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SECOND-ORDER OPTIMALITY CONDITIONS FOR C
1

MULTIOBJECTIVE PROGRAMMING PROBLEMS

A. GUERRAGGIO, D. T. LUC AND N. B. MINH

Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday

Abstract. In this paper we use approximate Hessian matrices of continuously
differentiable vector functions to establish second order optimality conditions
for constrained multiobjective programming problems with data of class C

1.

1. Introduction

One of the most important topics of multiobjective programming is to find
optimality conditions for efficient solutions of problems with data in a possibly
larger class of functions. Today there exists a huge number of papers (see [5, 9, 19,
24]) that deal with first order optimality conditions, starting with the pioneering
work [17] by Kuhn-Tucker, who studied continuously differentiable problems with
inequality constraints. Quite few publications exist on second order conditions,
among which we cite the papers [1, 2, 3, 6, 7, 18, 27] for problems with C2 and
C1,1 data, and [25, 26] for problems involving set valued data.

The purpose of the present note is to establish second order optimality con-
ditions for constrained multiobjective programming problems with continuously
differentiable data or C1 data for short. The main tool we are going to exploit is
approximate Hessian of continuously differentiable functions and its recession ma-
trices. The notions of approximate Jacobian and approximate Hessian have been
introduced and studied by Jeyakumar and Luc in [11]. Further developments
and applications of these concepts are found in [8, 11, 12, 13, 14, 15, 21, 28]. It
is important to notice that several known second order generalized derivatives
of continuously differentiable functions are examples of approximate Hessian, in-
cluding the Clarke generalized Hessian. Moreover, a C1,1 function, i. e. function
with locally Lipschitz gradient map may have an approximate Hessian whose
closed convex hull is strictly smaller than the Clarke generalized Hessian. There-
fore the optimality conditions we are going to establish by means of approximate
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Hessian are not only valid for C1,1 problems when the Clarke generalized Hessian
is used, but sometimes also yield a sharper result.

The paper is organized as follows. In section 2 we recall the definition of
approximate Jacobian and approximate Hessian, and some elementary calculus
rules that will be needed in the sequel. Section 3 and Section 4 are devoted to
second order necessary conditions and sufficient conditions respectively. In the
final section an example is given to illustrate our approach.

2. Approximate Hessian matrices

Let f be a continuous function from Rn to Rm. A closed set of (m×n)-matrices
∂f(x) ⊆ L(Rn, Rm) is said to be an approximate Jacobian of f at x if for every
u ∈ Rn and v ∈ Rm, one has

(vf)+(x, u) ≤ sup
M∈∂f(x)

〈v,M(u)〉,

where vf is the real function
n
∑

i=1
vifi, here v1, . . . , vm are components of v and

f1, . . . , fm are components of f , and (vf)+(x, u) is the upper Dini directional
derivative of the function vf at x in the direction u, that is

(vf)+(x, u) := lim sup
t↓0

(vf)(x + tu) − (vf)(x)

t
.

If for every x ∈ Rn, ∂f(x) is an approximate Jacobian of f at x, then the set
valued map x 7→ ∂f(x) from Rn to L(Rn, Rm) is called an approximate Jacobian
map of f . We refer the interested reader to [11, 12, 13, 14, 15, 28] for more about
properties and applications of approximate Jacobian matrices.

Now let f : Rn → Rm be continuously differentiable. The Jacobian matrix
map 5f is a continuous vector function from Rn to the space of m× n-matrices
L(Rn, Rm). The space L(Rn, Rm) is equipped with the euclidean norm

‖M‖ := (‖M1‖
2 + ... + ‖Mn‖

2)1/2,

where M1, . . . ,Mn are columns of the matrix M . This norm is equivalent to the
operator norm

‖M‖ = max
u∈Rn,‖u‖≤1

‖M(u)‖.

A closed set of three dimensional m × n × n- matrices ∂2f(x) is said to be an
approximate Hessian of f at x if it is an approximate Jacobian of the function
5f at x. Approximate Hessian shares many properties of approximate Jacobian.
Let us list some of them for the reader’s convenience (see [11] for the proof):

(i) If ∂2f(x) is an approximate Hessian of f at x, then every closed set of
m × n × n-matrices which contains ∂2f(x), is an approximate Hessian of f
at x;



SECOND-ORDER OPTIMALITY CONDITIONS 259

(ii) If f is twice Gâteaux differentiable at x, then every approximate Hessian
∂2f(x) of f at x contains the second Gâteaux derivative of f at x in its
closed convex hull co∂2f(x). Moreover, f is twice Gâteaux differentiable at
x if and only if it admits a singleton approximate Hessian at this point.

(iii) If f, g : Rn → Rm are continuously differentiable and if ∂2f(x) and ∂2g(x)
are approximate Hessians of f and g at x respectively, then the closure of
the set ∂2f(x) + ∂2g(x) is an approximate Hessian of f + g at x.

(iv) Generalized Taylor expansion: Let f : Rn → Rm be continuously differ-
entiable and let x, y ∈ Rn. Suppose that for each z ∈ [x, y], ∂2f(z) is an
approximate Hessian of f at z. Then

f(y) − f(x) −∇f(x)(y − x) ∈
1

2
co(∂2f [x, y](y − x, y − x)).

We shall need some more terminologies. Let A ⊆ Rn be a nonempty set. The
recession cone of A, which is denoted by A∞, consists of all limits lim

i→∞
tiai where

ai ∈ A and {ti} is a sequence of positive numbers converging to 0. It is useful to
notice that a set is bounded if and only if its recession cone is trivial. Elements of
the recession cone of approximate Hessian ∂2f(x) will be called recession Hessian
matrices.

Let F : Rn =⇒ Rm be a set valued map. It is said to be upper semicontinuous
at x if for every ε > 0, there is some δ > 0 such that F (x + δBn) ⊂ F (x) + εBm,
where Bn and Bm denote the closed unite balls in Rn and Rm respectively.

3. Necessary conditions

Let f : Rn → Rm be continuous and let S ⊆ Rn be a nonempty set. Let Rm

be partially ordered by a closed convex and pointed cone C with a nonempty
interior int C as follows: for a, b ∈ Rn, we write a ≥C b if a − b ∈ C. We also
use the notation a >C b when a ≥C b and a 6= b, and a >>C b if a − b ∈ intC.
Sometimes the lower index C in ≥C is omitted with the hope that no confusion
likely occurs.

We shall study the following multiobjective problem
(P) min f(x)

s. t. x ∈ S.
We are interested in finding two kinds of solutions:

(i) a local efficient solution x0 ∈ S which means that in some neighborhood U
of x0, there is no x ∈ S ∩ V such that f(x) < f(x0),

(ii) a local weakly efficient solution x0 ∈ S which means that in some neighbor-
hood U of x0, there is no x ∈ S ∩ V such that f(x) << f(x0).

Some notations are in order. For x0 ∈ S, the first order tangent cone and the
second order tangent cone to S at x0 are defined respectively by

T1(S, x0) := {u ∈ Rn : ∃ti > 0, xi = x0 + tiu + o(ti) ∈ S},

T2(S, x0) := {(u, v) ∈ Rn × Rn : ∃ti > 0, xi = x0 + tiu +
1

2
t2i v + o(t2i ) ∈ S}.
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We also set

Λ := {ξ ∈ C ′ : ‖ξ‖ = 1},

where C ′ is the positive polar cone of C, i. e.

C ′ = {ξ ∈ Rn : 〈ξ, c〉 ≥ 0 for all ξ ∈ C},

and for δ > 0,

Sδ(x0) = {t(x − x0) : t ≥ 0, x ∈ S and ‖x − x0‖ ≤ δ}.

Theorem 3.1. Assume that f is a continuously differentiable function, x0 ∈ S
is a local weakly efficient solution of (P ) and ∂2f is an approximate Hessian map
of f which is upper semicontinuous at x0. Then for each (u, v) ∈ T2(S, x0) one
has

(i) there is λ ∈ Λ such that 〈λ,∇f(x0)(u)〉 ≥ 0,
(ii) when ∇f(x0)(u) = 0, there is λ′ ∈ Λ such that either

〈λ′,∇f(x0)(v) + M(u, u)〉 ≥ 0 for some M ∈ co∂2f(x0)

or

〈λ′,M∗(u, u)〉 ≥ 0 for some M∗ ∈ (co∂2f(x0))∞ \ {0}.

If in addition C is polyhedral, then (i) holds and when < λ,∇f(x0)(u) >= 0, the
inequalities of (ii) are true for λ′ = λ.

Proof. Let (u, v) ∈ T2(S, x0), say

(1) xi = x0 = tiu +
1

2
t2i v + o(t2i ) ∈ S

for some sequence {ti} of positive numbers converging to 0. Since x0 is a local
weakly efficient solusion, there is some i0 ≥ 1 such that
(2) f(xi) − f(x0) ∈ (−intC)c for i ≥ i0.
Since f is continuously differentiable, we derive

f(xi) − f(x0) = ∇f(x0)(xi − x0) + o(xi − x0).

This and (2) imply that

∇f(x0)(u) ∈ (−intC)c

which actually is equivalent to (i).
Now let ∇f(x0)(u) = 0. Observe first that by the upper semicontinuity of ∂2f
at x0, for every ε > 0, there is δ > 0 such that

∂2f(x) ⊆ ∂2f(x0) + εB for each x with ‖x − x0‖ < δ,

where B is the closed unit ball in the space of matrices in which ∂2f takes its
values. Consequently, there is i1 ≥ i0 such that

co∂2f [x0, xi] ⊆ co∂2f(x0) + 2εB for every i ≥ i1.

We apply the Taylor expansion to find Mi ∈ co∂2f(x0) + 2εB such that

f(xi) − f(x0) = ∇f(x0)(xi − x0) +
1

2
Mi(xi − x0, xi − x0), i ≥ i1.
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Substituting (1) into this equality we derive

f(xi) − f(x0) =
1

2
t2i (∇f(x0)(v) + Mi(u, v)) + αi,

where αi =
1

2
Mi

(1

2
t2i v + o(t2i ), tiu +

1

2
t2i v + o(t2i )

)

+∇f(x0)(o(t
2
i )). This and (2)

show
(3) ∇f(x0)(v) + Mi(u, v) + αi/t

2
i ∈ (−intC)c, i ≥ i1.

Consider the sequence {Mi}. If it is bounded, we may assume that it converges
to some M0 ∈ co∂2f(x0)+ 2εB. Then αi/t

2
i → 0 as i → ∞ and relation (3) gives

∇f(x0)(v) + M0(u, u) ∈ (−intC)c.

Since ε is arbitrary, the latter inclusion yields the existence of M ∈ co∂2f(x0)
such that

∇f(x0)(v) + M(u, u) ∈ (−intC)c,

which actually is equivalent to the first inequality of (ii).
If {Mi} is unbounded, say lim

i→∞
‖Mi‖ = ∞, we may assume that

lim
i→∞

Mi

‖Mi‖
= M∗ ∈ (co∂2f(x0))∞ \ {0}.

By deviding (3) by ‖Mi‖ and passing to the limit when i → ∞, we deduce

M∗(u, u) ∈ (−intC)c,

which is equivalent to the second inequality of (ii).
Now, assume that C is polyhedral. It follows from (2) that there is some λ ∈ Λ
such that

〈λ, f(xi) − f(x0)〉 ≥ 0,

for infinitely many i. By taking a subsequence instead if necessary, we may
assume this for all i = 1, 2, . . . . Since f is continuously differentiable, we deduce

〈λ,∇f(x0)(u)〉 ≥ 0.

When 〈λ,∇f(x0)(u)〉 = 0, using the argument of the first part, we can find Mi ∈
co∂2f(x0) + 2εB such that

0 ≤ 〈λ, f(xi) − f(x0)〉 = 〈λ,
1

2
t2i (∇f(x0)(v) + Mi(u, u)) + αi〉,

from which the two last inequalities of the theorem follow.

Let us now study the problem where S is explicitly given by the following
system

g(x) ≤ 0

h(x) = 0,
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where g : Rn → Rk and h : Rn → Rl are given. We shall denote this problem by
(CP ). Let ξ ∈ C ′, β ∈ Rk and γ ∈ Rl. Define the Lagrangian function L by

L(x, ξ, β, γ) := 〈λ, f(x)〉 + 〈β, g(x)〉 + 〈γ, h(x)〉

and set

S0 := {x ∈ Rn : gi(x) = 0 if βi > 0, gi(x) ≤ 0 if βi = 0 and, h(x) = 0}.

In the sequel, when (ξ, β, γ) is fixed, we shall write L(x) instead of L(x, ξ, β, γ)
and ∇L means the gradient of L(x, ξ, β, γ) with respect to the variable x.

Theorem 3.2. Assume that f, g and h are continuously differentiable and C is
a polyhedral convex cone. If x0 ∈ S is a local weakly efficient solution of (CP),
then there is a nonzero vector (ξ0, β, γ) ∈ C ′ × Rk

+ × Rl such that

∇L(x0, ξ0, β, γ) = 0

and for each (u, v) ∈ T2(S0, x0), there is some ξ ∈ Λ such that either

∇L(x0, ξ, β, γ)(u) > 0,

or

∇L(x0, ξ, β, γ)(u) = 0,

in which case either

∇L(x0, ξ, β, γ)(v) + M(u, u) ≥ 0 for some M ∈ co∂2L(x0, ξ, β, γ)

or

M∗(u, u) ≥ 0 for some M∗ ∈ (co∂2L(x0, ξ, β, γ))∞ \ {0}

provided ∂2L is an approximate Hessian map of L which is upper semicontinuous
at x0.

Proof. The first condition about the existence of (ξ0, β, γ) is already known and
is true for any convex closed cone C with a nonempty interior. Let now (u, v) ∈

T2(S0, x0). Let xi = x0 + tiu+
1

2
t2i v+o(t2i ) ∈ S0 for some ti > 0, ti → 0 as i → ∞.

Since x0 is a local weakly efficient solution of (CP), there is some i0 ≥ 1 such
that

f(xi) − f(x0) ∈ (−intC)c, for i ≥ i0.

Moreover, as C is polyhedral, there exists ξ ∈ Λ such that
(4) 〈ξ, f(xi) − f(x0)〉 ≥ 0
for infinitely many i. We may assume this for all i ≥ i0. Since ∂2L is upper
semicontinuous at x0, by applying the Taylor expansion to L we can find

Mi ∈ co∂2L(x0) + 2εB,

where ε is an arbitrarily fixed positive, such that

L(xi) − L(x0) = ∇L(x0)(xi − x0) +
1

2
Mi(xi − x0, xi − x0)
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for i sufficiently large. Substituting the expression xi − x0 = tiu +
1

2
t2i v + o(t2i )

into the above equality and taking (4) into account we derive

0 ≤ ti∇L(x0)(u) +
t2i
2

(∇L(x0)(v) + Mi(u, u)) + αi

where αi =
1

2
Mi(

1

2
t2i v + o(t2i ), tiu +

1

2
t2i v + o(t2i )) + ∇L(x0)(o(t

2
i )). This in par-

ticular implies ∇L(x0)(u) ≥ 0.
When ∇L(x0)(u) = 0, we also derive

0 ≤ ∇L(x0)(v) + Mi(u, u) + αi/t
2
i ,

which by the same reason as discussed in the proof of Theorem 3.1, yields the
requested inequalities.

We notice that the second conclusion of Theorem 3.1 and the conclusion of
Theorem 3.2 are no longer true if C is not polyhedral (see [7] for a counter-
example when the data are smooth).

4. Sufficient conditions

In this section we provide some sufficient conditions for solutions of problems
(P) and (CP).

Theorem 4.1. Assume that f is continuously differentiable, ∂2f is an approxi-
mate Jacobian map of f which is upper semicontinuous at x0 ∈ S. Then each of
the following conditions is sufficient for x0 to be a locally unique efficient solution
of (P ):

(i) For each u ∈ T1(S, x0) \ {0}, there is some ξ ∈ Λ such that

〈ξ,∇f(x0)(u)〉 > 0;

(ii) There is δ > 0 such that for each v ∈ Sδ(x0) and u ∈ T1(S, x0), one has

〈ξ0,∇f(x0)(v)〉 ≥ 0 for some ξ0 ∈ Λ

and 〈ξ,M(u, u)〉 > 0 for every ξ ∈ Λ

and for every M ∈ co∂2f(x0) ∪ [(co∂2f(x0))∞ \ {0}].

Proof. Suppose to the contrary that x0 is not a locally unique efficient solution
of (P ). There exist xi ∈ S, xi → x0 such that
(5) f(xi) − f(x0) ∈ −C.
We may assume that (xi −x0)/‖xi −x0‖ → u ∈ T1(S, x0) as i → ∞. By deviding
(5) by ‖xi − x0‖ and passing to the limit we deduce

∇f(x0)(u) ∈ −C.

This contradicts condition (i) and shows the sufficiency of this condition. For the
second condition, let us apply the Taylor expansion to find Mi ∈ co∂2f(x0)+2εB
for an arbitrarily fixed ε > 0 such that
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(6) f(xi) − f(x0) = ∇f(x0)(xi − x0) + 1
2Mi(xi − x0, xi − x0).

Observe that the first inequality of (ii) implies

∇f(x0)(xi − x0) ∈ (−intC)c

for i sufficiently large. For such i, there is ξi ∈ Λ such that

〈ξi,∇f(x0)(xi − x0)〉 ≥ 0.

On the order hand, (5) shows that

〈ξi, f(xi) − f(x0)〉 ≤ 0.

This and (6) imply

〈ξi,Mi(xi − x0, xi − x0)〉 ≤ 0 for i sufficiently large.

Furthermore, since Λ is compact, we may assume ξi → ξ ∈ Λ. By considering
separately the case {Mi} is bounded and the case {Mi} is unbounded as in the
proof of Theorem 3.1, we deduce

〈ξ,M(u, u)〉 ≤ 0 for some M ∈ co∂2f(x0) ∪ [(co∂2f(x0))∞ \ {0}],

which contradicts (ii). The proof is complete.

Theorem 4.2. Assume that f is continuously differentiable and ∂2f is an ap-
proximate Hessian map of f . If there is some δ > 0 such that for every v ∈ Sδ(x0)
one has

〈ξ0,∇f(x0)(v)〉 ≥ 0 for some ξ0 ∈ Λ

and

〈ξ,M(u, v)〉 ≥ 0 for all ξ ∈ Λ,M ∈ ∂2f(x) with ‖x − x0‖ ≤ δ,

then x0 is a local weakly efficient solution of (P ).

Proof. Suppose to the contrary that x0 is not a local weakly efficient solution of
(P ). There is x ∈ S with ‖x − x0‖ ≤ δ such that
(7) f(x) − f(x0) ∈ −intC.
Set v = x − x0. Then v ∈ Sδ(x0). The first inequality of the hypothesis implies

∇f(x0)(v) ∈ (−intC)c

and the second one implies

M(v, v) ∈ C for every M ∈ ∂2f(x), ‖x − x0‖ ≤ δ.

Since C is convex and closed, the latter inclusion gives in particular that

co∂2f(x) ⊆ C.

Using the Taylor expansion we derive

f(x) − f(x0) ∈ ∇f(x0)(v) +
1

2
co{∂2f [x0, x](v, v)}

⊆ (−intC)c + C ⊆ (−intC)c,

which contradicts (7). The proof is complete.
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Theorem 4.3. Assume that f, g and h are continuously differentiable and for
every u ∈ T1(S, x0) \ {0}, there is some (ξ, β, γ) ∈ Λ × Rk

+ × Rl such that

∇L(x0, ξ, β, γ) = 0, βg(x0) = 0,

and

M(u, u) > 0 for each M ∈ co∂2L(x0) ∪ ((co∂2L(x0))∞ \ {0}),

where ∂2L is an approximate Jacoban map of L which is upper semicontinuous
at x0. Then x0 is a locally unique efficient solution of (CP).

Proof. Suppose to the contrary that x0 is not a locally unique solution of (CP).
Then there is xi ∈ S, xi → x0 such that f(xi) − f(x0) ∈ −C. We may assume
(xi − x0)/‖xi − x0‖ → u ∈ T1(S, x0). It follows that

L(xi) − L(x0) ≤ 0 for all i ≥ 1.

Applying the Taylor expansion to L and by the upper semicontinuous of ∂2L we
obtain

L(xi) − L(x0) −∇L(x0)(xi − x0) ∈
1

2
co{∂2L[x0, xi](xi − x0, xi − x0)}

⊆
1

2
(co∂2L(x0) + ‖xi − x0‖B)(xi − x0, xi − x0),

for i sufficiently large. These relations yield

Mi(xi − x0, xi − x0) ≤ 0

for some Mi ∈ co∂2L(x0) + ‖xi − x0‖B, with i sufficiently large. By the ar-
gument of the proof of Theorem 3.1, we derive the existence of some matrix
M ∈ co∂2L(x0) ∪ ((co∂2L(x0))∞ \ {0}) such that

M(u, u) ≤ 0,

which contradicts the hypothesis.

Theorem 4.4. Assume that f, g and h are continuously differentiable and there
is δ > 0 such that for each v ∈ Sδ(x0), one can find a vector (ξ, β, γ) ∈ Λ×Rk

+×Rl

and an approximate Hessian map ∂2L(x, ξ, β, γ) of L such that

∇L(x0, ξ, β, γ) = 0, βg(x0) = 0

and

M(u, u) ≥ 0 for every M ∈ ∂2L(x, ξ, β, γ) with ‖x − x0‖ ≤ δ.

Then x0 is a local weakly efficient solution of (CP).

Proof. Similar to the proof of Theorem 4.1.
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5. Example

In this section we give an example which is adapted from [22] to show that the
recession Hessian matrices in Theorem 3.2 cannot be removed when the data of
the problem are of class C1. Examples for the sufficient conditions of Section 4
can be constructed in a similar way.

Let us consider the following two-objective problem

min(x, x4/3 − y4)

s.t. − x2 + y4 ≤ 0.

The partial order of R2 is given by the positive orthant R2
+. It is easy to see that

(0, 0) is a local efficient solution of the problem. By taking ξ0 = (0, 1) and β = 1,
the Lagrangian function of the problem is

L((x, y), ξ0, β)) = x4/3 − y4 − x2 + y4 = x4/3 − x2

and satisfies the necessary condition

∇L((0, 0), ξ0, β) = (0, 0).

The set S0 is given by

S0 = {(x, y) ∈ R2 : x2 = y4}.

Let us take u = (0, 1) and v = (−2, 0). It is evident that (u, v) ∈ T2(S0, (0, 0)).
According to Theorem 3.2, there is some ξ = (ξ1, ξ2) ∈ R2

+ with ‖ξ‖ = 1 such
that ∇L((0, 0), ξ, β)(u) ≥ 0. Actually we have

∇L((0, 0), ξ, β) = (ξ1, 0).

Hence ∇L((0, 0), ξo, β)(u) = 0, and the second order conditions of that theorem
must hold. Observe first that if ξ2 = 0, then

∂2L(x, y) :=

{(

−2 0
0 12y2

)}

is an approximate Hessian map of L, which is upper semicontinuous at (0, 0). It
is not hard to verify that the second order condition of Theorem 3.2 does not
hold for this ξ. Consequently, ξ2 > 0. Let us define

∂2L(x, y) :=

{(

4

9
ξ2x

−2/3 − 2 0

0 12(1 − ξ2)y
2

)}

, for x 6= 0,

and

∂2L(0, y) :=

{(

4
9ξ2α − 2 0

0 12(1 − ξ2)y
2 − 1/α

)

: α ≥
9

ξ2

}

.

A direct calculation confirms that the set valued map (x, y) → ∂2L(x, y) is an
approximate Hessian map of L which is upper semicontinuous at (0, 0). Moreover,
for each M ∈ co∂2L(0, 0), one has

∇L(0, 0)(v) + M(u, u) = −2ξ1 −
1

α
< 0,
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which shows that the first inequality of the second order condition of Theorem
3.2 is not true. The recession cone of ∂2L(0, 0) is given by

(∂2L(0, 0))∞ =

{(

α 0
0 0

)

: α ≥ 0

}

.

By choosing

M∗ =

(

1 0
0 0

)

∈ (co∂2L(0, 0))∞ \ {0}

we have
M∗(u, u) ≥ 0

as requested.

References

[1] B. Aghezzaf and M. Hachimi, Second-order optimality conditions in multiobjective opti-

mization problems, J. Optimization Theory Appl. 102 (1999), 37-50.
[2] S. Bolintineau and M. El Maghri, Second-order efficiency conditions and sensitivity of

efficient points, J. Optimization Theory Appl. 98 (1998), 569-592.
[3] A. Cambini and L. Martein, Second order necessary optimality conditions in the image

space: preliminary results, on Proceedings of the Workshop Scalar and Vector Optimization
in Economic and Financial Problems, Edited by E. Castagnoli and G. Giorgi , Milan, Italy,
pp. 27-38, 1995.

[4] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[5] B. D. Craven, Nonsmooth multiobjective programming, Numer. Funct. Anal. Optimization

10 (1989), 49-64.
[6] A. Guerraggio and D. T. Luc, Optimality conditions for C

1,1 vector optimization problems,
J. Optimization Theory Appl. 109 (2001), 615-529.

[7] A. Guerraggio and D. T. Luc, Optimality conditions for C
1,1 constrained multiobjective

problems, J. Optimization Theory Appl. (to appear)
[8] A. Fischer, V. Jeyakumar and D. T. Luc, Solution point characterizations and convergence

analysis of a descent algorithm for nonsmooth continuous complementarity problems, J.
Optimization Theory Appl. 110 (2001), 493-513.

[9] J. Jahn, Mathematical Theory of Vector Optimization in Partially Ordered Spaces, Peter
Lang, Germany, 1985.

[10] A. D. Ioffe, Nonsmooth analysis: Differential calculus of non-differentiable mappings, Trans.
Am. Math. Soc. 266 (1981), 1-56.

[11] V. Jeyakumar and D. T. Luc, Approximate Jacobian matrices for nonsmooth continuous

maps and C
1-optimization, SIAM J. Control Optimization 36 (1998), 1815-1832.

[12] V. Jeyakumar, D. T. Luc, and S. Schaible, Characterizations of generalized monotone non-

smooth continuous maps using approximate Jacobians, J. Convex Anal. 5 (1998), 119-132.
[13] V. Jeyakumar and D. T. Luc, Nonsmooth calculus, minimality and monotonicity of con-

vexificators, J. Optimization Theory Appl. 101 (1999), 599-621.
[14] V. Jeyakumar and D. T. Luc, Open mapping theorem using unbounded generalized Jaco-

bians, Nonlinear Analysis (to appear).
[15] V. Jeyakumar, D. T. Luc and Y. Wang, Lagrange multipliers for equality constraints without

Lipschitz continuity, Applied Mathematics Report AMR00/1, University of New South
Wales, Australia (submitted).

[16] J-B. Hiriart-Urruty, J-J. Strodiot and V. H. Nguyen, Generalized Hessian matrix and second

order optimality conditions for problems with C
1,1 data, Appl. Math. Optimization 11

(1984), 43-56.
[17] H. W. Kuhn and F. H. Tucker, Nonlinear programming, Proceedings of the second Berkeley

Symposium on Mathematical Statistics and Probability, California, 1951, pp. 481-492.



268 A. GUERRAGGIO, D. T. LUC AND N. B. MINH

[18] L. P. Liu, The second-order conditions of nondominated solutions for C
1,1 generalized multi-

objective mathematical programming, Systems Sciences and Mathematical Sciences 4 (1991),
128-138.

[19] D. T. Luc, Theory of Vector Optimization, LNEMS 319, Springer-Verlag,Germany, 1989.
[20] D. T. Luc, Contingent derivative of set-valued maps and applications to vector optimization,

Math. Program. 50 (1991), 99-111.
[21] D. T. Luc, A multiplier rule in multiobjective programming problems with continuous data,

SIAM J. Optim. (to appear).
[22] D. T. Luc, Second order optimality conditions for problems with continuously differentiable

data, Optimization (to appear).
[23] D. T. Luc, Variational inequalities: local uniqueness of solutions for problems with contin-

uous data, J. Math. Anal. Appl. (to appear).
[24] D. T. Luc and C. Malivert, Invex optimization problems, Bull. Aust. Math. Soc. 46 (1992),

47-66.
[25] P. H. Sach, Second order necessary optimality conditions for optimization problems involving

set-valued maps, Appl. Math. Optimization 22 (1990), 189-209.
[26] P. H. Sach and W. Oettli, Prederivatives and second order conditions for infinite optimiza-

tion problems, in “Recent Advances in Nonsmooth Optimization”, Eds. D. Z. Du, L. Qi
and R. S. Womersley, World Scientific Publishers, 1995, pp. 243-259.

[27] S. Wang, Second-order necessary and sufficient conditions in multiobjective programming,

Numer. Funct. Anal. Optimization 12 (1991), 237-252.
[28] Y. Wang and V. Jeyakumar, A sharp Lagrange multiplier rule for nonsmooth mathematical

programming problems involving equality constraints, SIAM J. Optim. 10 (2000), 1136-1148.

University of Bocconi, Milan, Italy

University of Avignon, Avignon, France

Institute of Mathematics, Hanoi, Vietnam


