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LIE SUPERALGEBRAS OF STRING THEORIES

PAVEL GROZMAN, DIMITRY LEITES AND IRINA SHCHEPOCHKINA

Abstract. We describe simple complex Lie superalgebras of vector fields on
“supercircles” - stringy superalgebras - in intrinsic terms. This is an an-
nouncement of a classification: there are four series of such algebras and four
exceptional stringy superalgebras.

We also describe Lie superalgebras close to the simple stringy ones, namely,
12 of the simple stringy Lie superalgebras are distinguished: only they have
nontrivial central extensions and since one of the distinguished superalgebras
has three nontrivial central extensions each, there exist exactly 14 superiza-
tions of the Liouville action, Schrödinger equation, KdV hierarchy, etc. We
also present the three nontrivial cocycles on the N = 4 extended Neveu–
Schwarz superalgebra in terms of primary fields.

One of these stringy superalgebras is a Kac–Moody superalgebra g(A) with
a nonsymmetrizable Cartan matrix A. It can not be interpreted as a central
extension of a twisted loop algebra.

In the literature the stringy superalgebras are often referred to with an
unfortunate term superconformal. We show that only three of simple stringy
superalgebras are indeed conformal.

Introduction

I.1. The discovery of simple stringy Lie superalgebras. Simple and
close to simple Lie superalgebras studied here appear as symmetry algebras in
String Theories. For this and other reasons given below we call them stringy

superlagebras. The discovery of simple stringy superalgebras was not easy. Even
the original name of these Lie superalgebras is unfortunate. Mathematicians
lately bapthised the Lie algebra of vector fields on the circle witt in honor of
Witt who considered it in prime characteristic. Recall that conformal means
preserving a metric (or a more general bilinear form) up to a factor. By a theorem
of Liouville witt is the only infinite dimensional conformal Lie algebra. Physicists
who considered the first superization of witt, namely kL(1|1) and kM (1|1), dubbed
them “superconformal” algebras. But, as we will show, except for them, NO
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stringy superalgebra is superconformal, or, better say, conformal in the original
meaning of the word. Besides, the diversity of the stringy algebras requires often
to refer to them using their “given names” that describe them more precisely,
than a common term. When the common name is needed, then stringy is, at
least, a not selfcontradictory and suggestive name. An intrinsic definition is
desirable and there appeared one in [KvL]. We give another, more invariant,
intrinsic description of stringy superalgebras we dug out of [Ma].

The physicists who discovered first examples of simple stringy superalgebras
([NS], [R], [Ad]) were primarily interested in unitary representations, so they
started with real algebras which are more difficult to classify than complex alge-
bras. So they gave a number of examples, not a classification. We refer to [S3]
for the complete list of real forms of the stringy algebras known at that time.
The real forms of the other examples will be given elsewhere.

Observe also that the physicists who studied superstrings were mainly inter-
ested in nontrivial central extensions of “superconformal” superalgebras. Only
several first terms of the four series of stringy superalgebras - the 12 distinguished

superalgebras - have such extensions, the other algebras were snubbed at. For
a review of applications of distinguished stringy superalgebras in string theory,
see [GSW]. For some other applications see [LX]. Observe that nondistinguished
simple stringy superalgebras are also of interest, see [CLL], [GL2] and [LSh].

Ordered historically, the steps of classification are: [NS] and [R] followed by
[Ad], where four series of the stringy superalgebras (without a continuous pa-
rameter) and most of the central extensions of the distinguished superalgebras
were found for one real form of each algebra; in [FL] the complexifications of
the algebras from [Ad] were interpreted geometrically and expressed in terms of
superfields and two classifications were announced: (1) of simple stringy super-
algebras and (2) of their central extensions. Regrettably, each classification had
a gap. During the past years these gaps were partly filled by several authors, in
this paper the repair is completed, thus a classification is announced here.

Poletaeva [P] in 1983 and, independently, Schoutens [Sc] in 1986, found three
nontrivial central extensions of kL◦(1|4), i.e., of the 4-extended Neveu–Schwarz
superalgebra (the importance of [P], whose results were expressed via H1(g; g)
rather than more conventional H2(g), was not recognized in time and Poletaeva’s
result was never properly published).

Schwimmer and Seiberg [SS] found a deformation of the divergence-free series.

In [KvL] the completeness of the list of examples from [FL] amended with the
deformation from [SS] was conjectured and the statements from [FL] and [Sc] on
the nontrivial central extensions reproved; [KvL] contains the first published proof
of the classification of the nontrivial central extensions of the simple superalgebras
considered.

Other important steps of classification: [K], [L1] and [Sh1], [SP], where the
vectorial Lie superalgebras with polynomial coefficients are considered, and [Ma],
where a reasonable characterization of stringy algebras is given.
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Observe, that after [Sc] there appeared several papers in which only two of the
three central extensions of kL◦(1|4) and kM (1|4) were recognized; the controversy
is occasioned, presumably, by the insufficiently lucid description of the superalge-
bras involved and ensuing confusion between the exceptional simple superalgebra
kL◦(1|4), see below. Besides, the cocycles that the physicists need should be
expressed in terms of the primary fields; so far, this was not done.

I.2. Our results. Here we define classical stringy Lie superalgebras (a.k.a.
superconformal ones) in intrinsic terms and announce the list of all simple stringy
superalgebras. Under certain additional assumptions the completeness of a part
of our list satisfying these assumptions is proved in [K3].

We also answer a question of S. Krivonos: we replace the three cocycles found
in [P] and [Sc] with cohomologic ones but expressed in terms of primary fields.

This paper, with its exceptional example based on hep-th 9702121, was pre-
printed in hep-th 9702120. Though later [CK] appeared, our interpretation of
several exceptional simple stringy superalgebras, as well as the intrinsic definition
of stringy (“superconformal”) superlagebras, explicit presentation (description of
defining relations) and the description of a distinguished stringy superalgebra
with the help of a Cartan matrix are still new.

Remark. The results of this paper were obtained in Stockholm in June 1996 and
delivered at the seminar of E. Ivanov, JINR, Dubna (July, 1996) and Voronezh
winter school Jan. 12–18, 1997. Kac’s questions concerning exceptional Lie
superalgebras in his numerous letters to I. Shchepochkina in October-November
1996 culminated in [CK], where our example kasL is described in different terms.
We thank Kac for the preprints [CK] and [K2], where several results from [L2]
are discussed, and a kind letter to Leites that acknowledges Kac’s receiving a
preprint of [Sh1].

I.3. Real forms. The 1986 result of Serganova [S3] completed description of
the real forms of the distinguished and simple stringy superalgebras known at
that time. Crucial there is the discovery of three, not two, types of real forms of
stringy and Kac–Moody superalgebras, cf. [S1] with [K1], where only two types
of real forms of Kac–Moody algebras are recognized. Another important result
of Serganova pertaining here: the discovery of three basic types of unitarity, one
of them with an odd form, see [S2].

0. Background

0.1. Linear algebra in superspaces. Generalities. Superization has certain
subtleties, often disregarded or expressed as in [L], [L3] or [M]: too briefly. We
will dwell on them a bit.

A superspace is a Z/2-graded space; for a superspace V = V0̄ ⊕ V1̄ denote by
Π(V ) another copy of the same superspace: with the shifted parity, i.e., (Π(V ))̄i =
Vī+1̄. The superdimension of V is dim V = p + qε, where ε2 = 1 and p = dim V0̄,
q = dim V1̄. (Usually, dimV is expressed as a pair (p, q) or p|q; this notation
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obscures the fact that dim V ⊗ W = dim V · dim W which is clear with the help
of ε.)

A superspace structure in V induces the superspace structure in the space
End(V ). A basis of a superspace is always a basis consisting of homogeneous

vectors; let Par = (p1, . . . , pdimV ) be an ordered collection of their parities. We
call Par the format of (the basis of) V . A square supermatrix of format (size)
Par is a dim V × dimV matrix whose ith row and ith column are of the same
parity pi. The matrix unit Eij is supposed to be of parity pi +pj and the bracket
of supermatrices (of the same format) is defined via Sign Rule:

if something of parity p moves past something of parity q the sign (−1)pq ac-

crues; the formulas defined on homogeneous elements are extended to arbitrary

ones via linearity.

For example, setting [X,Y ] = XY − (−1)p(X)p(Y )Y X we get the notion of the
supercommutator and the ensuing notion of the Lie superalgebra (that satisfies
the superskew-commutativity and super Jacobi identity).

We do not usually use the sign ∧ for differential forms on supermanifolds: in
what follows we assume that the exterior differential is odd and the differential
forms constitute a supercommutative superalgebra; still, we keep using it on
manifolds, sometimes, not to deviate too far from conventional notations.

Usually, Par is of the form (0̄, . . . , 0̄, 1̄, . . . , 1̄). Such a format is called standard.
In this paper we can do without nonstandard formats. But they are vital in the
study of systems of simple roots that the reader might be interested in (see [GL1])
in connection with applications to q-quantization or integrable systems.

The general linear Lie superalgebra of all supermatrices of size Par is denoted
by gl(Par); usually, gl(0̄, . . . , 0̄, 1̄, . . . , 1̄) is abbreviated to gl(dim V0̄|dim V1̄). Any
matrix from gl(Par) can be expressed as the sum of its even and odd parts; in
the standard format this is the following block expression:

(
A B
C D

)
=

(
A 0
0 D

)
+

(
0 B
C 0

)
, p

((
A 0
0 D

))
= 0̄, p

((
0 B
C 0

))
= 1̄.

The supertrace is the map gl(Par) −→ C, (Aij) 7→
∑

(−1)piAii. Since str[x, y] =
0, the subsuperspace of supertraceless matrices constitutes the special linear Lie
subsuperalgebra sl(Par).

Superalgebras that preserve bilinear forms: two types. To the linear
map F of superspaces there corresponds the dual map F ∗ between the dual
superspaces; if A is the supermatrix corresponding to F in a basis of format Par,
then to F ∗ the supertransposed matrix Ast corresponds:

(Ast)ij = (−1)(pi+pj)(pi+p(A))Aji.

The supermatrices X ∈ gl(Par) such that

XstB + (−1)p(X)p(B)BX = 0 for a homogeneous matrix B ∈ gl(Par)

constitute the Lie superalgebra aut(B) that preserves the bilinear form on V with
matrix B. Most popular is the nondegenerate supersymmetric form whose matrix
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in the standard format is the canonical form Bev or B′
ev:

Bev(m|2n) =

(
1m 0
0 J2n

)
, where J2n =

(
0 1n

−1n 0

)
,

or

B′
ev(m|2n) =

(
antidiag(1, . . . , 1) 0

0 J2n

)
.

The usual notation for aut(Bev(m|2n)) is osp(m|2n) or ospsy(m|2n).

Recall that the “upsetting” map u : Bil(V,W ) −→ Bil(W,V ) becomes for
V = W an involution u : B 7→ Bu which on matrices acts as follows:

B =

(
B11 B12

B21 B22

)
7→ Bu =

(
Bt

11 (−1)p(B)Bt
21

(−1)p(B)Bt
12 Bt

22

)
.

This involution separates symmetric and skew-symmetric forms. The passage
from V to Π(V ) sends the supersymmetric forms to superskew-symmetric ones,
preserved by the “symplectico-orthogonal” Lie superalgebra ospsk(m|2n) which
is isomorphic to ospsy(m|2n) but has a different matrix realization. We never use
notation spo(2n|m) in order not to confuse with the special Poisson superalgebra.

In the standard format the matrix realizations of these algebras are:

osp(m|2n) =








E Y Xt

X A B
−Y t C −At






 ; ospsk(m|2n) =








A B X
C −At Y t

Y −Xt E






 ,

where

(
A B
C −At

)
∈ sp(2n), E ∈ o(m) and t is the usual transposition.

Among nonstandard canonical forms the following ones are most important
and often used:

Bev(0̄, 1̄, . . . ) = antidiag(1,−1, 1,−1, . . . ); Bev(n|m|n) =




0 0 1n

0 1m 0
−1n 0 0




A nondegenerate supersymmetric odd bilinear form Bodd(n|n) can be reduced
to a canonical form whose matrix in the standard format is J2n. A canoni-
cal form of the superskew odd nondegenerate form in the standard format is

Π2n =

(
0 1n

1n 0

)
. The usual notation for aut(Bodd(Par)) is pe(Par). The pas-

sage from V to Π(V ) establishes an isomorphism pesy(Par) ∼= pesk(Par). This
Lie superalgebra is called, as A. Weil suggested, periplectic one. The matrix
realizations in the standard format of these superalgebras is shorthanded to:

pesy (n) =

{(
A B
C −At

)
, where B = −Bt, C = Ct

}
;

pesk(n) =

{(
A B
C −At

)
, where B = Bt, C = −Ct

}
.

The special periplectic superalgebra is spe(n) = {X ∈ pe(n) : strX = 0}.
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0.2. Vectorial Lie superalgebras: The standard realization. The elements
of the Lie algebra L = der C[[u]] are considered as vector fields. The Lie algebra
L has only one maximal subalgebra L0 of finite codimension (consisting of the
fields that vanish at the origin). The subalgebra L0 determines a filtration of L:
set

L−1 = L and Li = {D ∈ Li−1 : [D,L] ⊂ Li−1} for i ≥ 1.

The associated graded Lie algebra L = ⊕
i≥−1

Li, where Li = Li/Li+1, consists of

the vector fields with polynomial coefficients.

Superization and the passage to a subalgebras of der C[[u]] brings new phe-
nomena. Suppose L0 ⊂ L is a maximal subalgebra of finite codimension and
containing no ideals of L. For the Lie superalgebra L = der C[[u, ξ]] the minimal
L0-invariant subspace of L strictly containing L0 coincides with L. Not all the
subalgebras of der C[[u, ξ]] have this property. Let L−1 be a minimal subspace of
L containing L0, different from L0 and L0-invariant. A Weisfeiler filtration of L
is determined by the formulas

L−i−1 = [L−1,L−i] + L−i and Li = {D ∈ Li−1 : [D,L−1] ⊂ Li−1} for i > 0.

Since the codimension of L0 is finite, the filtration takes the form

L = L−d ⊃ . . .L0 ⊃ . . .(0.2)

for some d. This d is the depth of L or of the associated graded Lie superalgebra
L. We call all filtered or graded Lie superalgebras of finite depth vectorial, i.e.,
realizable with vector fields on a finite dimensional supermanifold. Considering
the subspaces (0.2) as the basis of a topology, we can complete the graded or
filtered Lie superalgebras L or L; the elements of the completion are the vector
fields with formal power series as coefficients. Though the structure of the graded
algebras is easier to describe, in applications the completed Lie superalgebras are
usually needed.

Unlike Lie algebras, simple vectorial superalgebras possess several maximal
subalgebras of finite codimension. We describe them, together with the corre-
sponding gradings, in sec. 0.4.

1) General algebras. Let x = (u1, . . . , un, θ1, . . . , θm), where the ui are even
indeterminates and the θj are odd ones. Set vect(n|m) = der C[x]; it is called the

general vectorial Lie superalgebra.

2) Special algebras. The divergence of the field D =
∑
i

fi
∂

∂ui
+

∑
j

gj
∂

∂θj
is

the function (in our case: a polynomial, or a series)

divD =
∑

i

∂fi

∂ui
+

∑

j

(−1)p(gj)
∂gi

∂θj
.

• The Lie superalgebra svect(n|m) = {D ∈ vect(n|m) : divD = 0} is called the
special or divergence-free vectorial superalgebra.
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It is clear that it is also possible to describe svect(n|m) as {D ∈ vect(n|m) :
LDvolx = 0}, where volx is the volume form with constant coefficients in coordi-
nates x and LD the Lie derivative with respect to D.

• The Lie superalgebra

svectλ(0|m) = {D ∈ vect(0|m) : div(1 + λθ1 · · · · · θm)D = 0},
the deform of svect(0|m), is called the deformed special or deformed divergence-free

vectorial superalgebra. Clearly, svectλ(0|m) ∼= svectµ(0|m) for λµ 6= 0. Observe
that p(λ) ≡ m (mod 2), i.e., for odd m the parameter of deformation λ is odd;
strictly speaking, svectλ(0|2k + 1) is considered not over C, but over C[λ].

Remark. Sometimes we write vect(x) or even vect(V ) if V = Span(x) and use sim-
ilar notations for the subalgebras of vect introduced below. Algebraists sometimes
abbreviate vect(n) and svect(n) to Wn (in honor of Witt) and Sn, respectively.

3) The algebras that preserve Pfaff equations and differential 2-
forms.

• Set u = (t, p1, . . . , pn, q1, . . . , qn); let

α̃1 = dt +
∑

1≤i≤n

(pidqi − qidpi) +
∑

1≤j≤m

θjdθj and ω̃0 = dα̃1 .

The form α̃1 is called contact, the form ω̃0 is called symplectic. Sometimes it is
more convenient to redenote the θ’s and set

ξj =
1√
2
(θj − iθr+j),

ηj =
1√
2
(θj + iθr+j) for j ≤ r = [m/2] (here i2 = −1),

θ = θ2r+1,

and in place of ω̃0 or α̃1 take α and ω0 = dα1, respectively, where

α1 = dt +
∑

1≤i≤n

(pidqi − qidpi) +
∑

1≤j≤r

(ξjdηj + ηjdξj) +

{
0 if m = 2r,

θdθ if m = 2r + 1.

The Lie superalgebra that preserves the Pfaff equation α1 = 0, i.e., the super-
algebra

k(2n + 1|m) = {D ∈ vect(2n + 1|m) : LDα1 = fDα1},
(here fD ∈ C[t, p, q, ξ] is a polynomial determined by D) is called the contact

superalgebra.

• Similarly, set u = q = (q1, . . . , qn), let θ = (ξ1, . . . , ξn; τ) be odd. Set

α0 = dτ +
∑
i
(ξidqi + qidξi), ω1 = dα0

and call these forms the odd contact and periplectic, respectively.

The Lie superalgebra that preserves the Pfaff equation α0 = 0, i.e., the super-
algebra

m(n) = {D ∈ vect(n|n + 1) : LDα0 = fD · α0}, where fD ∈ C[q, ξ, τ ],
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is called the odd-contact superalgebra.

0.3. Generating functions. A laconic way to describe k, m and their subalge-
bras is via generating functions.

• Odd form α1. For f ∈ C[t, p, q, θ] set

Kf = (2 − E)(f)
∂

∂t
− Hf +

∂f

∂t
E,

where E =
∑
i

yi
∂

∂yi
(here the y are all the coordinates except t) is the Euler oper-

ator (which counts the degree with respect to the y), and Hf is the Hamiltonian
field with Hamiltonian f that preserves dα1:

Hf =
∑

i≤n

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
− (−1)p(f)

∑

j≤m

∂f

∂θj

∂

∂θj
.

The choice of the form α1 instead of α̃1 only affects the form of Hf that we
give for m = 2k + 1:

Hf =
∑

i≤n

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
− (−1)p(f)


∑

j≤k

(
∂f

∂ξj

∂

∂ηj
+

∂f

∂ηj

∂

∂ξj

)
+

∂f

∂θ

∂

∂θ


 .

• Even form α0. For f ∈ C[q, ξ, τ ] set

Mf = (2 − E)(f)
∂

∂τ
− Lef − (−1)p(f) ∂f

∂τ
E,

where E =
∑
i

yi
∂

∂yi
(here the y are all the coordinates except τ) is the Euler

operator, and

Lef =
∑

i≤n

(
∂f

∂qi

∂

∂ξi
+ (−1)p(f) ∂f

∂ξi

∂

∂qi

)
.

Since

LKf
(α1) = 2

∂f

∂t
α1 = K1(f)α1,

LMf
(α0) = −(−1)p(f)2

∂f

∂τ
α0 = −(−1)p(f)M1(f)α0,(0.3)

it follows that Kf ∈ k(2n + 1|m) and Mf ∈ m(n). Observe that

p(Lef ) = p(Mf ) = p(f) + 1̄.

• To the (super)commutators [Kf ,Kg] or [Mf ,Mg] there correspond contact

brackets of the generating functions:

[Kf ,Kg] = K{f,g}k.b.
; [Mf ,Mg] = M{f,g}m.b.

The explicit formulas for the contact brackets are as follows. Let us first define
the brackets on functions that do not depend on t (resp. τ).
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The Poisson bracket {·, ·}P.b. (in the realization with the form ω0) is given by
the formula

{f, g}P.b. =
∑

i≤n

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
− (−1)p(f)

∑

j≤m

∂f

∂θj

∂g

∂θj

and in the realization with the form ω0 for m = 2k + 1 it is given by the formula

{f, g}P.b. =
∑

i≤n

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)

− (−1)p(f)

[ ∑

j≤m

(
∂f

∂ξj

∂g

∂ηj
+

∂f

∂ηj

∂g

∂ξj

)
+

∂f

∂θ

∂g

∂θ

]
.

The Buttin bracket {·, ·}B.b. is given by the formula

{f, g}B.b. =
∑

i≤n

(
∂f

∂qi

∂g

∂ξi
+ (−1)p(f) ∂f

∂ξi

∂g

∂qi

)
.

Remark. What we call here “Buttin bracket” was discovered in pre-super era
by Schouten; Buttin was the first to prove that this bracket establishes a Lie
superalgebra structure. The interpretations of the Buttin superalgebra similar to
that of the Poisson algebra and of the elements of le as analogs of Hamiltonian
vector fields was given in [L1]. Later it gained a great deal of currency under
the name “antibracket” given by Batalin and Vilkovisky who rediscovered it,
cf. [GPS]. The Schouten bracket was originally defined on the superspace of
polyvector fields on a manifold, i.e., on the superspace of sections of the exterior
algebra (over the algebra F of functions) of the tangent bundle, Γ(Λ

.
(T (M))) ∼=

Λ
.
F (V ect(M)). The explicit formula of the Schouten bracket (in which the hatted

slot should be ignored, as usual) is

[X1 ∧ · · · ∧ · · · ∧ Xk, Y1 ∧ · · · ∧ Yl]

=
∑

i,j

(−1)i+j [Xi, Yj ] ∧ X1 ∧ · · · ∧ X̂i ∧ · · · ∧ Xk ∧ Y1 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yl.(∗)

With the help of Sign Rule we easily superize formula (∗) for the case when
manifold M is replaced with supermanifold M. Let x and ξ be the even and odd

coordinates on M. Setting θi = Π
( ∂

∂xi

)
= x̌i, qj = Π

( ∂

∂ξj

)
= ξ̌j we get an

identification of the Schouten bracket of polyvector fields on M with the Buttin
bracket of functions on the supermanifold M̌ whose coordinates are x, ξ; x̌, ξ̌; the
transformation of x, ξ induces from that of the checked coordinates.

In terms of the Poisson and Buttin brackets, respectively, the contact brackets
take the form

{f, g}k.b. = (2 − E)(f)
∂g

∂t
− ∂f

∂t
(2 − E)(g) − {f, g}P.b.
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and, respectively,

{f, g}m.b. = (2 − E)(f)
∂g

∂τ
+ (−1)p(f) ∂f

∂τ
(2 − E)(g) − {f, g}B.b..

It is not difficult to prove the following isomorphisms (as superspaces):

k(2n + 1|m) ∼= Span(Kf : f ∈ C[t, p, q, θ]); m(n) ∼= Span(Mf : f ∈ C[τ, q, ξ]).

Lie superalgebra svect(1|n) has a simple ideal svect◦(n) of codimension 1 (more
exactly, (1—0) or (0—1), depending on n) defined from the exact sequence

0 −→ svect◦(n) −→ svect(1|n) −→ C · ξ1 . . . ξn
∂

∂t
−→ 0

0.4. The Cartan prolongs. We will repeatedly use the Cartan prolong. So let
us recall the definition and generalize it somewhat. Let g be a Lie algebra, V a
g-module, Si the operator of the i-th symmetric power. Set g−1 = V , g0 = g and
for i > 0 define the i-th Cartan prolong (the result of Cartan’s prolongation) of
the pair (g−1, g0) as

gi = {X ∈ Hom(g−1, gi−1) : X(v)(w, ...) = X(w)(v, ...) for any v,w ∈ g−1}
= (Si(g−1)

∗ ⊗ g0) ∩ (Si+1(g−1)
∗ ⊗ g−1).

(Here we consider g0 as a subspace in g∗−1⊗g−1, so the intersection is well-defined.)

The Cartan prolong of the pair (V, g) is (g−1, g0)∗ = ⊕
i≥−1

gi. (In what follows .

in superscript denotes, as is now customary, the collection of all degrees, while ∗
is reserved for dualization; in the subscripts we retain the oldfashioned ∗ instead
of . to avoid too close a contact with the punctuation marks.)

Suppose that the g0-module g−1 is faithful. Then, clearly,

(g−1, g0)∗ ⊂ vect(n) = der C[x1, ..., xn], where n = dim g−1 and

gi = {D ∈ vect(n) : deg D = i, [D,X] ∈ gi−1 for any X ∈ g−1}.

It is subject to an easy verification that the Lie algebra structure on vect(n)
induces same on (g−1, g0)∗.

Of the four simple vectorial Lie algebras, three are Cartan prolongs: vect(n) =
(id, gl(n))∗, svect(n) = (id, sl(n))∗ and h(2n) = (id, sp(n))∗. The fourth one —
k(2n+1) — is also the prolong under a trifle more general construction described
as follows.

A generalization of the Cartan prolong. Let g− = ⊕
−d≤i≤−1

gi be a nilpotent

Z-graded Lie algebra and g0 ⊂ der0g a Lie subalgebra of the Z-grading-preserving
derivations. For i > 0 define the i-th prolong of the pair (g−, g0) to be:

gi = ((S
.
(g−)∗ ⊗ g0) ∩ (S

.
(g−)∗ ⊗ g−))i,

where the subscript i in the right hand side singles out the component of degree
i.
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Define (g−, g0)∗ to be ⊕
i≥−d

gi; then, as is easy to verify, (g−, g0)∗ is a Lie

algebra.

What is the Lie algebra of contact vector fields in these terms? Denote by
hei(2n) the Heisenberg Lie algebra: its space is W ⊕ C · z, where W is a 2n-
dimensional space endowed with a nondegenerate skew-symmetric bilinear form
B and the bracket in hei(2n) is given by the following relations:

z is in the center and [v,w] = B(v,w) · z for any v,w ∈ W .

Recall that for any g we write cg = g⊕C ·z or c(g) to denote the trivial central
extension with the 1-dimensional even center generated by z.

Clearly,

k(2n + 1) ∼= (hei(2n), csp(2n))∗.

0.5. Lie superalgebras of vector fields as Cartan’s prolongs. The super-
ization of the constructions from sec. 0.4 are straightforward: via Sign Rule. We
thus get infinite dimensional Lie superalgebras

vect(m|n) = (id, gl(m|n))∗; svect(m|n) = (id, sl(m|n))∗;

h(2m|n) = (id, ospsk(m|2n))∗; le(n) = (id, pesk(n))∗; sle(n) = (id, spesk(n))∗.

Remark. Observe that the Cartan prolongs (id, ospsy(m|2n))∗ and (id, pesy(n))∗
are finite dimensional.

The generalization of Cartan’s prolongations described in sec. 0.4 has, after
superization, two analogs associated with the contact series k and m, respectively.

• Define the Lie superalgebra hei(2n|m) on the direct sum of a (2n,m)-dimensio-

nal superspace W endowed with a nondegenerate skew-symmetric bilinear form
and a (1, 0)-dimensional space spanned by z.

Clearly, we have k(2n+1|m) = (hei(2n|m), cospsk(m|2n))∗ and, given hei(2n|m)
and a subalgebra g of cospsk(m|2n), we call (hei(2n|m), g)∗ the k-prolong of (W, g),
where W is the identity ospsk(m|2n)-module.

• The “odd” analog of k is associated with the following “odd” analog of
hei(2n|m). Denote by ab(n) the antibracket Lie superalgebra: its space is W⊕C·z,
where W is an n|n-dimensional superspace endowed with a nondegenerate skew-
symmetric odd bilinear form B; the bracket in ab(n) is given by the following
relations:

z is odd and lies in the center; [v,w] = B(v,w) · z for v,w ∈ W .

Set m(n) = (ab(n), cpesk(n))∗ and, given ab(n) and a subalgebra g of cpesk(n),
we call (ab(n), g)∗ the m-prolong of (W, g), where W is the identity pesk(n)-
module.

Generally, given a nondegenerate form B on a superspace W and a superalgebra
g that preserves B, we refer to the above generalized prolongations as to mk-

prolongation of the pair (W, g).
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A partial Cartan prolong or the prolong of a positive part. Take a g0-
submodule h1 in g1 such that [g−1, h1] = g0, not a subalgebra of g0. If such h1

exists, define the 2nd prolongation of ( ⊕
i≤0

gi, h1) to be h2 = {D ∈ g2 : [D, g−1] ∈
h1}. The terms hi, i > 2, are similarly defined. Set hi = gi for i ≤ 0 and
h∗ =

∑
hi.

Examples. vect(1|n;n) is a subalgebra of k(1|2n;n). The former is obtained as
Cartan’s prolong of the same nonpositive part as k(1|2n;n) and a submodule of
k(1|2n;n)1, cf. Table 0.7. The simple exceptional superalgebra kas introduced in
0.7 is another example.

0.6. The modules of tensor fields. To advance further, we have to recall
the definition of the modules of tensor fields over vect(m|n) and its subalgebras,
see [BL]. For any other Z-graded vectorial Lie superalgebra the construction is
identical.

Let g = vect(m|n) and g≥ = ⊕
i≥0

gi. Clearly, vect0(m|n) ∼= gl(m|n). Let V

be the gl(m|n)-module with the lowest weight λ = lwt(V ). Make V into a g≥-
module setting g+ · V = 0 for g+ = ⊕

i>0
gi. Let us realize g by vector fields

on the m|n-dimensional linear supermanifold Cm|n with coordinates x = (u, ξ).
The superspace T (V ) = HomU(g≥)(U(g), V ) is isomorphic, due to the Poincaré–

Birkhoff–Witt theorem, to C[[x]]⊗ V . Its elements have a natural interpretation
as formal tensor fields of type V . When λ = (a, . . . , a) we will simply write T (~a)
instead of T (λ). We usually consider irreducible g0-modules.

Examples. T (~0) is the superspace of functions; Vol(m|n) = T (1, . . . , 1;−1, . . . ,−1)
(the semicolon separates the first m coordinates of the weight with respect to the
matrix units Eii of gl(m|n)) is the superspace of densities or volume forms. We
denote the generator of Vol(m|n) corresponding to the ordered set of coordinates

x by vol(x). The space of λ-densities is Volλ(m|n) = T (λ, . . . , λ;−λ, . . . ,−λ). In

particular, Volλ(m|0) = T (~λ) but Volλ(0|n) = T (
−→−λ).

More examples: vect(m|n) as vect(m|n)- and svect(m|n)-modules is T (id); see
also sec. 1.3.

Remark. To view the volume element as “dmudnξ” is totally wrong: the superde-
terminant can never appear as a factor under the changes of variables. We still
can try to use the usual notations of differentials provided all the differentials
anticommute. Then linear transformations that do not intermix the even u’s

with the odd ξ’s the volume element vol(x) viewed as the fraction
du1 · ... · dum

dξ1 · ... · dξn
is multiplied by the Berezinian of the transformation. But how could we justify
this? Let X = (x, ξ). If we consider the usual, exterior, differential forms, then
the dXi’s super anti-commute, hence, the dξi commute; whereas if we consider
the symmetric product of the differentials, as in the metrics, then the dXi’s su-

percommute, hence, the dxi commute. However, the
∂

∂ξi
anticommute and, from
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transformation point of view,
∂

∂ξi
=

1

dξi
. The notation, du1 ·...·dum · ∂

∂ξ1
·. . .· ∂

∂ξn
,

is, nevertheless, still wrong: almost any transformation A : (u, ξ) 7→ (v, η) sends

du1 · ... ·dum · ∂

∂ξ1
· ... · ∂

∂ξn
to the correct element, ber(A)(dvm · ∂

∂η1
· ... · ∂

∂ηn
), plus

extra terms. Indeed, the fraction du1 · ... ·dum · ∂

∂ξ1
· ... · ∂

∂ξn
is the highest weight

vector of an indecomposable gl(m|n)-module and vol(x) is the notation of the
image of this vector in the 1-dimensional quotient module modulo the invariant
submodule that consists precisely of all the extra terms.

0.7. The exceptional Lie subsuperalgebra kas of k(1|6). The Lie superal-
gebra g = k(1|2n) is generated by the functions from C[t, ξ1, . . . , ξn, η1, . . . , ηn].
The standard Z-grading of g is induced by the Z-grading of C[t, ξ, η] given by
deg t = 2, deg ξi = deg ηi = 1; namely, deg Kf = deg f − 2. Clearly, in this
grading g is of depth 2. Let us consider the functions that generate several first
homogeneous components of g = ⊕

i≥−2
gi:

component g−2 g−1 g0 g1

its generators 1 Λ1(ξ, η) Λ2(ξ, η) ⊕ C · t Λ3(ξ, η) ⊕ tΛ1(ξ, η)

As one can prove directly, the component g1 generates the whole subalgebra g+

of elements of positive degree. The component g1 splits into two g0-modules
g11 = Λ3 and g12 = tΛ1. It is obvious that g12 is always irreducible and the
component g11 is trivial for n = 1.

Recall that if the operator d that determines a Z-grading of the Lie superalge-
bra g does not belong to g, we denote the Lie superalgebra g⊕C ·d by dg. Recall
also that c(g) or just cg denotes the trivial 1-dimensional central extension of g

with the even center.

The Cartan prolongations from these components are well-known:

(g− ⊕ g0, g11)
mk
∗

∼= po(0|2n) ⊕ C · Kt
∼= d(po(0|2n));

(g− ⊕ g0, g12)
mk
∗ = g−2 ⊕ g−1 ⊕ g0 ⊕ g12 ⊕ C · Kt2

∼= osp(2n|2).

Observe a remarkable property of k(1|6). For n > 1 and n 6= 3 the component
g11 is irreducible. For n = 3 it splits into 2 irreducible conjugate modules that

we will denote g
ξ
11 and g

η
11. Observe further, that g0 = co(6) ∼= gl(4). As gl(4)-

modules, g
ξ
11 and g

η
11 are the symmetric squares S2(id) and S2(id∗) of the identity

4-dimensional representation and its dual, respectively.

Theorem 1. The Cartan prolong (g− ⊕ g0, g
ξ
11 ⊕ g12)

mk
∗ is infinite dimensional

and simple. It is isomorphic to (g− ⊕ g0, g
η
11 ⊕ g12)

mk
∗ .

We will denote the simple exceptional vectorial Lie superalgebras described in
Theorem 0.7 by kasξ and kasη, respectively; or just by kas.
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1. Stringy superalgebras

These superalgebras are particular cases of the Lie superalgebras of vector
fields, namely, the ones that preserve a structure on a what physicists call su-
perstring, i.e., the supermanifold associated with a vector bundle on the circle.
These superalgebras themselves are “stringy” indeed: as modules over the Witt
algebra witt = der C[t−1, t] they are direct sums of several “strings”, the modules
Fλ described in sec. 1.3.

This description, sometimes taken for definition of the stringy superalgebra g,
depends on the embedding witt −→ g and the spectrum of witt-modules consti-
tuting g might vary hampering recognition. Rigorous and deep is the definition
of a deep superalgebra due to Mathieu. He separates the deep algebras of which
stringy is a particular case Lie algebras from affine Kac–Moody ones. Both are of
infinite depth (see 0.2) but for the loop algebras all real root vectors act locally
nilpotently, whereas g is stringy if g is of polynomial growth and

there exists a root vector which does not act locally nilpotently.(1.0)

(Roughly speaking, the stringy superalgebras have the root vector
d

dt
).

Similarly, we say that a Lie superalgebra g of infinite depth and of polyno-
mial growth is of the stringy type if it satisfies (1.0) and of loop type otherwise.
Observe, that a stringy superalgebra of polynomial growth can be a Kac–Moody
superalgebra, i.e., have a Cartan matrix, but it can not be a (twisted) loop su-
peralgebra.

1.1. Let ϕ be the angle parameter on the circle, t = exp(iϕ). The only stringy
Lie algebra is witt := der C[t−1, t].

Examples of stringy Lie superalgebras are certain subalgebras of the Lie super-
algebra of superderivations of either of the two supercommutative superalgebras

RL(1|n) = C[t−1, t, θ1, . . . , θn] or RM (1|n) = C[t−1, t, θ1, . . . , θn−1,
√

tξ].

RL(1|n) can be considered as the superalgebra of complex-valued functions
expandable into finite Fourier series or, as superscript indicates, Laurent series.
These functions are considered on the real supermanifold S1|n associated with
the rank n trivial bundle over the circle. We can forget about ϕ and think in
terms of t considered as the even coordinate on (C∗)1|n.

RM (1|n) can be considered as the superalgebra of complex-valued functions

(expandable into finite Fourier series) on the supermanifold S1|n−1,M associated
with the Whitney sum of the Möbius bundle and the trivial bundle of rank n−1.
Since the Whitney sum of two Möbius bundles is isomorphic to the trivial bundle
of rank 2, it suffices to consider one Möbius summand.

Let us introduce the main stringy Lie superalgebras associated with the trivial
bundle. These are analogues of vect, svect and k obtained by replacing R(1|n) =
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C[t, θ1, . . . , θn] with RL(1|n):

vectL(1|n) = der RL(1|n);

svectLλ (1|n) = {D ∈ vectL(1|n) : div(tλD) = 0}
= {D ∈ vectL(1|n) : LD(tλvol(t, θ)) = 0};

kL(1|n) = {D ∈ vectL(n) : D(α1) = fDα1 for

α̃1 = dt +
∑

θidθi and fD ∈ RL(1|n)}.

We abbreviate svectL0 (1|n) to svectL(1|n).

The routine arguments prove that the functions f ∈ RL(n) generate kL(n),
and the formulas for Kf and the contact bracket are the same as for k(1|n) and
the polynomial f .

Remark. 1) The algebras ṽect(1|n) and s̃vectλ(1|n) obtained by replacing R(n)
with RM(1|n) are isomorphic to vectL(1|n) and svectL

λ− 1

2

(1|n), respectively.

2) Clearly,

svectLλ (1|n) ∼= svectLµ(1|n) if λ − µ ∈ Z.

In sec. 1.7 we will show a more subtle isomorphism.

3) The following formula is convenient:

D = f∂t +
∑

fi∂i ∈ svectLλ (1|n) if and only if λf = −tdivD.(1.1.1)

If λ ∈ Z, the Lie superalgebra svectLλ (1|n) has the simple ideal svectL◦
λ (1|n) of

codimension εn:

0 −→ svectL◦
λ (1|n) −→ svectLλ (1|n) −→ θ1 · . . . · θn∂t −→ 0.

• The lift of the contact structure from S1|n to its two-sheeted covering, S1|n,M ,
brings a new structure. Indeed, this lift means replacing θn with

√
tθ; this re-

placement sends the form α̃1 into the Möbius form

˜̂α = dt +

n−1∑

i=1

θidθi + tθdθ.(1̃.1.2)

It is often convenient to pass to another canonical expression of the Möbius

form:

α̂ =





dt +
∑
i≤k

(ξidηi + ηidξi) + tθdθ if n = 2k + 1,

dt +
∑
i≤k

(ξidηi + ηidξi + ζdζ) + tθdθ if n = 2k + 2.
(1.1.2)

Now, we have two ways for describing the vector fields that preserve ˜̂α or α̂:

1) We can set: (autRM (α1))

kM (1|n) = {D ∈ der RM(1|n) : LD(α̂) = fD · α̂, where fD ∈ RM (1|n)}.
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In this case the fields Kf are given by the same formulas as for k(1|n) but

the generating functions belong to RM (n). The contact bracket between the
generating functions from RM (n) is also given by the same formulas as for the
generating functions of k(1|n).

2) We can set: (autRL(α1))

kM (1|n) = {D ∈ vectL(1|n) : LD(α1) = fD · α1, where fD ∈ RL(1|n)}.
It is not difficult to verify that

kM (1|n) = Span(K̃f : f ∈ RL(1|n)),

where the Möbius contact field is given by the formula

K̂f = (2 − E)(f)D + D(f)E + Ĥf ,(1.1.3)

in which, as in the case of a cylinder S1,n, we set

E =
∑

i≤n−1

θi
∂

∂θi
+ θ

∂

∂θ
,

but where

D =
∂

∂t
− θ

2t

∂

∂θ
=

1

2
K̂1

and where

Ĥf = (−1)p(f)

(∑ ∂f

∂θi

∂

∂θi
+

1

t

∂f

∂θ

∂

∂θ

)

in the realization with form ˜̂α. In the realization with form α̂ we have for n = 2k
and n = 2k + 1, respectively:

Ĥf = (−1)p(f)

(∑ ( ∂f

∂ξi

∂

∂ηi
+

∂f

∂ηi

∂

∂ξi

)
+

1

t

∂f

∂θ

∂

∂θ

)
;

Ĥf = (−1)p(f)

(∑ ( ∂f

∂ξi

∂

∂ηi
+

∂f

∂ηi

∂

∂ξi

)
+

∂f

∂ζ

∂

∂ζ
+

1

t

∂f

∂θ

∂

∂θ

)
.

The corresponding contact bracket of generating functions will be called the Ra-

mond bracket; its explicit form is

{f, g}R.b. = (2 − E)(f)D(g) −D(f)(2 − E)(g) − {f, g}MP.b.,(1.1.4)

where the Möbius-Poisson bracket {·, ·}MP.b is

{f, g}MP.b = (−1)p(f)

(∑ ∂f

∂θi

∂g

∂θi
+

1

t

∂f

∂θ

∂g

∂θ

)
(1.1.5)

in the realization with form ˜̂α.

Observe that

LKf
(α1) = K1(f) · α1, LK̂f

(α̂) = K̂1(f) · α̂.(1.1.6)

Remark. Let us give a relation of the brackets with the dot product on the space
of functions. (More exactly, for k it is defined on F−2, etc., see sec. 1.3.)
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{f, gh}k.b. = {f, g}k.b.h + (−1)p(f)p(g)g{f, h}k.b. + K1(f)gh;

{f, gh}R.b. = {f, g}R.b.h + (−1)p(f)p(g)g{f, h}R.b. + K̂1(f)gh;

{f, gh}m.b. = {f, g}m.b.h + (−1)p(f+1)p(g)g{f, h}m.b. + M1(f)gh.

(1.1.7)

This relation (when the third term vanishes) is often listed as part of the
definition of the Poisson algebra which is, certainly, a pure nonsense: it follows
from the definition.

Explicitly, an embedding i : vectL(1|n) −→ kL(1|2n) is given by the following
formula in which Φ =

∑
i≤n

ξiηi:

D ∈ vectL(1|n) the generator of i(D)

f(ξ)tm∂t (−1)p(f) 1

2m
f(ξ)(t + Φ)m,

f(ξ)tm∂i (−1)p(f) 1

2m
f(ξ)ηi(t + Φ)m.

(1.1.8)

Clearly, svectLλ (1|n) is the subsuperspace of vectL(1|n) ⊂ kL(1|2n) spanned by
the generating functions

f(ξ)(t + Φ)m +
∑

i

fi(ξ)ηi(t + Φ)m−1(1.1.9)

such that (λ + n)f(ξ) = −
∑

i

(−1)p(fi)
∂fi

∂ξi
.

The four series of classical stringy superalgebras are: vectL(1|n), svectLλ (1|n),

kL(1|n) and kM (1|n).

1.2. Nonstandard gradings of stringy superalgebras. The Weisfeiler fil-
trations of vectorial superalgebras with polynomial or formal coefficients are de-
termined by the maximal subalgebra of finite codimension not containing ideals
of the whole algebra, cf. [LSh]. The corresponding gradings are natural. We
believe that the filtrations and Z-gradings of stringy superalgebras induced by
Weisfeiler filtrations of the corresponding vectorial superalgebras with polyno-
mial coefficients are distinguished but we do not know how to characterize such
Z-gradings intrinsically.

Explicitely, the isomorphisms vectL(1|1) ∼= kL(1|2) ∼= mL(1) as abstract (filtra-
tions irnored) Lie superalgebras are as follows. Let x, ξ be the indeterminates
that describe vectL(1|1); let t, ξ, η be the indeterminates that describe kL(1|2) and
let τ , u, ξ be the indeterminates that describe mL(1). Then the correspondending
elements are as follows:
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vectL(1|1) kL(1|2) mL(1)

xn∂x
1

2n
Ktn+ntn−1ξη Munξ

ξxn∂x − 1

2n
Kξtn

1

2
Munτξ

xn∂ξ
1

2n
Kηtn Mun

ξxn∂ξ − 1

2n
Kξηtn

1

2
Mun(τ−uξ)

Explicit pasage mL(1) −→ kL(1|2) in terms of generating functions:

un 1

2n
tnη

unτξ − 1

2n−1
ξtn

unξ
1

2n
(tn + nξηtn−1)

unτ
1

2n+1
(tn+1 + (n − 3)ξηtn)

Explicit pasage kL(1|2) −→L m(1) in terms of generating functions:

tn 2n−2(4unξ + nun−1(τ − uξ))

tnξη −2n−1un(τ − uξ)

tnξ −2n−1unτξ

tnη 2nun

1.3. Modules of tensor fields over stringy superalgebras. Denote by
TL(V ) = C[t−1, t] ⊗ V the vect(1|n)-module that differs from T (V ) by allowing
the Laurent polynomials as coefficients of its elements instead of just polynomials.
Clearly, TL(V ) is a vectL(1|n)-module. Define the tensor fields twisted with weight

µ - a version of TL(V ) - by setting:

TL
µ (V ) = C[t−1, t]tµ ⊗ V.
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• The “simplest” modules — the analogues of the standard or iden-
tity representation of the matrix algebras. The simplest modules over the
Lie superalgebras of series vect are, clearly, the modules of λ-densities, cf. sec.
0.5. These modules are characterized by the fact that they are of rank 1 over F ,
the algebra of functions.

Over stringy superalgebras, we can also twist these modules and consider Volλµ,
irreducible if λ 6= 0, 1. Observe that for µ 6∈ Z the module has only one irreducible
submodule, the image of the exterior differential d, see [BL], whereas for µ ∈ Z

there is, instead, the kernel of the residue:

Res : VolL −→ C ,

fvolt,ξ 7→ the coefficient of
ξ1 . . . ξn

t
in the power series expansion of f.

For Vol0 = F0, the space of functions, there is only one submodule, of constants.

• Over svectL(1|n) all the spaces Volλ are, clearly, isomorphic, since their gen-
erator, vol(t, θ), is preserved. So all rank 1 modules over the module of functions
are isomorphic to the module of twisted functions F0;µ irreducible if µ 6= 0. The
module F0 has a submodule of constants and a codimension 1 submodule of
functions with residue 0.

Over svectLλ (1|n), the simplest module is generated by tλvol(t, θ).

• Over contact superalgebras k(2n + 1|m), it is more natural to express the
simplest modules not in terms of λ-densities but via powers of the form α = α1:

Fλ =

{
Fαλ for n = m = 0

Fαλ/2 otherwise .
(1.3.1)

The twisted modules are denoted by Fλ;µ

Observe that

Volλ ∼=
{
Fλ(2n+2−m) as k(2n + 1|m)-modules

FM
λ(2−m+1) as kM (1|m)-modules

(1.3.2)

To see this, it suffices to compute the degree of volt,p,q,θ (the latter is, roughly

speaking,
dtdpdq

dθ
) with the degrees of the indeterminates given by the standard

grading, see 1.2. In particular, k(2n + 1|2n + 2) ⊂ svect(2n + 1|2n + 2) and

k(2n + 1|m) ∩ svect(2n + 1|m) = po(2n|m) for m 6= 2n + 2.

In particular,

kL(1|4) ' Vol and kM (1|5) ' Π(Vol).(1.3.3)

The module Vol of volume forms over kL(1|m) is isomorphic to F2−m whereas
over kM (1|m) it is isomorphic to F3−m: the degree of the odd Möbius coordinate
vanishes.
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Observe also that the Lie superalgebra of series k does not distinguish be-

tween
∂

∂t
and α−1 whereas the Lie superalgebra of series kM does not distinguish

between D and α̂−1: their transformation rules are identical. Hence,

kL(2n + 1|m) ∼=
{
F−1 for n = m = 0

F−2 otherwise ;

kM (1|m) ∼=
{
F−1 for m = 1

F−2 for m > 1.
(1.3.4)

• For n = 0,m = 2 (we take α = dt− ξdη− ηdξ) the kL(1|2)-modules of rank 1
over F = F0,0, the algebra of functions, acquire addiional parameter, ν, namely:

T (λ, ν)µ = Fλ;µ ·
(

dξ

dη

)ν/2

.

• Over kM , we should replace the form α with α̂ and the definition of the
kL(1|m)-modules Fλ;µ should be replaced with

FM
λ;µ =

{
Fλ;µ(α̂)λ for m = 1

Fλ;µ(α̂)λ/2 for m > 1.

• For m = 3 and α̂ = dt− ξdη−ηdξ − tθdθ the kM (1|3)-modules of rank 1 over
F = F0,0, the algebra of functions, acquire addiional parameter, ν, namely:

TM (λ, ν)µ = FM
λ;µ ·

(
dξ

dη

)ν/2

.

• The simplest mL(n)-modules are Fλ = F · αλ/2
0 . In particular, m(n) ∼= F−1.

For mL(1) the modules Fλ,µ = F · αλ/2
0 · tµ are naturally defined.

1.4. The four exceptional stringy superalgebras. The “status” of these
exceptions is different: A) is a true exception, D) is an exceptional realization;
the other two are “drop outs” from the series (like the psl(n|n) that have no
analogs among sl(m|n) with m 6= n).

A) kasL. Certain polynomial functions described in [Sh1] and sec. 0.7 generate
kas ⊂ k(1|6). Inserting Laurent polynomials in the formulas for the generators of
kas we get the exceptional stringy superalgebra kasL ⊂ kL(1|6).

B, C) kL◦(1|4) and kM◦(1|5). It follows from (1.3.3) that the functions with

zero residue on S1|4 (resp. S1|4; M ) generate an ideal in kL(4) (resp. kM (5)). These
ideals are, clearly, simple Lie superalgebras denoted in what follows by kL◦(1|4)
and kM◦(1|5), respectively.
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D) mL(1). On the complexification of S1|2, let q be the even coordinate, τ and
ξ the odd ones. Set

mL(1) = {D ∈ vectL(1|2) : Dα0 = fDα0, fD ∈ RL(1|1), α0 = dτ + qdξ + ξdq}.

1.5. Deformations. The superalgebrbas svect(1|n) and svect◦(n) do not have
deformations, see [LSh]. The stringy superalgebras svectL(n) do have Z-grading
preserving deformations discovered by Schwimmer and Seiberg [SS]. More defor-
mations (none of which preserves Z-grading) are described in [KvL]; the complete
description of deformations of svectL(n) is an open problem.

Conjecture. vectL(1|n), kL(1|n) and the four exceptional stringy superalgebras
are rigid.

1.6. Distinguished stringy superalgebras. In this subsect. 1.6 and in §2
let Af be the common notation for both Kf and K̂f , depending on whether we

consider kL or kM , respectively.

1.6.1. The cocycle operator ∇. The cocycle operator ∇ is important in
applications to integrable dynamical systems. Though it implicitly appears in
the second column of Table 1.6.2 according to the formula

c : D1,D2 7→ (−1)p(D2)(p(∇)+1)Res(F (D1) .∇(F (D2)))(1.6.1)

for appropriate functions F (D), it deserves to be described explicitely. (For vect

and svect series the functions F (D) are vector-valued and the dot product . in
eq. (1.6.1) is the scalar product

∑
i

Fi(D1)Fi(D2).)

The functions F (D) are as follows:

F (Af ) = F (Mf ) = f ;

F (f
∂

∂t
+ g1

∂

∂ξ1
+ g2

∂

∂ξ2
) = (f, g1, g2).

Explicitely, the cocycle operator is of the form

algebra its element ∇

vectL(1|2) D = f
∂

∂t
+ g1

∂

∂ξ1
+ g2

∂

∂ξ2

(
0,

∂g2

∂t
,−∂g1

∂t

)

svectLλ (1|2) D = f
∂

∂t
+ g1

∂

∂ξ1
+ g2

∂

∂ξ2

(
0,

∂g2

∂t
,−∂g1

∂t

)

vectL(1|1) D = f
∂

∂t
+ g

∂

∂ξ

∂2g

∂t2
−

(
(−1)p(D) ∂

2f

∂t2
− 2

∂2g

∂t2

)

The following Lie superalgebras of contact vector fields are concidered on a su-
percircle though we skip the superscript:
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algebra its element ∇
kL(1|0) Kf K3

1 (f)

kL(1|1) or kM (1|1) Af AθA
2
1(f)

kL(1|2)or kM (1|2) Af Aθ1
Aθ2

A1(f)

mL(1) Mf (Mξ)
2(f)

kL(1|3)or kM (1|3) Af Aθ1
Aθ2

Aθ3
(f)

kL◦(4)

kM (1|4)

}
Af (1) Aθ1

Aθ2
Aθ3

Aθ4
A−1

1 (f)

kL◦(4) Kf
(2) tKt−1(f)

(3) K1(f)

1.6.2. Theorem. The only nontrivial central extensions of the simple stringy

Lie superalgebras are those given in the following table.

algebra the cocycle c The name of the extention

kL(1|0) ResfK3
1 (g) Virasoro or vir

kL(1|1)
kM (1|1)

}
ResfAθA

2
1(g)

Neveu-Schwarz or ns

Ramond or r

kL(1|2)
kM (1|2)

}
(−1)p(f)ResfAθ1

Aθ2
A1(g)

2-Neveu-Schwarz or ns(2)

2-Ramond or r(2)

mL(1) Mf ,Mg 7→ Resf(Mξ)
2(g) m̂L(1)

kL(1|3)
kM (1|3)

}
ResfAθ1

Aθ2
Aθ3

(g)
3-Neveu-Schwarz or ns(3)

3-Ramond or r(3)

kL◦(4)

kM (1|4)

}
(1) (−1)p(f)ResfAθ1

Aθ2
Aθ3

Aθ4
A−1

1 (g)
4-Neveu-Schwarz = ns(4)

4-Ramond = r(4)

kL◦(4)
(2) Resf(tAt−1(g))

(3) ResfA1(g)

4′-Neveu-Schwarz = ns(4′)

40-Neveu-Schwarz = ns(40)

Observe that K−1
1 is only defined on kL◦(4) but not on kL(4); observe also that

the bilinear functionals (2) and (3) are defined on kL(4); but whereas they are

(trivial) cocycles on kM (4) (with K̂f instead of Kf , of course, for the Moebius

version), they are not even cocycles on kL(4).
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the restriction of the cocycle (1) defined on kL◦(4) :

vectL(1|2)
D1 = f

∂

∂t
+ g1

∂

∂ξ1
+ g2

∂

∂ξ2
,

D2 = f̃
∂

∂t
+ g̃1

∂

∂ξ1
+ g̃2

∂

∂ξ2

v̂ect
L
(1|2)

7→ Res(g1g̃
′
2 − g2g̃

′
1(−1)p(D1)p(D2))

svectLλ (1|2) the restriction of the above ŝvect
L

λ (1|2)

vectL(1|1) D1 = f
∂

∂t
+ g

∂

∂ξ
, D2 = f̃

∂

∂t
+ g̃

∂

∂ξ
7→

Res(f
∂2g̃

∂t2
− g

(
(−1)p(D2) ∂

2f̃

∂t2
− 2

∂2g̃

∂t2

)
v̂ect

L
(1|1)

Observe that the restriction of the only nontrivial cocycle existing on vectL(1|2)
onto its subalgebra witt ∼= Span(f(t)

∂

∂t
: f ∈ C[t−1, t]) is trivial while the the

restriction of the only nontrivial cocycle existing svectLλ (1|2) onto its unique sub-
algebra witt is nontrivial. The riddle is solved by a closer study of the embedding
vect(1|m) −→ k(1|2m): it involves differentiations, see formulas (1.1.8).

1.6.3. The cocycle c in monomial basis. For vectL(1|2) the nonzero values
of c are:

c(tkξ1
∂

∂ξ1
, tlξ2

∂

∂ξ2
) = −kδk,−l, c(tkξ1

∂

∂ξ2
, tlξ2

∂

∂ξ1
) = kδk,−l,

c(tkξ1ξ2
∂

∂ξ1
, tl

∂

∂ξ2
) = −kδk,−l, c(tkξ1ξ2

∂

∂ξ2
, tl

∂

∂ξ1
) = kδk,−l.

In svectLλ (1|2), set:

Lm = tm
(

t
∂

∂t
+

λ + m + 1

2
(ξ1

∂

∂ξ1
+ ξ2

∂

∂ξ2
)

)
,

Sj
m = tmξj

(
t
∂

∂t
+ (λ + m + 1)(ξ1

∂

∂ξ1
+ ξ2

∂

∂ξ2
)

)
.

The nonzero values of the cocycles on svectLλ (1|2) are

c(Lm, Ln) =
1

2
m(m2 − (λ + 1)2)δm,−n,

c(tk
∂

∂ξi
, Sj

m) = −m(m − (λ + 1))δm,−nδi,j,

c(tm(ξ1
∂

∂ξ1
− ξ2

∂

∂ξ2
), tn(ξ1

∂

∂ξ1
− ξ2

∂

∂ξ2
)) = mδm,−n,

c(tmξ1
∂

∂ξ2
, tnξ2

∂

∂ξ1
) = mδm,−n.
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For mL(1) the nonzero values of c are:

c(um+1τξ, un+1) = −(n2 + n)δm+n+1,0,

c(um+1ξ, unτ) = (n2 − n)δm+n,0,

c(umτ, unτ) = −6nδm+n,0.

For kL◦(1|4) the nonzero values of c are:

c(tm+1, tn+1) = m(m2 − 1)δm+n,0,

c(tm+1ξi, t
n+1ξi) = −m(m + 1)δm+n+1,0,

c(tm+1ξiξj, t
n+1ξiξj) = −(m + 1)δm+n+2,0,

c(tm+1ξiξjξk, t
n+1ξiξjξk) = δm+n+3,0,

c(tm+1ξ1ξ2ξ3ξ4, t
n+1ξ1ξ2ξ3ξ4) =

1

m + 2
δm+n+4,0.

The restriction of this cocycle determines the nontrivial central extensions of
kL(1|n) for n ≤ 3.

1.6.4. When the nontrivial central extensions of the stringy superal-
gebras are possible. We find the following quantitative discussion instructive,
though it neither replaces the detailed proof (that can be found in [KvL] for
all cases except kasL; the arguments in the latter case are similar) nor explains
the number of nontrivial cocycles on (1|4)-dimensional supercircle with a contact
structure.

When we pass from simple finite dimensional Lie algebras to loop algebras, we
enlarge the maximal toral subalgebra of the latter to make the number of gener-
ators of weight 0 equal to that of positive or negative generators corresponding

to simple roots. In this way we get the nontrivial central extensions ĝ(1) of the
loop algebras g(1), called Kac–Moody algebras. (Actually, the latter include one

more operator of weight 0: the exterior derivation t
d

dt
of ĝ(1).)

Similarly, for the Witt algebra witt we get:

deg Kf . . . −2 −1 0 1 2 . . .

f . . . t−1 1 t t2 t3 . . .

The depicted elements generate witt; more exactly,

(a) the elements of degrees −1, 0, 1 generate sl(2);

(b) witt, as sl(2)-module, is glued from the three modules: the adjoint mod-
ule and the Verma modules M−2, and M2 with highest and lowest weights as
indicated: −2 and 2, respectively.

It is natural to expect that a central element can be obtained by pairing of the
dual sl(2)-modules M−2 and M2; this actually happens. One of the methods to
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find all the cocycle is to compute H2(g); a simpler way is to compute H1(g; g∗)
and interprete them in ters of H2(g) (cf. [P] with [Sc], respectively).

• Further on, consider the subalgebra osp(n|2) in kL(1|n) and decompose
kL(1|n), as an osp(n|2)-module, into irreducible modules. Denote by (χ0; χ1, . . . , χr)
the weight of the irreducible osp(n|2)-module with respect to the standard basis
of Cartan subalgebra of sl(2) ⊕ o(n); here r = [n/2].

These modules and their generators are as follows. Set

α =

{
dt − ∑

(ξidηi + ηidξi) for n even
dt − ∑

(ξidηi + ηidξi) − θdθ for n odd

ζ =

{
(ξ, η) for n even

(ξ, η, θ) for n odd.

Let 〈f〉 be a shorthand for the Verma module M with the highest (lowest) weight
as indicated by the sub- or superscript, respectively, generated by Kf ; we denote
by L with the same indices the quotient of M modulo the maximal submodule.
Then the irreducible components of the osp(n|2)-module kL(1|n) are as follows,
where ⊃ denotes the semidirect sum of modules:

n irreducible factors of kL(1|n) as osp(n|2)-module

0 〈t−1〉 = L−2, sl(2) L2 = 〈t3〉
1 〈t−1θ〉 = L−3 osp(1|2) L3 = 〈t2θ〉
2 〈t−1ξη〉 = L−2; 0 osp(2|2) L2; 0 = 〈tξη〉
3 〈t−1ξηθ〉 = L−1; 0 osp(3|2) L1; 0 = 〈ξηθ〉

4
〈t−1ξ1ξ2η2〉 = L−1; ε1

⊂+ L0;0 = 〈t−1ξ1ξ2η1η2〉
osp(4|2) L1;−ε2

= 〈ξ1η1η2〉

5 〈t−1ξ1 . . . η2θ〉 = M1; 0 osp(5|2) L1;−ε1−ε2
= 〈η1η2θ〉

6 〈t−1ξ1 . . . η3θ〉 = M2; 0 osp(6|2) L1;−ε1−ε2−ε3
⊕ L1;−ε1−ε2+ε3

> 6 〈t−1θ1 . . . θn〉 = Mn−4; 0 osp(n|2) L1;−ε1−ε2−ε3
= 〈η1η2η3〉

For n > 6 the module M−1;−ε1−ε2−ε3
is always irreducible whereas Mn−4; 0 is

always reducible:

[Mn−4; 0] = [Ln−7; ε1+ε2+ε3]⊂+[Ln−4; 0].

Exceptional cases:

n = 4. In this case the Verma module M0; 0 induced from the Borel subalgebra
has an irreducible submodule M−1; ε1 dual to M1;−ε2

; the subspace of kL(1|4)
spanned by all functions except t−1ξ1ξ2η1η2 is an ideal. An explanation of this
phenomenon is given in 1.3.

n = 6. Two miracles happen: (1) L6−4; ε1+ε2+ε3 = (L1; −(ε1+ε2+ε3))
∗ and

L6−4; 0 ∼= osp(6|2). (2) The bilinear form obtained is supersymmetric, see §2.
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For n > 6 there is no chance to have a nondegenerate bilinear form on kL(1|n).
The above qualitative arguments, however, do not exclude a degenerate form on
kL(1|n), such as a cocycle. There are no cocycles either, for a proof see [KvL].

1.7. Root systems and simple roots for svectLλ (1|2) Set

∂ =
∂

∂t
, δ1 =

∂

∂ξ1
, δ2 =

∂

∂ξ2
·

The generators (coroots) coresponding to the distinguished system of simple
roots are:

X+
1 = ξ1δ2 X+

2 = tδ1 X+
3 = ξ2t∂ − (λ + 1)ξ1ξ2δ1

X−
1 = ξ2δ1 X−

2 = λ
ξ1ξ2

t
δ2 + ξ1∂ X−

3 = δ2

H1 = ξ1δ1 − ξ2δ2 H2 = t∂ + ξ1δ1 + λξ2δ2 H3 = t∂ + (λ + 1)ξ1δ1

(G1)

The reflection in the 2nd root sends (G1) into the following system which, to
simplify the expressions, we consider up to factors in square brackets [·]:

X+
1 = tδ2 X+

2 = λ
ξ1ξ2

t
δ2 + ξ1∂ X+

3 = [−λ]tξ2δ1

X−
1 = λ

ξ1ξ2

t
δ1 − ξ2∂ X−

2 = tδ1 X−
3 = [−λ]

ξ1

t
δ2

H1 = −(t∂ + λξ1δ1 + ξ2δ2) H2 = t∂ + ξ1δ1 + λξ2δ2 H3 = ξ2δ2 − ξ1δ1

(G2)

The reflection in the 3rd root sends (G1) into the following system. To simplify
the expressions we consider them up to factors in square brackets [·].

X+
1 = δ2 X+

2 = [λ + 2]tξ2δ1 X+
3 = (λ + 1)ξ2ξ1δ2 − ξ1t∂

X−
1 = tξ2∂ − (λ + 1)ξ1ξ2δ1 X−

2 = [−λ]
ξ1

t
δ2 X−

3 = δ1

H1 = t∂ + (λ + 1)ξ1δ1 H2 = ξ2δ2 − ξ1δ1 H3 = −t∂ − (λ + 1)ξ2δ2

(G3)
The corresponding Cartan matrices are:



2 −1 −1
1 − λ 0 λ
1 + λ −λ 0


 ,




0 −λ + 1 −2 + λ
1 − λ 0 λ
−1 −1 2


 ,




0 −λ λ + 1
−1 2 −1

1 + λ −λ − 2 0


 .

To compare these matrices, let us reduce them to the following canonical forms
(C1) − (C3), respectively, by renumbering generators and rescaling. (Observe
that by definition, λ 6= 0,±1, so the fractions are well-defined.) We obtain




2 −1 −1

−1 +
1

λ
0 1

1 +
1

λ
−1 0




,




2 −1 −1

−1 +
1

1 − λ
0 1

1 +
1

1 − λ
−1 0




,




2 −1 −1

−1 +
1

1 + λ
0 1

1 +
1

1 + λ
−1 0




.
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We see that the transformations λ 7→ λ+1 and λ 7→ 1−λ establish isomorphisms
the first of which is obvious, the second one is misterious.

1.8. Simplicity and occasional isomorphisms

Statement. 1) The Lie superalgebras vectL(1|n) for any n, svectLλ (1|n) for λ 6∈ Z

and n > 1, svectL0(1|n) for n > 1, kM (1|n) for n 6= 5 and kL(1|n) for n 6= 4; and
the four exceptional stringy superalgebras are simple.

2) The Lie superalgebras vectL(1|1), kL(1|2) and mL(1) are isomorphic.

3) The Lie superalgebras svectLλ (1|2) ∼= svectLµ(1|2) if µ can be obtained from λ
with the help of transformations λ 7→ λ+1 and λ 7→ 1−λ. The Lie superalgebras

svectLλ (1|2) from the strip Re λ ∈
[
0,

1

2

]
are nonisomorphic.

The statement on simplicity follows from a criterion similar to the one Kac ap-
plied for Lie (super)algebras with polynomial coefficients ([K]). The isomorphism
is determined by the gradings listed in sec. 0.4 and arguments of 1.7.

1.9. A relation with Kac–Moody superalgebras. An unpublished theorem
of Serganova (1990) states that the only simple Kac–Moody superalgebras g(A)
of polynomial growth with nonsymmetrizable Cartan matrix A are: psq(n)(2) and
an exceptional parametric family with the matrix

A =




2 −1 −1
1 − α 0 α
1 + α −α 0


 ∼=




2 −1 −1

−1 +
1

λ
0 1

1 +
1

λ
−1 0




.

The exceptional Lie superalgebra g(A) can be realized as the distinguished stringy

superalgebra ŝvect
L

α(1|2). For the description of the relations between its gener-
ators see [GL1].

Remark. 1) The Dynkin–Kac diagram corresponding to psq(n)(2) is the same as

that of sl(n)(1) with odd number of nodes replaced with “grey” nodes correspond-
ing to the odd simple roots of type sl(1|1), see [FLS], the one-to-one correspon-
dence between Dynkin–Kac diagrams and Cartan matrices gives a description of
the possible values of A.

2) The parametric family g(A) was found by J. van de Leur around 1986.

Observe, that unlike the Kac–Moody superalgebras of polynomial growth with

symmetrizable Cartan matrix, ĝ = ŝvect
L

λ (1|2) can not be interpreted as a central
extension of any twisted loop algebra. Indeed, the root vectors of the latter are
locally nilpotent, whereas the former contains the operator ∂t with nonzero image
of every ĝi.

1.10. How conformal are stringy superalgebras. Recall that a Lie algebra
is called conformal if it preserves up to a factor a metric or, more generally,
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a (not necessarily symmetric) bilinear form B. It is known (as a theorem of
Liouville) that given a metric B on the real space V of dimension 6= 2, the
algebras conformally preserving B are isomorphic to c(aut(B)) ∼= co(V,B). If
dimR V = 2, we can consider V as the complex line C1 with complex coordinate t
and identify B with the metric dt ·dt̄ (the symmetric product of the differentials)

on C. The element f
d

dt
from witt multiplies dt by f ′ and, therefore, it multiplies

dt · dt̄ by f ′f̄ ′, so witt is conformal.

On superspaces V , metrics B can be even and odd, the Lie superalgebras
aut(V,B) that preserve them are ospsy(Par) and pesy(Par) and the corresponding
conformal superalgebras are just trivial central extensions of aut(V,B) for any
dimension.

Let the contact superalgebras kL, kM and mL preserve the Pfaff equation α = 0
for the correponding form α = α1 or α = α0. Suppose now that we consider a
real form of each of the stringy superalgebras considered above and an extension
of the complex conjugation (for possibilities see [M]) is defined in the superspace
of the generating functions. From formulas (0.3) and (1.1.6) we deduce that the
Lie derivative along the elements of these superalgebras multiplies the symmetric
product of forms α · ᾱ by a factor of the form FF̄ , i.e.,

LKf
(α · ᾱ) = FF̄ (α · ᾱ),(1.10.1)

where F is the function determined in (0.3) and (1.1.6). Every element D of the
general and divergence-free superalgebra svectLλ multiplies the symmetric product

of volume forms vol(t, θ) · vol(t̄, θ̄) by divD · divD, i.e.,

LD(vol(t, θ) · vol(t̄, θ̄)) = divD · divD(vol(t, θ) · vol(t̄, θ̄)).(1.10.2)

None of the tensors considered, i.e., neither α · ᾱ nor vol(t, θ) · vol(t̄, θ̄), can be
viewed as a metric in the presence of odd parameters except for g = kL(1|1) and
kM (1|1) .

Indeed, it is possible to consider g = kL(1|1) and kM (1|1) as conformal super-

algebras, since the volume form “dt
∂

∂θ
” can be considered as, more or less, dθ:

their transformation rules under g are identical. In fact, consider the quotient
Ω1/Fα or Ω1/Fα̂, respectively, of the superspace of differential 1-forms modulo
the subspace spanned over functions by the contact form. On the quotient space,

the tensor dt
∂

∂θ
· dt̄

∂

∂θ̄
can be viewed as the bilinear form dθ · dθ̄.

So only witt, kL(1|1) and kM (1|1) are conformal Lie superalgebras, or as physi-
cists say, superconformal algebras.

2. Invariant bilinear forms on stringy Lie superalgebras

Statement. An invariant (with respect to the adjoint action) nondegenerate
supersymmetric bilinear form on a simple Lie superalgebra g, if exists, is unique
up to proportionality.
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Observe that the form spoken above can be odd. For the proof see [Sh1].

The invariant nondegenerate bilinear form (·, ·) on g exists if and only if, as
g-modules,

g ∼=
{

g∗ if (·, ·) is even
Π(g∗) if (·, ·) is odd.

Therefore, let us compare g with g∗ (recall the definition of the modules Fλ and
examples from sec. 1.3).

Table. g-modules g, Vol and g∗ over contact Lie superalgebras

0 1 2 3 4 5 6 7 n > 0

g =

kL(1|n)
F−1 F−2 F−2 F−2 F−2 F−2 F−2 F−2 F−2

Vol F1 Π(F1) F0 Π(F−1) F−2 Π(F−3) F−4 Π(F−5) Πn(F2−n)

g∗ F2 Π(F3) F2 Π(F1) F0 Π(F−1) F−2 Π(F−3) Πn(F4−n)

1 2 3 4 5 6 7 · n > 1

g =

kM (1|n)
F−1 F−2 F−2 F−2 F−2 F−2 F−2 · F−2

Vol Π(F1) F1 Π(F0) F−1 Π(F−2) F−3 Π(F−4) · Πn(F2−(n−1))

g∗ Π(F2) F3 Π(F2) F1 Π(F0) F−1 Π(F−2) · Πn(F5−n)

A comparison of g with g∗ shows that there is a nondegenerate bilinear form on
g = kL(1|6) and g = kM (1|7), even and odd, respectively.

Statement. These forms are supersymmetric and given by the formula

(Af , Ag) = Resfg.

The restriction of the bilinear form to kasL is identically zero.

A comparison of g with Vol shows that there is an invariant linear functional
on g = kL(1|4) and g = kM (1|5), even and odd, respectively.

3. The three cocycles on kL◦(1|4) and primary fields

Let us introduce a shorthand notation for the elements of kL◦(1|4):

the elements their degree their parity

Ln = Ktn+1 ; T ij
n = Ktnθiθj

; Sn = Ktn−1θ1θ2θ3θ4
2n 0̄;

Ei
n = Ktn+1θi

; F i
n = K

tn
∂θ1θ2θ3θ4

∂θi

2n + 1 1̄.
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In the above “natural” basis the nonzero values of the cocycles are (see [KvL];
here An is the group of even permutations):

c(Lm, Ln) = α · m(m2 − 1)δm+n,0

c(Ei
m, Ei

n) = α · m(m + 1)δm+n+1,0

c(F i
m, F i

n) = α · δm+n+1,0

c(Sm, Sn) = α · 1

m
δm+n,0

c(Lm, Sn) = (γ + β · m)δm+n,0 (∗)
c(Ei

m, F i
n) =

(1

2
γ + β ·

(
m +

1

2

))
δm+n+1,0

c(T ij
m , T ij

n ) = α · mδm+n,0

c(T ij
m , T kl

n ) = −β · mδm+n,0, where (i, j, k, l) ∈ A4.

To express the cocycle in terms of primary fields, we have to eliminate the term
(∗). To this end, let us embed witt differently and, simultaneously, suitably
intermix the odd generators:

L̃m = Lm + amSm for am = −β

α
· m2 − γ

α
· m;

Ẽi
m = Ei

m + bmF i
m for bm =

β

2α
· (2m + 1) +

γ

2α
.

In the new basis the cocycle is of the form:

c(L̃m, L̃n) =
(α2 − β2

α
· m3 − α2 − γ2

α
· m

)
δm+n,0

c(Ẽi
m, Ẽi

n) =
(α2 − 3β2

α
·
(
m +

1

2

)2 − α2 − 3γ2

4α

)
δm+n+1,0

c(F i
m, F i

n) = α · δm+n+1,0

c(Sm, Sn) = α · 1

m
δm+n,0

c(Ẽi
m, F i

n) = (γ + β · (2m + 1))δm+n+1,0

c(T ij
m , T ij

n ) = α · mδm+n,0

c(T ij
m , T kl

n ) = −β · mδm+n,0, where (i, j, k, l) ∈ A4.

It depends on the three parameters and is expressed in terms of primary fields.
Observe that the 3-dimensional space of parameters is not C3 = {(α, β, γ)} but
C3 without a plane, since α can never vanish.
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4. The explicit relations between the Chevalley generators of kasL

(Other results pertaining here: [GKLP], [GL1].)

4.0. Sergeev’s extension. Let ω be a nondegenerate superskew-symmetric odd
bilinear form on an (n, n)-dimensional superspace V . In the standard basis of V

(all the even vectors come first) the canonical matrix of the form ω is

(
0 1n

1n 0

)

and the elements of pe(n) = aut(ω) can be represented by supermatrices of the

form

(
a b
c −at

)
, where b = bt, c = −ct. The Lie superalgebra spe(n) is singled

out by the requirement that tra = 0. Setting

deg

((
0 0
c 0

))
= −1, deg

((
a 0
0 −at

))
= 0, deg

((
0 b
0 0

))
= 1,(1.1)

we endow pe(n) with a Z-grading. It is known ([K]) that spe(n) = pe(n)∩ sl(n|n)
is a simple Lie superalgebra for n ≥ 3.

A. Sergeev proved (1977, unpublished) that there exists just one nontrivial
central extension of spe(n). It exists for n = 4 and is denoted by as. Let us
represent an arbitrary element A ∈ as as a pair A = x + d · z, where x ∈ spe(4),
d ∈ C and z is the central element. In the matrix form the bracket in as is[(

a b
c −at

)
+ d · z,

(
a′ b′

c′ −a′t

)
+ d′ · z

]
=

[(
a b
c −at

)
,

(
a′ b′

c′ −a′t

)]
+ tr cc′ · z.

Clearly, deg z = −2 with respect to the grading (1.1).

The Lie superalgebra as can also be described with the help of the spinor
representation. Consider po(0|6), the Lie superalgebra whose superspace is the
Grassmann superalgebra Λ(ξ, η) generated by ξ1, ξ2, ξ3, η1, η2, η3 and the bracket
is the Poisson bracket. Recall that h(0|6) = Span(Hf : f ∈ Λ(ξ, η)).

Now, observe that spe(4) can be embedded into h(0|6). Indeed, setting deg ξi =
deg ηi = 1 for all i we introduce a Z-grading on Λ(ξ, η) which, in turn, induces a
Z-grading on h(0|6) of the form h(0|6) = ⊕

i≥−1
h(0|6)i. Since sl(4) ∼= o(6), we can

identify spe(4)0 with h(0|6)0.
It is not difficult to see that the elements of degree −1 in spe(4) and h(0|6)

constitute isomorphic sl(4) ∼= o(6)-modules. It is subject to a direct verification
that it is possible to embed spe(4)1 into h(0|6)1.

Sergeev’s extension as is the result of the restriction onto spe(4) ⊂ h(0|6) of
the cocycle that turns h(0|6) into po(0|6). The quantization deforms po(0|6) into
gl(Λ(ξ)); the through maps Tλ : as −→ po(0|6) −→ gl(Λ(ξ)) are representations
of as in the 4|4-dimensional modules spinλ distinct for distinct values λ of the
central element z. (Here λ ∈ C plays the role of Planck’s constant.) The explicit
form of Tλ is as follows:

Tλ :

(
a b
c −at

)
+ d · z 7→

(
a b − λc̃
c −at

)
+ λd · 14|4,(1.2)
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where 14|4 is the unit matrix and for a skew-symmetric matrix cij = Eij − Eji

we set c̃ij = ckl for the even permutation (1234) 7→ (ijkl). Clearly, Tλ is an
irreducible representation.

In [Sh1] it is demonstrated that

1) the Cartan prolong fλ = (spinλ, as)∗ is infinite dimensional and simple for
λ 6= 0.

2) fλ ∼= fµ if λ ·µ 6= 0. Observe that though the representations Tλ are distinct
for λ 6= 0, the corresponding Cartan prolongs are isomorphic.

For brevity, we denote the isomorphic superalgebras fλ = (spinλ, as)∗ for any
λ 6= 0 by kas.

4.1. The Chevalley generators in kasL in terms of o(6). Let Λk be the
subsuperspace of kL(1|6) generated by the k-th degree monomials in the odd
indeterminates θi. Then the basis elements of kL(1|6) with their degrees with
respect to Kt are given by the following table:

... −2 −1 0 1 2 ...

... 1 t t2 ...

... Λ tΛ ...

...
Λ2

t
Λ2 tΛ2 ...

...
Λ3

t
Λ3 ...

...
Λ4

t2
Λ4

t
Λ4 ...

...
Λ5

t2
Λ5

t
...

...
Λ6

t3
Λ6

t2
Λ6

t
...

Explicitly, in terms of the generating functions, the basis elements of kasL are
given by the following formulas, where Θ = ξ1ξ2ξ3η1η2η3, η̂i = ξi and ξ̂i = ηi.
Let T̃ ij (i = 1, . . . , 6) be the matrix skew-symmetric with respect to the side

diagonal with only (i, j)-th and (j, i)-th nonzero entries equal to ±1; let G̃i = θi,

where θ = (ξ1, ξ2, ξ3, η3, η2, η1). Let the S̃ denote the generators of one of the two

irreducible components in the o(6)-module Λ3(id). We will later identify G̃ with

the space of skew-symmetric 4 × 4 matrices and S̃ with the sl(4)-module S2(id)

of symmetric 4 × 4 matrices, namely, S̃±εi for i = 1, 2, 3 will be the symmetric
off-diagonal matrices; S̃2,0,0, S̃−2,2,0, S̃0,−2,2 and S̃0,0,−2 the diagonal matrix units
(the superscripts of S̃ are the weights of the matrix elements of the symmetric
bilinear form with respect to sl(4), see sec. 4.2). Set

G̃ =




0 −ξ1 −ξ2 η3

0 ξ3 η2

0 η1

0


 ,



LIE SUPERALGEBRAS OF STRING THEORIES 59

S̃ =




ξ1ξ2ξ3 ξ1(ξ2η2 + ξ3η3) ξ2(ξ1η1 + ξ3η3) η3(ξ1η1 − ξ2η2)
ξ1η2η3 ξ3(ξ1η1 + ξ2η2) η2(ξ1η1 − ξ3η3)

ξ2η1η3 η1(ξ2η2 − ξ3η3)
ξ3η1η2


 ,

i.e., to ξ1 we assign the matrix G̃12 = E21−E12, etc., to ξ1(ξ2η2 + ξ3η3) we assign

the matrix S̃12 = E21 + E12, etc. These generators, expressed via monomial
generators of kL(1|6), are rather complicated. Let us pass to simpler ones using
the isomorphism sl(4) ∼= o(6). Explicitly, this isomorphism is defined as follows:




ξ2η3 ξ1η3 ξ1ξ2

ξ3η2 ξ1η2 −ξ1ξ3

−ξ3η1 ξ2η1 ξ2ξ3

η1η2 η1η3 η2η3


 ,

H1 = −(ξ2η2 − ξ3η3),
H2 = −(ξ1η1 − ξ2η2),
H3 = (ξ2η2 + ξ3η3),

i.e., to ξ2η3 we assign the matrix E12, to ξ2η2−ξ3η3 we assign the matrix −(E11−
E22), etc.

In terms of T̃ , G̃ (the sign + corresponds to kasξ and − to kasη ) and S̃ the
generators of kas (n ≥ 0) and kasL (n ∈ Z) are as folows:

the element its generating function

L(2n − 2) tn ± n(n − 1)(n − 2)tn−3Θ

G̃i(2n − 1) tnθi ± n(n − 1)tn−2 ∂Θ

∂θ̂i

T̃ ij(2n) tnθiθj ± ntn−1 ∂

∂θ̂i

∂

∂θ̂j

Θ,

S̃εi(2n + 1) tnξi(ξjηj + ξkηk)

S̃−εi(2n + 1) tnηi(ξjηj − ξkηk)

S̃2,0,0(2n + 1) tnξ1ξ2ξ3

S̃−2,2,0(2n + 1) tnξ1η2η3

S̃0,−2,2(2n + 1) tnξ2η1η3

S̃0,0,−2(2n + 1) tnξ3η1η2

where S̃ are the above symmetric matrices and where the skew-symmetric matri-
ces G̃i are defined as G̃εi , where εi and −εi is the weight of ξi and ηi, respectively,
with respect to (H1,H2,H3) ∈ sl(4).

4.2. The multiplication table in kasL. In terms of sl(4)-modules we get a
more compact expression of the elements of kasL. Let ad be the adjoint module,
S the symmetric square of the identity 4-dimensional module id and G = Λ2(id∗);
let C · 1 denote the trivial module. Then the basis elements of kasL with their
degrees with respect to to Kt is given by the following table in which u is a new
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indeterminate of degree 2:

degree −2 −1 0 1 2 ...

space C · u−1, ad · u−1 S · u−1, G · u−1 C · 1, ad S, G C · u, ad · u ...

Though it is impossible to embed witt⊃+ gl(4)(1) into kasL (only witt⊃+ sl(4)(1)

can be embedded into kasL), it is convenient to express the brackets in kasL in

terms of the matrix units of gl(4)(1) = gl(4) ⊗ C[u−1, u]; we will denote these
units by T i

j (a); we further set H1(a) = T 1
1 (a) − T 2

2 (a), H2(a) = T 2
2 (a) − T 2

2 (a)

and H3(a) = T 2
2 (a) − T 3

3 (a). Clearly, the right hand side in the last line of the
following multiplication table can be expressed via the Hi(a). We denote the
basis elements of the trivial sl(4)-module of degree a by L(a) and norm them so
that they commute as the usual basis elements of witt.

The multiplication table in kasL is given by the following table:

[L(a), L(b)] = (b − a)L(a + b),
[L(a), T i

j (b)] = bT i
j (a + b),

[L(a), Sij(b)] = (b +
1

2
a)Sij(a + b),

[L(a), Gij(b)] = (b − 1

2
a)Gij(a + b),

[T i
j (a), T k

l (b)] = δk
j T i

l (a + b) − δi
lT

k
j (a + b),

[T i
j (a), Skl(b)] = δk

j Sil(a + b) + δl
jS

ik(a + b),

[T i
j (a), Gkl(b)] = δi

kGlj(a + b) + δi
lGjk(a + b) + aσ(j, k, l,m)Sim(a + b),

[Sij(a), Skl(b)] = 0,

[Sij(a), Gkl(b)] = 2
(
δi
kT

j
l (a + b) − δi

lT
j
k (a + b) + δj

kT i
l (a + b) − δj

l T
i
k(a + b)

)
,

[Gij(a), Gkl(b)] = 2(b − a)
(
δj,kσ(i, j, l,m)Tm

j (a + b) + δi,kσ(i, j, l,m)Tm
i (a + b)

+ δj,lσ(i, k, l,m)Tm
j (a + b) + δi,lσ(j, i, k,m)Tm

i (a + b)
)

+ σ(i, j, k, l)
(
− 4L(a + b) + (b − a)(T i

i (a + b)

+ T j
j (a + b) − T k

k (a + b) − T l
l (a + b))

)
,

where σ(j, i, k,m) is the sign of the permutation (j, i, k,m).

4.3. The relations between Chevalley generators in kasL in terms of

sl(4). Denote: T a
ij = T j

i (a). For the positive Chevalley generators we take same

of sl(4) = Span(T j
i : 1 ≤ i, j ≤ 4) and the lowest weight vectors S1

44 and G1
12 of S1

and G1, respectively. For the negative Chevalley generators we take same of sl(4)
and the highest weight vectors S−1

11 and G−1
34 of S−1 and G−1, respectively. Then

the defining relations, stratified by weight, are the following ones united with the
usual Serre relations in sl(4) (we skip them) and the relations that describe the
highest (lowest) weight vectors:

[T 0
23, [T

0
23, G1

12]] = 0; [T 0
34, [T 0

34, [T 0
34, S1

44]]] = 0;

[[G1
12, [T 0

23, G1
12]], [T 0

34, S1
44]] = 0; [S1

44, [T 0
34, S1

44]] = 0;

[[G1
12, [T 0

23, T 0
34]], [[T 0

23, G1
12], [T 0

34, S1
44]]] = 0;
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[[G−1
34 , [T 0

23, T 0
34]], [[T 0

23, G−1
34 ], [T 0

34, S1
44]]] = 0;

[L0, S−1
11 ] − S−1

11 = 0; [L0, G−1
34 ] − G−1

34 = 0;

[H0
1 , S−1

11 ] − 2S−1
11 = 0; [H0

1 , G−1
34 ] = 0; [H0

2 , S−1
11 ] = 0;

[H0
2 , G−1

34 ] − G−1
34 = 0; [H0

3 , S−1
11 ] = 0; [H0

3 , G−1
34 ] = 0;

[L0, S1
44] − S1

44 = 0; [L0, G1
12] − G1

12 = 0;

[H0
1 , S1

44] = 0; [H0
1 , G1

12] = 0; [H0
2 , S1

44] = 0;

[H0
2 , G1

12] + G1
12 = 0; [H0

3 , S1
44] + 2S1

44 = 0;

[H0
3 , G1

12] = 0; [T 0
12, S−1

11 ] = 0; [T 0
12, G−1

34 ] = 0;

[T 0
23, S−1

11 ] = 0; [T 0
23, G−1

34 ] = 0; [T 0
34, S−1

11 ] = 0;

[T 0
34, G−1

34 ] = 0; [S1
44, T 0

21] = 0; [S1
44, T 0

32] = 0;

[S1
44, T 0

43] = 0; [G1
12, T 0

21] = 0; [G1
12, T 0

32] = 0;

[G1
12, T 0

43] = 0; [T 0
12, S1

44] = 0; [T 0
12, G1

12] = 0;

[T 0
23, S1

44] = 0; [T 0
34, G1

12] = 0; [T 0
21, G−1

34 ] = 0;

[T 0
32, S−1

11 ] = 0; [T 0
43, S−1

11 ] = 0; [T 0
43, G−1

34 ] = 0;

[S1
44, S1

44] = 0; [S1
44, G1

12] = 0; [G1
12, G1

12] = 0;

[S−1
11 , S−1

11 ] = 0; [S−1
11 , G−1

34 ] = 0; [G−1
34 , G−1

34 ] = 0;

[S1
44, S−1

11 ] = 0; [S1
44, G−1

34 ] + 4T 0
43 = 0;

[G1
12, S−1

11 ] − 4T 0
12 = 0;

[G1
12, G−1

34 ] + 4L0 − 2H0
1 − 4H0

2 − 2H0
3 = 0.
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