) f\left(x_{0}\right)+\frac{\gamma}{x_{1}-x_{0}} f\left(x_{1}\right) .
$$

Analogously,

$$
\left.\frac{f\left(x_{1}-1\right)-f\left(x_{0}\right)}{x_{1}-x_{0}-1}=f^{\prime}(\theta)=-\frac{1}{(1+\theta)^{2}}-\frac{1}{1+\theta} \quad \text { for some } \quad \theta \in\right] x_{0}, x_{1}-1[
$$

and

$$
-\frac{1}{(1+\theta)^{2}}-\frac{1}{1+\theta}<-\frac{1}{x_{1}^{2}}-\frac{1}{x_{1}}<-\frac{1}{x_{1}}=f\left(x_{1}\right)-f\left(x_{1}-1\right) \text { for } 0<1+\theta<x_{1}
$$

imply

$$
\frac{f\left(x_{1}-1\right)-f\left(x_{0}\right)}{x_{1}-x_{0}-1}<f\left(x_{1}\right)-f\left(x_{1}-1\right)
$$

which is equivalent to

$$
f\left(x_{1}^{\prime}\right)=f\left(x_{1}-1\right)<\frac{\gamma}{x_{1}-x_{0}} f\left(x_{0}\right)+\left(1-\frac{\gamma}{x_{1}-x_{0}}\right) f\left(x_{1}\right) .
$$

Hence, f is symmetrically γ-convex for $\gamma=1$.
However, it is clear that diam] $-1,1]=2=2 \gamma$ but f is not bounded on] $-1,1$]. This example shows that the conclusion of Corollary 2.2 (a) does not hold any more if the closed interval $[\mathrm{a}, \mathrm{b}]$ is replaced by $] a, b]$.

Example 2.2. Suppose $D=[a, b]$ and $0<b-a<2 \gamma$. If $b-a \leq \gamma$ then every function f on $[a, b]$ is symmetrically γ-convex. Hence we can say nothing about the boundedness of f. If $\gamma<b-a<2 \gamma$, consider a function f on $[a, b]$ satisfying

$$
f(x)=0 \quad \text { for } \quad x \in[a, b-\gamma] \cup[a+\gamma, b] .
$$

Suppose $x, y \in[a, b]$ and $x-y \geq \gamma$. Since

$$
b-\gamma \geq x-\gamma \geq y \geq a \quad \text { and } \quad a+\gamma \leq y+\gamma \leq x \leq b
$$

we have

$$
f(x)=f(x-\gamma)=f(y+\gamma)=f(y)=0
$$

Thus f is symmetrically γ-convex on $[a, b]$. Since values of f on $] b-\gamma, a+\gamma[$ do not influence the symmetrical γ-convexity of f, f may be unbounded above and/or unbounded below on $[a, b]$. Hence, the assumption diam $D>2 \gamma$ of Corollary 2.2 is really needed.

In addition to the above consideration, let us mention that if a convex function is bounded on an affine set then it is constant. This property remains true for symmetrically γ-convex functions.

Proposition 2.1. If f is symmetrically γ-convex and bounded above on an affine set A then f is constant on A.

Proof. It is worth noting that the assertion of this proposition is also valid for γ-convex functions but only if $\operatorname{dim} A \geq 2$ (see [7]). Moreover, Proposition 2.1 is also an easy corollary of [7, Theorem 3.5] and [1, Proposition 2.4]. However, we want to present here a direct proof.

Assume the contrary that there exist $x, y \in A$ such that $f(x)<f(y)$. Let

$$
s:=\frac{y-x}{\|y-x\|} \quad \text { and } \quad z:=y+\gamma s
$$

Then

$$
f(y) \leq \frac{\gamma}{\gamma+\|y-x\|} f(x)+\frac{\|y-x\|}{\gamma+\|y-x\|} f(z)
$$

and $f(x)<f(y)$ imply $f(y)<f(z)$. Therefore,

$$
f(z) \leq\left(1-\frac{\gamma}{t}\right) f(y)+\frac{\gamma}{t} f(y+t s) \quad \text { for } \quad t>\gamma
$$

yields

$$
f(y+t s) \geq \frac{t}{\gamma}(f(z)-f(y))+f(y) \rightarrow+\infty \quad \text { as } \quad t \rightarrow+\infty
$$

which contradicts the boundedness above of f on A. The proof is complete.

3. Sufficient conditions for locally boundedness

As mentioned in Section 1, if a convex function is locally bounded above at some interior point of D then it is locally Lipschitzian in int D, that means at least: it is locally bounded there. The next theorem states a similar property of symmetrically γ-convex functions defined on some convex domain which is so large such that it contains some ball of radius greater than γ.

Theorem 3.1. Suppose that a symmetrically γ-convex function $f: D \rightarrow \mathbb{R}$ is locally bounded above at some $y \in \operatorname{int} D$. Then the following assertions hold true.
(a) f is locally bounded at each interior point x of D satisfying $\|x-y\| / \gamma \in \mathbb{N}$.
(b) If int D contains some ball $\overline{\mathcal{U}}_{\gamma}\left(x^{*}\right)$ then f is locally bounded in int D.

Proof. (a) Assume that $x \in \operatorname{int} D,\|x-y\|=\gamma$, and f is locally bounded above at $y \in \operatorname{int} D$. Then there exist two positive numbers ρ and K satisfying

$$
\overline{\mathcal{U}}_{\rho}(x) \subset D, \quad \overline{\mathcal{U}}_{\rho}(y) \subset D, \quad \text { and } \sup _{y^{\prime} \in \overline{\mathcal{U}}_{\rho}(y)} f\left(y^{\prime}\right) \leq K .
$$

[1, Lemma 3.1] shows that there are two points

$$
x^{\prime}, x^{\prime \prime} \in D, \quad x^{\prime}:=x-\rho \frac{x-y}{\|x-y\|}, \quad x^{\prime \prime}:=x+\rho \frac{x-y}{\|x-y\|}
$$

and a ball $\overline{\mathcal{U}}_{\sigma}(x) \subset \overline{\mathcal{U}}_{\rho}(x)$ such that for each $z \in \overline{\mathcal{U}}_{\sigma}(x)$, both

$$
z^{\prime}:=x^{\prime}-\gamma \frac{z-x^{\prime}}{\left\|z-x^{\prime}\right\|} \quad \text { and } \quad z^{\prime \prime}:=z+\gamma \frac{z-x^{\prime \prime}}{\left\|z-x^{\prime \prime}\right\|}
$$

are in $\overline{\mathcal{U}}_{\rho}(y)$. Without loss of generality we can assume

$$
K \geq \max \left\{\left|f\left(x^{\prime}\right)\right|,\left|f\left(x^{\prime \prime}\right)\right|\right\} .
$$

Since f is symmetrically γ-convex, it holds for each $z \in \overline{\mathcal{U}}_{\sigma}(x)$

$$
\begin{aligned}
f(z) & \leq\left(1-\frac{\left\|z-x^{\prime \prime}\right\|}{\gamma+\left\|z-x^{\prime \prime}\right\|}\right) f\left(x^{\prime \prime}\right)+\frac{\left\|z-x^{\prime \prime}\right\|}{\gamma+\left\|z-x^{\prime \prime}\right\|} f\left(z^{\prime \prime}\right) \\
& \leq \max \left\{f\left(x^{\prime \prime}\right), f\left(z^{\prime \prime}\right)\right\} \leq K
\end{aligned}
$$

and

$$
-K \leq f\left(x^{\prime}\right) \leq(1-\mu) f(z)+\mu f\left(z^{\prime}\right) \leq(1-\mu) f(z)+\mu K \text { for } \mu=\frac{\left\|z-x^{\prime}\right\|}{\gamma+\left\|z-x^{\prime}\right\|}
$$

By

$$
\left\|z-x^{\prime}\right\| \leq\|z-x\|+\left\|x-x^{\prime}\right\| \leq \sigma+\rho \leq 2 \rho
$$

it follows that

$$
f(z) \geq-\frac{1+\mu}{1-\mu} K=-\left(1+\frac{2\left\|z-x^{\prime}\right\|}{\gamma}\right) K \geq-\left(1+\frac{4 \rho}{\gamma}\right) K
$$

Thus f is locally bounded at x.
If $\|x-y\|=n \gamma$ for some $n \in \mathbb{N}$ then $x, y \in \operatorname{int} D$ implies

$$
y_{i}:=y+i \gamma \frac{x-y}{\|x-y\|} \in \operatorname{int} D \quad \text { for } \quad 1 \leq i \leq n
$$

(see [11, Theorem 2.23]) and $x=y_{n}$. By the proof above, f is locally bounded at y_{1} and hence, locally bounded at y_{2}, y_{3}, \ldots Finally, f is locally bounded at $x=y_{n}$. (b) If $\operatorname{dim} X=1$ then the assertion follows immediately from Corollary 2.2. Assume now $\operatorname{dim} X \geq 2$. Since the sphere $\mathcal{S}_{\gamma}\left(x^{*}\right)$ is connected, there is a $y^{\prime} \in$ $\mathcal{S}_{\gamma}\left(x^{*}\right)$ such that $\left\|y-y^{\prime}\right\| / \gamma \in \mathbb{N}$. By (a), f is locally bounded at y^{\prime}. Thus f
is locally bounded at x^{*} and therefore, so is f at each $z \in \mathcal{S}_{\gamma}\left(x^{*}\right)$. Finally, if $x \in \operatorname{int} D$, there exists $z \in \mathcal{S}_{\gamma}\left(x^{*}\right)$ satisfying $\|x-z\| / \gamma \in \mathbb{N}$. Consequently, f is locally bounded at x. The proof is complete.

It is easy to show that the assertion (a) in Theorem 3.1 is false for γ-convex functions, but a similar result was also stated in [1].

In a finite dimensional space X, a symmetrically γ-convex function $f: D \subset$ $X \rightarrow \mathbb{R}$ is locally bounded in

$$
\operatorname{int}_{\gamma} D:=\left\{x \in D: \text { there exists } r=r(x)>\gamma \text { such that } \mathcal{U}_{r}(x) \subset D\right\}
$$

(see [1]). Therefore, Theorem 3.1 yields that f is locally bounded in int D if $\operatorname{int}_{\gamma} D \neq 0$. In fact, we can obtain a stronger result, namely

Proposition 3.1. If $\operatorname{dim} X<+\infty, f: D \subset X \rightarrow \mathbb{R}$ is symmetrically γ-convex and if $\operatorname{int}_{\gamma} D \neq \emptyset$ then f is bounded on each compact subset of $\operatorname{int} D$.

Proof. Suppose that $K \subset \operatorname{int} D$. For each $x \in K$, there exists an open ball $\mathcal{U}(x)$ centered at x such that f is bounded on $\mathcal{U}(x)$. If K is compact then there exist finite balls $\mathcal{U}\left(x_{i}\right), i=1,2, \ldots, n$ which form a covering of K. Thus, for very $x \in K$,

$$
|f(x)| \leq M:=\max _{1 \leq i \leq n} \sup \left\{|f(y)|: y \in \mathcal{U}\left(x_{i}\right)\right\}<+\infty,
$$

i.e., f is bounded on K.

References

[1] N. N. Hai and H. X. Phu, Symmetrically γ-convex functions, Optimization 46 (1999), 1-23.
[2] H. Hartwig, Local boundedness and continuity of generalized convex functions, Optimization 26 (1992), 1-13.
[3] T. C. Hu, V. Klee, and D. Larman, Optimization of globally convex functions, SIAM J. Control Optimization 27 (1989), 1026-1047.
[4] H. X. Phu, γ-Subdifferential and γ-convexity of functions on the real line, Appl. Math. Optimization 27 (1993), 145-160.
[5] H. X. Phu, γ-Subdifferential and γ-convex functions on a normed space, J. Optimization Theory Appl. 85 (1995), 649-676.
[6] H. X. Phu, Some properties of globally δ-convex functions, Optimization 35 (1995), 23-41.
[7] H. X. Phu, Six kinds of roughly convex functions, J. Optimization Theory Appl. 92 (1997), 357-375.
[8] H. X. Phu and N. N. Hai, Some analytical properties of γ-convex functions on the real line, J. Optimization Theory Appl. 91 (1996), 671-694.
[9] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York and London, 1973.
[10] B. Söllner, Eigenschaften γ-grobkonvexer Mengen und Funktionen, Diplomarbeit, Universität Leipzig, 1991.
[11] J. van Tiel, Convex Analysis, John Wiley \& Sons, Chichester, 1984.
Department of Mathematics,
College of Education, University of Hue, Hue, Vietnam
Institute of Mathematics,
P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam

[^0]: Received May 14, 2001.
 1991 Mathematics Subject Classification. 26B25, 26A51, 52A01.
 Key words and phrases. Generalized convexity, rough convexity, γ-convexity, boundedness.

