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PERMANENCE AND POSITIVE BOUNDED SOLUTIONS
OF KOLMOGOROV COMPETING SPECIES SYSTEM

TRINH TUAN ANH, TRAN VAN NHUNG AND LE HONG LAN

Abstract. We study the Kolmogorov equation for n-species. Under
certain conditions, it is shown that the equation is permanent and there
exists a solution defined on whole R whose components are bounded above
and below by positive constants.

1. Introduction

Consider the n-species Kolmogorov-type nonautononous differential
system

(1.1) ẋi = xifi(t, x1, ..., xn), i = 1, ..., n,

where fi : R × Rn
+ → R is uniformly continuous on R × Rn

+ (Rn
+ := {x ∈

Rn : xi ≥ 0, i = 1, ..., n}).
A special case of (1.1) is the Lotka-Volterra-type system

(1.2) ẋi = xi

[
bi(t)−

n∑

j=1

aij(t)xj

]
, i = 1, ..., n,

where the functions bi, aij : R → R are bounded and continuous.
A fundamental ecological question associated with the study of multi-

species population interactions is the long term coexistence of the involved
populations. Such questions arise also in many other situations (see [6]).
Mathematically, this is equivalent to the so-called permanence of the popu-
lations. We recall that the system (1.1) is permanent if there exist positive
constants m,M (m ≤ M) such that any noncontinuable solution x(.) of
(1.1) with x(t0) ∈ int(Rn

+)-the interior of Rn
+, is defined on [t0, +∞) and

the following condition is satisfied

(1.3) m ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤ M, i = 1, ..., n.
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Zanolin [12] and Zhao [13] studied the permanence and the existence
of positive periodic solutions of the systems (1.1) and (1.2) in the periodic
case. Some results on the existence of periodic and almost periodic solution
and the stability of the system (1.2) in the periodic and almost periodic
cases were given [2, 3, 4, 9]. In general, if system (1.1) is not periodic,
then it may have positive bounded solutions (defined on whole R). For
system (1.2) in the case n = 2, some sufficient conditions for the existence
of a positive bounded solution were given in [1, 10].

In this paper we present a result on the permanence and the existence
of positive and bounded solutions of the system (1.1) and (1.2).

2. Main results

We introduce the following hypotheses:
(H1) There exists a positive number α such that Dxifi(t, x1, . . . , xn) ≤
−α, (t, x) ∈ R×Rn

+, i = 1, . . . , n, where Dxi is any Dini derivative in xi,
(H2) inf

t∈R
fi(t, 0) > 0 and fi(t, x) is bounded on the sets of the form R×S,

where S is any compact subset of Rn
+ (i = 1, . . . , n).

(H3) fi(t, x1, . . . , xn) is decreasing in xj (i, j = 1, . . . , n).
From now on, let R+ := [0, +∞) and θ := (0, . . . , 0) ∈ Rn. For x, z ∈

Rn we set x ≤ z if xi ≤ zi, i = 1, . . . , n. We denote by C+ the set of
continuous functions from R into R which are bounded above and below
by positive constants.

The following lemmas were proved in [11].

Lemma 1. Suppose that g : R×R+ → R is continuous such that
(G1) g(., 0) ∈ C+,
(G2) There exists a positive α such that Dyg(t, y) ≤ −α for all (t, y) ∈
R×R+,
(G3) There exists ε > 0 such that g(t, x) is uniformly continuous on
R× [0, ε].

Then the problem

(2.1) ẏ = yg(t, y), y(.) ∈ C+,

has a unique solution y0(.). Moreover, we have lim
t→+∞

|y0(t) − y(t)| = 0

for any solution y(.) of the equation in (2.1) with y(t0) > 0.

Lemma 2. Suppose that g : R×R+ → R is almost periodic in t uniformly
for y ∈ R+ such that
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(G∗1) lim
ω→∞

1
ω

ω∫

0

g(t, 0)dt > 0,

(G∗2) There exists a positive α such that Dyg(t, y) ≤ −α for all (t, y) ∈
R×R+.

Then problem (2.1) has a unique solution y0(.). Moreover, y0(.) is
almost periodic and we have lim

t→+∞
|y0(t)− y(t)| = 0 for any solution y(.)

of the equation in (2.1) with y(t0) > 0.

By Lemma 1, for each i = 1, . . . , n the problem

(2.2i) ẋi = xifi(t, 0, ..., 0, xi, 0, ..., 0), xi(.) ∈ C+,

has a unique solution, say X0
i (.), which is bounded above and below by

positive constants. From now on we set X0(.) = (X0
1 (.), ..., X0

n(.)).
Our main results are the following:

Theorem 1. Assume (H1), (H2), (H3). If

(H4) inf
t∈R

fi(t,X0
1 (t), ..., X0

i−1(t), 0, X0
i+1(t), ..., X

0
n(t)) > 0, i = 1, ..., n,

then system (1.1) is permanent and it has at least one solution x∗(.) =
(x∗1(.), ..., x

∗
n(.)) defined on whole R, whose components are bounded above

and below by positive constants.

Theorem 2. Suppose that fi(t, x) (i = 1, ..., n) is almost periodic in t
uniformly for x ∈ Rn

+ and satisfies (H1), (H3) and the following conditions
for i = 1, . . . , n,

(H∗
2 ) lim

ω→∞
1
ω

ω∫

0

fi(t, 0) > 0,

(H∗
4 ) lim

ω→∞
1
ω

ω∫

0

fi(t,X0
1 (t), ..., X0

i−1(t), 0, X0
i+1(t), ..., X

0
n(t))dt > 0.

Then system (1.1) is permanent and it has at least one solution x∗(.) =
(x∗1(.), ..., x

∗
n(.)) defined on whole R, whose components are bounded above

and below by positive constants.

Applying Theorem 2 to system (1.2) we get the following

Corollary 1. Suppose that bi(t), aij(t) (i, j = 1, ..., n) are almost peri-
odic functions such that
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(L1) inf
t∈R

aii(t) > 0, lim
ω→∞

1
ω

ω∫

0

bi(t)dt > 0, aij(t) ≥ 0, (i, j = 1, ..., n,

t ∈ R).
If

(L2) lim
ω→∞

1
ω

ω∫

0

[
bi(t)−

n∑

j=1,j 6=i

aij(t)X0
j (t)

]
dt > 0, i = 1, ..., n,

where X0
j (.) is the unique almost periodic solution of the following problem

ẋj = xj [bj(t)− ajj(t)xj ], xj(.) ∈ C+,

then system (1.2) is permanent and it has at least one solution defined
on whole R, whose components are bounded above and below by positive
constants.

It is clear that

sup
t∈R

X0
j (t) ≤ Kj := sup

t∈R
bj(t)/ajj(t).

Therefore (L2) holds if

(L′2) lim
ω→∞

1
ω

ω∫

0

[
bi(t)−

n∑

j=1,j 6=i

Kjaij(t)
]
dt > 0, i = 1, ..., n.

Thus we have the following corollary.

Corollary 2. Suppose that the functions bi(t), aij(t) (i, j = 1, ..., n) are
almost periodic and (L1), (L′2) hold. Then the assertion of Corollary 1 is
valid.

Let M be the space of continuous functions from R into Rn equipped
with the topology of uniform convergence on compact subsets of R. It is
well-known that M is a Frechet space. Let

M1 := {p ∈M : θ ≤ p(t) ≤ X0(t), t ∈ R}.

By Lemma 1 and the hypotheses (H1), (H2), (H3), for each p ∈ M1

the following system of n uncouple differential equations

(2.3) żi = zifi(t, p1(t), ..., pi−1(t), zi, pi+1(t), ..., pn(t)), i = 1, ...n
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has a unique solution z(p)(.) ∈ M whose components are bounded above
and below by positive constants. Hence, we can introduce the operator

T : M1 →M
p 7→ T (p) = z(p)(.).

Clearly, p(.) is a solution in M1 of (1.1) if and only if it is a fixed point of
T . We shall apply an extension of Schauder’s fixed point theorem, namely
the Tychonov fixed point theorem, for proving the existence of a fixed
point for the operator T .

Theorem 3 (Tychonov). Let X be locally convex and Hausdorff, C ⊂ X
closed convex, F : C → C continuous and F (C) precompact. Then F has
a fixed point.

Moreover, Ascoli’s theorem is also used in our proof.

Theorem 4 (Ascoli). Let X be a topological space which is locally compact
Hausdorff, Y a metric space, and C(X ,Y) the space of continuous func-
tions from X into Y. Consider C(X ,Y) with the topology of uniform con-
vergence on compact subsets of X . A subset F of C(X ,Y) has compact clo-
sure if and only if it is equicontinuous and the subset Fx = {h(x)|h ∈ F}
of Y has compact closure for each x ∈ X .

Note that in this paper we do not assume the uniqueness of solutions
to the Cauchy problem for system (1.1). The proof of Theorem 1 is based
on the following lemmas.

Lemma 3. If p1, p2 ∈ M1, p1(t) ≤ p2(t) (t ∈ R), then T (p1)(t) ≥
T (p2)(t).

Proof. Suppose the assertion of the lemma is false, i.e., there exist i ∈
{1, ..., n} and t0 ∈ R such that (T (p1))i(t0) < (T (p2))i(t0). Put z1 =
T (p1), z2 = T (p2) and A(t) = ln z1

i (t)− ln z2
i (t). Note that A(t0) < 0 and

zk(t) (k = 1, 2) satisfies the system (2.3) where p is replaced by pk, i.e.,

(2.3k) żk
i = zk

i fi(t, p1(t), ..., pi−1(t), zk
i , pi+1(t), ..., pn(t)), i = 1, ..., n.

By (H3), we have Ȧ(t0) > 0.
Claim. Ȧ(t) > 0 for all t ∈ (−∞, t0].

Suppose the claim were false, i.e., there exists t1 < t0 such that Ȧ(t) >

0 for all t ∈ (t1, t0] and Ȧ(t1) = 0. This implies that A(t) is strictly
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increasing on [t1, t0]. Thus z1
i (t1) < z2

i (t1) and, consequently, Ȧ(t1) > 0.
This is a contradiction.

It follows from the claim that z1
i (t) < z2

i (t) for all t ∈ (−∞, t0]. By
(2.3k), (H1), (H2) we have

Ȧ(t) = fi(t, p1
1(t), ..., p

1
i−1, z

1
i (t), p1

i+1(t), ..., p
1
n(t))

− fi(t, p2
1(t), ..., p

2
i−1, z

2
i (t), p2

i+1(t), ..., p
2
n(t))

≥ α[z2
i (t)− z1

i (t)] > 0, t ∈ (−∞, t0].

Since z1
i (.), z2

i (.) ∈ C+, there exists β > 0 such that

0 <

t0∫

ω

Ȧ(t)dt = ln
z1
i (t0)z2

i (ω)
z2
i (t0)z1

i (ω)
< β for all ω ≤ t0.

Thus

0 <

t0∫

−∞
α[z2

i (t)− z1
i (t)]dt < +∞.

Since ż1
i (t), ż2

i (t) are bounded, we have

lim
t→−∞

[z2
i (t)− z1

i (t)] = 0

and, consequently, lim
t→−∞

A(t) = 0. This implies that

t0∫

−∞
Ȧ(t)dt = A(t0) < 0,

which contradicts

t0∫

−∞
Ȧ(t)dt ≥ α

t0∫

−∞
[z2

i (t)− z1
i (t)]dt > 0.

The lemma is proved.

By Lemma 3, we have T (X0)(t) ≤ T (θ)(t) = X0(t), t ∈ R. Let us set

M2 = {P ∈M : T (X0)(t) ≤ p(t) ≤ X0(t), t ∈ R},



PERMANENCE AND POSITIVE BOUNDED SOLUTIONS 257

δ = inf
t∈R, 1≤i≤n

T (X0)i(t),

∆ = sup
t∈R, 1≤i≤n

X0
i (t).

It is clear that 0 < δ ≤ ∆ < +∞. It follows from (H2) that

0 < L := sup
(t,x)∈R×[δ,∆], 1≤i≤n

|fi(t, x)| < +∞.

Let us set

M3 = {p ∈M2 : |pi(t)− pi(t′)| ≤ L|t− t′|, i = 1, ..., n, t ∈ R}.

It is easily seen that M3 is a closed convex subset of M. By Theorem 4,
M3 is compact. Moreover, Lemma 3 implies that T (M3) ⊂M3.

Lemma 4. The operator T is continuous on M3 (in the topology of
uniformly convergence on compact subsets of R).

Proof. Let {pk}∞k=1 ∈ M3 such that pk → p̄ as k →∞. Clearly, p̄ ∈ M3.
We shall prove that T (pk) → T (p̄) as k →∞.

Since
{
T (pk)

}∞
k=1

is precompact, it suffices to show that if a subse-
quence {T (pks)} converges to p̃ then p̃ = T (p̄). To this end, let us consider
the systems

(2.4ks) żi = zifi(t, pks
1 (t), ..., pks

i−1(t), zi, p
ks
i+1(t), ..., p

ks
n (t)), i = 1, ..., n

and

(2.5) żi = zifi(t, p̄1(t), ..., p̄i−1(t), zi, p̄i+1(t), ..., p̄n(t)), i = 1, ..., n.

Clearly, the right hand side of (2.4ks) converges to the right hand side of
(2.5) uniformly on any compact subset of R × Rn

+. Therefore, from [5,
Theorem 2.4, p. 4] it follows that p̃(.) is a solution of (2.5). Since (2.5)
has a unique solution in C+ (by Lemma 1), T (p̄) = p̃.

Proof of Theorem 1.
(i) The existence. By Lemma 4 and Tychonov’s fixed point theorem,
there exists x∗ ∈ M3 such that T (x∗) = x∗. Thus x∗(t) is a solution of
system (1.1) whose components are bounded above and below by positive
constants.
(ii) The permanence. First of all we prove the following claim.
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Claim. If x(.) is a solution of (1.1) and xi(t0) > 0 for some i ∈ {1, ..., n},
then xi(t) > 0 for all t ≥ t0 where the solution is defined.

Indeed, if xi(t1) = 0 for a minimal value t1 > t0, we have that w1(.) =
xi(.) and w2(.) = 0 both are solutions of the scalar differential equation

ẇ = wfi(t, x1(t), ..., xi−1(t), w, xi+1(t), ..., xn(t))

satisfying the same condition at t1. Hence, for t ∈ [t0, t1], we have

∣∣∣ d

dt
(w1(t)− w2(t))

∣∣∣ = |w1(t)fi(t, x1(t), ..., xn(t))| ≤ γ|w1(t)|
= γ|w1(t)− w2(t)|,

for a suitable constant γ > 0. Since w1(t1) − w2(t1) = 0, the Gronwall
lemma gives w1(t) − w2(t) = 0 for all t ∈ [t0, t1], which contradicts the
fact that w1(t)− w2(t) > 0 for t ∈ [t0, t1). The claim is proved.

Let x(.) be any noncontinuable solution of (1.1) with xi(t0) > 0,
(i = 1, ..., n). By the above claim and hypothesis (H3), x(.) is defined
in [t0,+∞) and xi(t) > 0 for all t ≥ t0, i = 1, ..., n. For each i = 1, ..., n,
let ui(.) be the (right) noncontinuable maximum solution of the scalar
equation (2.2i) with ui(t0) = xi(t0). By (H3), the relation

ẋi(t) = xi(t)fi(t, x1(t), ..., xn(t)) ≤ xi(t)fi(t, 0, ..., 0, xi(t), 0, ..., 0),

holds for each i and t ≥ t0. By [8, Lemma 2.6, p.318], we have

(2.6) xi(t) ≤ ui(t) (t ≥ t0, i = 1, ..., n).

Since fi(t, x) (i = 1, ..., n) is uniformly continuous, the hypothesis (H4)
implies that there exists ε > 0 such that, for i = 1, ..., n, it holds

(2.7) inf
t∈R

fi(t,X0
1 (t) + ε, ..., X0

i−1(t) + ε, 0, X0
i+1(t) + ε, ..., X0

n(t) + ε) > 0.

By Lemma 1, lim
t→+∞

|ui(t)−X0
i (t)| = 0, (i = 1, ..., n). Hence (2.6) implies

that there exists t1 ≥ t0 such that

(2.8) xi(t) ≤ X0
i (t) + ε, t ≥ t1, i = 1, ..., n.

By Lemma 1, for each i = 1, ..., n, the scalar differential equation

(2.9i) żi = zifi(t, X0
1 (t) + ε, ....,X0

i−1(t) + ε, zi, X
0
i (t) + ε, ..., X0

n(t) + ε)
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has a unique solution Z0
i (t) which is bounded above and below by positive

constants.
Let zi(.) (i = 1, ..., n) be the (right) noncontinuable minimum solution

of the scalar equation (2.9i) with zi(t1) = xi(t1). We have, for t ≥ t1,

ẋi(t) ≥ xi(t)fi(t,X0
i (t)+ε, ..., X0

i−1(t)+ε, xi(t), X0
i+1(t)+ε, ..., X0

n(t)+ε).

Consequently, by [8, Lemma 2.7, p.319] we have

zi(t) ≤ xi(t), t ≥ t1, i = 1, .., n.

Once again, by Lemma 1, lim
t→+∞

|zi(t)− Z0
i (t)| = 0, (i = 1, ..., n).

We set

M = ε + max
1≤i≤n

{
sup
t∈R

X0
i (t)

}
, m = min

1≤i≤n

{
inf
t∈R

Z0
i (t)

}
.

Then (1.3) holds, i.e., system (1.1) is permanent. The proof of Theorem
1 is now complete.

Proof of Theorem 2. For i = 1, ..., n, let us set εi = γi/4 and

γi = lim
ω→∞

1
ω

ω∫

0

fi(t,X0
1 (t), ..., X0

i−1(t), 0, X0
i+1(t), ..., X

0
n(t))dt > 0.

Since fi(t, X0
1 (t), ..., X0

i−1(t), 0, X0
i+1(t), ..., X

0
n(t)) (i = 1, ..., n) is almost

periodic, the approximation theorem [7, p. 17] implies that there exists a
trigonometric polynomial ∆i(t) such that

sup
t∈R

|fi(t,X0
1 (t), ..., X0

i−1(t), 0, X0
i+1(t), ..., X

0
n(t))−∆i(t)| < εi.

Clearly, we have that

γi − εi =
3γi

4
< ∆̄i := lim

ω→∞

ω∫

0

∆i(t)dt ≤ εi − γi =
5γi

4

and exp{∆̄it−
t∫

0

∆i(s)ds} is almost periodic.
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By a change of the variable

ui = xi exp
{

∆̄it−
t∫

0

∆i(s)ds
}

(i = 1, ..., n)

the system (1.1) becomes

(2.10) u̇i = uiFi(t, u), i = 1, ..., n,

where

Fi(t, u) = fi

(
t, u1 exp

{− ∆̄1t +

t∫

0

∆1(s)ds
}
, ...,

un exp
{− ∆̄nt +

t∫

0

∆n(s)ds
})

+ ∆̄i −∆i(t).

Hence, it suffices to show that system (2.10) is permanent and it has at
least one solution defined on whole R, whose components are bounded
above and below by positive constants.

It is clear that

Fi(t, θ) = fi(t, θ) + ∆̄i −∆i(t)

≥ fi(t,X0
1 (t), ..., X0

i−1(t), 0, X0
i+1(t), ..., X

0
n(t))

+ ∆̄i −∆i(t) ≥ γi

2
> 0.

Therefore (by Lemma 1) U0
i (t) := X0

i (t) exp
{
∆̄i −

t∫

0

∆(s)ds
}

is a unique

solution in C+ of the following equation

u̇i = uiFi(t, 0, ..., 0, ui, 0, ..., 0) (i = 1, ..., n).

Moreover,

Fi(t, U0
1 (t), ..., U0

i−1(t), 0, U0
i+1(t), ..., U

0
n(t))

= fi(t,X0
1 (t), ..., X0

i−1(t), 0, X0
i+1(t), ..., X

0
n(t)) + ∆̄i −∆i(t)

≥ γi

2
> 0.
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Thus system (2.10) satisfies all the conditions of Theorem 1. The proof of
Theorem 2 is now complete.
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