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LYAPUNOV STABILITY OF NONLINEAR
TIME-VARYING DIFFERENTIAL EQUATIONS

TRAN TIN KIET AND VU NGOC PHAT

Abstract. The paper studies asymptotic stability of nolinear time-
varying differential equations by Lyapunov’s direct method. Sufficient
conditions for asymptotic stability are given in terms of nondifferentiable
Lyapunov-like functions. An application to stabilizability of a class of
nonlinear control systems with feedback controls is also given.

1. Introduction

Consider a nonlinear time-varying differential equation of the form

(1) ẋ(t) = f(t, x(t)), t ≥ 0

It is well known that there are two major approaches to the Lyapunov
stability analysis of system (1): the first linearization method and the
second direct method. Stability of system (1) can be investigated via the
first linearization method, but in general and the most powerful technique
is the second direct method. For this method one usually assumes the
existence of, so called Lyapunov function, a positive definite function with
negative derivative along the trajectory of the system. In the last decade
the Lyapunov direct second method has been a fruitful technique in sta-
bility analysis of nonlinear differential equations and has gained increasing
significance in the development of qualitative theory of dynamical systems
[5, 6, 9, 18]. There are a number of books and papers available expouding
the extensions and generalizations of Lyapunov-like functions, see, e.g., [2,
7, 8, 14, 16, 19] and references therein. It is recognized that the Lyapunov-
like functions serve as a main tool to reduce a given complicated system
into a relatively simpler system and provide useful applications to control
systems [1, 3, 10, 11, 15, 17].
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Unlike the previous papers [4, 12, 13], where some stability results are
given by non-Lyapunov function approach, in this paper we investigate the
asymptotic stability of a class of nonlinear differential equations in terms
of nonsmooth Lyapunov-like functions. In this general setup, the class of
systems considered is allowed to be time-varying and we relax the bound-
edness condition on the system. The Lyapunov-like functions proposed in
the paper need not be differentialble and not be even continuous. Based
on the stability results obtained for system (1), as an application, we de-
rive sufficient conditions for stabilizability of nonlinear control systems by
nonlinear feedback controls.

The paper is organized as follows. In Section 2 we give main nota-
tions and definitions of Lyapunov-like functions needed later. Section 3
presents main theorems on sufficient conditions for asymptotic stability
with the proposed Lyapunov-like functions. An application to stabiliz-
ability of nonlinear control systems is also given. The conclusion is drawn
in Section 4.

2. Notations and definitions

We shall employ the following notations and definitions thoroughout
this paper: X = Rn denotes the n-dimensional Euclidean space with
the corresponding norm ‖.‖; Bε denotes the open unit ball with radius
ε centered at zero, R denotes the real line; R+ denotes the set of non-
negative real numbers; Z+ denotes the set of non-negative integers.

Consider the following nonlinear time-varying differential equation with
the initial condition:

(2)
{

ẋ(t) = f(t, x(t)), t ≥ t0 ∈ R+,

x(t0) = x0,

where the states x(t) take values in X, f(t, x) : R+ ×X → X is a given
nonlinear function and f(t, 0) = 0 for all t ∈ R+. We shall assume that
conditions are imposed on the system (2) such that the existence of its
solutions is guaranteed.

Definition 2.1. The zero solution of (2) is said to be stable if for every
ε > 0, t0 ∈ R+, there exists a number δ > 0 (depending upon ε and δ)
such that for any solution x(t) of (2) with ‖x0‖ < δ implies ‖x(t)‖ < ε,
for all t ≥ t0.

Definition 2.2. The zero solution of (2) is said to be asymptotically
stable if it is stable and there is a number δ > 0 such that any solution
x(t) with ‖x0‖ < δ satisfies lim

t→∞
‖x(t)‖ = 0.
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In the above definitions, if the number δ > 0 is independent of t0, then
the zero solution of the system is said to be uniformly (asymptotically)
stable.

Definition 2.3. A function f(t, x): R+ × X → X is Lipschitz in x
uniformly with respect to (u.w.r.t.) t ∈ R+ if there is a number L > 0
such that

‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖, ∀(t, x1, x2) ∈ R+ ×X ×X.

Let V (t, x): R+ ×W → R be a given function, where W ⊆ X is some
open neighborhood of the origin. We define

D+
f V (t, x) = lim sup

h→0+

V (t + h, x + hf(t, x))− V (t, x)
h

,

D−V (t, x) = lim
y→0

inf
h→0+

∆h,yV (t, x),

where

∆h,yV (t, x) =
V (t + h, x + hf(t, x) + hy)− V (t, x)

h
.

Definition 2.4. [8, 19] A positive definite function V (t, x): R+×W → R
is a weak Lyapunov function of system (1) if it is continuous in (t, x) ∈
R+ × W and Lipschitz in x ∈ W (u.w.r.t. t ∈ R+) and there is a non-
decreasing continuous function γ(.) : R+ → R+ \ {0} such that

(3) D+
f V (t, x) ≤ −γ(‖x‖) < 0, ∀t ∈ R+, x ∈ W \ {0}.

Definition 2.5. A function V (t, x): R+ × W → R is a Lyapunov-like
function of system (1) if it satisfies the following conditions:
(i) There exist a non-decreasing function a(t): R+ → R+ \ {0}, a non-
increasing function b(t): R+ → R+ \ {0}, and numbers a > 0, b > 0 such
that

(4) a(t)‖x‖a ≤ V (t, x) ≤ b(t)‖x‖b, ∀(t, x) ∈ R+ ×W.

(ii) There are non-decreasing functions γ(.): R+ → R+ \ {0}, c(.): R+ →
R+ \ {0}, such that

(5) D−V (t, x) ≤ −c(t)γ(V (t, x)), ∀t ∈ R+, x ∈ W \ {0}.
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Definition 2.6. A function V (t, x): R+ × W → X is a generalized
Lyapunov-like function of system (1) if it satisfies the following conditions:
(i) There exist functions a(t, h), b(t, h): R+ × R+ → R+ \ {0}, a(t, 0) =
b(t, 0) = 0 which are continuously strictly increasing in h ∈ R+, a(t, h) is
non-decreasing in t, b(t, h) is non-increasing in t, such that

(6) a(t, ‖x‖) ≤ V (t, x) ≤ b(t, ‖x‖), ∀(t, x) ∈ R+ ×W.

(ii) For every T > 0, there are a sequence of positive numbers {tn} going
to zero and a function γ(t, h): R+ ×R+ → R+ \ {0}, which is integrable,
non-decreasing in (t, h), such that

(7) lim
n→∞,y→0

∆tn,yV (t, x) ≤ −
t+T∫

t

γ(s, ‖x‖)ds, ∀t ∈ R+, x ∈ W \ {0}.

Remark 2.1. If the function V (t, x) is continuous in t ∈ R+ and Lip-
schitzian in x (uniformly in t ∈ R+) and satisfies condition (3), then the
Lyapunov function V (t, x(t)) is, as in [19], non-increasing in t. However,
the Lyapunov-like function in terms of Definitions 2.5, 2.6 is not neces-
sarily continuous in t, Lipschitzian in x and then it is not, in general,
non-increasing in t, since the functions a(t), b(t) are not assumed to be
continuous in t. The condition (5) or (7) means that the Lyapunov-like
function V (t, x(t)) is non-increasing along the solution of the system on a
sequence.

3. Stability results

In this section we give the stability conditions using the Lyapunov-like
functions. We start with the following theorem given in [8] which gives
a sufficient condition for the asymptotic stability of system (1) with the
weak Lyapunov function in terms of Definition 2.4.

Theorem 3.1. [8] Assume that

‖f(t, x)‖ ≤ M, ∀(t, x) ∈ R+ ×W.

If the system (1) admits a weak Lyapunov function, then the zero solution
is uniformly asymptotically stable.

In the sequel we need the following lemma.
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Lemma 3.1. Let G(t, x), V (t, x): R+×W → R be given functions, where
V (t, x) is continuous in x ∈ W ⊂ X and satisfies the condition

D−V (t, x) ≤ G(t, x), ∀(t, x) ∈ R+ ×W,

then for every solution x(t) of the system (1):

lim inf
h→0+

V (t + h, x(t + h))− V (t, x(t))
h

≤ G(t, x(t)), u.w.r.t. t ∈ R+.

Proof. We now assume to the contrary that for every sequence {tn} going
to 0+ there exists a solution x̄(t) of system (1) such that

lim
n→∞

V (T + tn, x̄(T + tn))− V (T, x̄(T ))
tn

> G(T, x̄(T )),

for some T > 0. Then, there exist an integer N1 > 0, a positive number
ε0 small enough such that for all n > N1,

V (T + tn, x̄(T + tn))− V (T, x̄(T ))
tn

> G(T, x̄(T )) + ε0.

Noting x̄(T + tn) = x̄(T ) + tnf(T, x̄(T )) + o(tn), for some small function
o(h): R+ → R+: lim

h→0
o(h)/h = 0, we have

(*)
V (T + tn, x̄(T ) + tnf(T, x̄(T )) + o(tn))− V (T, x̄(T ))

tn
> G(T, x̄(T )) + ε0.

On the other hand, by the assumption, there exist a sequence {t1n} going
to 0+, a number N2 > 0, and for t = T , x = x̄(T ) = x̄, ε0 > 0, there is a
number δ > 0, such that

(**)
V (t + t1n, x + t1nf(t, x) + t1ny)− V (t, x)

t1n
≤ G(t, x) + ε0,

for all y ∈ Bδ, n > N2. Let us set in the inequality (*): tn = t1n. Then,
taking a number N > max{N1, N2} and n > N large enough so that

y =
o(t1n)
t1n

∈ Bδ, from (*) it follows that

V (T + t1n, x̄ + t1nf(T, x̄) + t1ny)− V (T, x̄)
t1n

> G(T, x̄) + ε0,
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which contradicts the condition (**).

Remark 3.1. If we assume that V (t, x) is Lipschitz in x ∈ Rn uniformly
w.r.t. t ∈ R+, then Lemma 3.1 holds true. Indeed, we have

V (t + h, x(t + h))− V (t, x(t))

= V (t + h, x(t + h))− V (t + h, x + hf(t, x) + hy)

+ V (t + h, x + hf(t, x) + hy)− V (t, x)

≤ L‖x(t + h)− x(t)− hf(t, x(t))− hy‖
+ V (t + h, x + hf(t, x) + hy)− V (t, x),

and then

V (t + h, x(t + h))− V (t, x(t))
h

≤ L
{‖x(t + h)− x(t)‖

h
− f(t, x(t))

}
+ L‖y‖

+
V (t + h, x + hf(t, x) + hy)− V (t, x)

h
,

where L is the Lipschitz constant of V (t, .). Then, we have

lim inf
h→0+

V (t + h, x(t + h))− V (t, x)
h

≤ D−V (t, x),

as desired.
In the following theorem we relax the boundedness condition on the

system and give a sufficient condition for asymptotic stability of system
(1) with a Lyapunov-like function V (t, x) which is nondifferentiable in t
and x in terms of Definition 2.5.

Theorem 3.2. Assume that

(8) ‖f(t, x)‖ ≤ M(t), ∀(t, x) ∈ R+ ×W,

where M(t) : R+ → R+ is an integrable function satisfying the condition

(9) lim
h→0

t+h∫

t

M(s)ds = 0, u.w.r.t. t ∈ R+.
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If the system (1) admits a Lyapunov-like function then the zero solution
is asymptotically stable.

Proof. a) Stability: Let δ1 > 0 be chosen so that Bδ1 ⊂ W . From the
condition (5) and Lemma 3.1 it follows that there is a sequence {tn >
0} → 0 such that for all solution x(t) of the system, t ∈ R+

(10) lim
n→∞

V (t + tn, x(t + tn))− V (t, x(t))
tn

≤ −c(t)γ(V (t, x(t)) ≤ 0.

Let us take ε > 0 an arbitrary number satisfying ε < δ1 such that Bε ⊂
Bδ1 ⊂ W . Let a(t), b(t), a > 0, b > 0 be the functions and numbers given
in the assumption (4). For any t0 ∈ R+ we set

δ2 =
[a(t0)
b(t0)

εa
]1/b

> 0, 0 < δ3 ≤ min{δ1, δ2, ε}.

Let x(t) be an arbitrary solution of system (1) with ‖x0‖ < δ3. We shall
prove that ‖x(t)‖ < ε for all t > t0. For this, by the condition (9), there
is a positive number N ∈ Z+ such that for all n > N , t > t0,

(11)

t+tn∫

t

M(s)ds < min{δ1 − ε, δ2 − δ3, δ1 − δ3}.

For any fixed number n0 > N and setting tn0 = h, from (10) it follows
that

(12) V (t + h, x(t + h))− V (t, x(t)) ≤ 0, ∀t ∈ R+.

Consider the solution of system (1) evaluated at t0 + h, and using (11),
we have the estimate

‖x(t0 + h)‖ ≤ ‖x0‖+

t0+h∫

t0

M(s)ds ≤ δ3 +

t0+h∫

t0

M(s)ds < δ1.

which gives x(t0 + h) ∈ Bδ1 . Using (4) and (12) we have

a(t0)‖x(t0 + h)‖a ≤ V (t0 + h, x(t0 + h)) ≤ V (t0, x0)

≤ b(t0)‖x0‖b < b(t0)δb
2 = a(t0)εa,
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which gives ‖x(t0 + h)‖ < ε. We now consider the solution x(t) evaluated
at time (t0 + 2h). By the same way, we can show that ‖x(t0 + 2h)‖ < δ1

and then applying (4) and (12) again, we obtain

a(t0)‖x(t0 + 2h)‖a ≤ V (t0 + 2h, x(t0 + 2h)) ≤ V (t0, x0)

≤ b(t0)δb
2 = a(t0)εa,

which gives ‖x(t0 + 2h)‖ < ε. Repeating the same arguments we obtain

(13) ‖x(t0 + kh)‖ < ε, ∀k ∈ Z+.

Let t ≥ t0 be an arbitrary number. For n0 > N , tn0 = h, there are
numbers k0 ∈ Z+ \{0} and τ ∈ [0, h) such that t− t0 = k0h+ τ . Consider
now the solution x(t) evaluated at t0 + k0h + τ . From (9), (13) it is easy
to see that x(t0 + k0h + τ) ∈ Bδ1 . Taking the conditions (4), (12) into
account, we obtain

a(t0)‖x(t)‖a ≤ V (t0 + k0h + τ, x(t0 + k0h + τ))

≤ V (t0 + (k0 − 1)h + τ, x(t0 + (k0 − 1)h + τ))

≤ · · · ≤ V (t0 + τ) ≤ b(t0 + τ)‖x(t0 + τ)‖b

< b(t0)‖x(t0 + τ)‖b.

On the other hand, estimating the solution x(t) evaluated at t+τ by using
(11), we have ‖x(t0 + τ)‖ ≤ δ2. Therefore, we obtain

a(t0)‖x(t)‖a < b(t0)δb
2 = a(t0)εa,

which means that ‖x(t)‖ < ε, as desired.
b) Asymptotic stability: We have to show that there is a number δ > 0

such that, for every solution x(t) of (1) with ‖x(t0)‖ < δ, for every ε > 0,
there exists a number N > 0 such that ‖x(t)‖ < ε for all t > t0 + N .
For this, we first note that the system is stable, then for δ1 > 0, where δ1

is chosen so that Bδ1 ⊂ W , we can find a number δ2 > 0 such that any
solution x(t) of the system with ‖x(t0)‖ < δ2 it holds

‖x(t)‖ < δ1, ∀t > t0.

Consider any solution x(t) of (1) with ‖x0‖ < δ = min{δ1, δ2}. We have
x(t) ∈ W , for all t > t0. Let ε > 0 be an arbitrarily given number. We
define

δ3 =
[a(t0)εa

b(t0

]1/b

.
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Let δ4 ∈ (0, δ3). In view of (5), there are a sequence {tn > 0} going to
zero and a number N1 > 0 such that for all n > N1, the condition (10)
holds. Due to the condition (9), there is a number N2 > 0 such that for
all n > N2,

(14)

t+tn∫

t

M(s)ds < δ3 − δ4.

We shall show that for any fixed number n0 > N = max{N1, N2} there is
an integer K > 0 such that

(15) ‖x(t0 + Ktn0)‖ < δ4.

Indeed, if (15) is not satisfied, then ‖x(t0 + ktn0)‖ ≥ δ4 for all k ∈ Z+.
Since x(t) ∈ Bδ1 , t > t0, by the condition (10) we have

V (t0 + (k + 1)tn0 , x(t0 + (k + 1)tn0))

≤ V (t0 + ktn0 , x(t0 + ktn0))

− tn0c(t0 + ktn0)γ(V (t0 + ktn0 , x(t0 + ktn0))

≤ V (t0 + ktn0 , x(t0 + ktn0))− tn0c(t0)γ(b(t0)δb
4)

≤ · · · ≤ V (t0, x0)− (k + 1)M,

where M := tn0c(t0)γ(b(t0)δb
4) > 0. Therefore

0 ≤ V (t0, x0)− (k + 1)M ≤ b(t0)‖x0‖b − (k + 1)M,

or equivalently,
(k + 1)M ≤ b(t0)δb, ∀k ∈ Z+,

which leads to a contradiction when k → ∞. Thus (15) is proved. The
proof is completed as follows. Let t > t0 + Ktn0 . There are an integer
k0 > 0 and number τ0 ∈ [0, tn0) such that t − t0 = k0tn0 + τ0. Since
t > t0 + Ktn0 we can claim that k0 > K. We have

a(t0)‖x(t)‖a ≤ a(t)‖x(t)‖a ≤ V (t, x(t))

≤ V (t0 + (k0 − 1)tn0 + τ0, x(t0 + (k0 − 1)tn0 + τ0))

≤ · · · ≤ V (t0 + Ktn0 + τ0, x(t0 + Ktn0 + τ0)).(16)
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Combining (14) and (15) gives

‖x(t0 + Ktn0 + τ0)‖ ≤ ‖x(t̄0)‖+

t̄0+τ0∫

t̄0

M(s)ds

< δ4 +

t̄0+τ0∫

t̄0

M(s)ds < δ3,

where t̄0 := t0 + Ktn0 . Hence, from (16) it follows that

a(t0)‖x(t)‖a < V (t0 + Ktn0 + τ0, x(t0 + Ktn0 + τ0))

< b(t0)‖x(t0 + Ktn0 + τ0)‖b < b(t0)δb
3 = a(t0)εa,

which gives
‖x(t)‖ < ε, ∀t > t0 + Ktn0 ,

as desired. The proof is complete.

Remark 3.2. If the functions a(t), b(t) are independent of t, i.e., constant,
then Theorem 3.2 holds for the uniform asymptotic stability. Moreover,
from the proof we see that the condition D−V (t, x) ≤ 0 is secured for
the stablility of system (1) and the condition (9) can be replaced by the
non-increasing condition of M(S).

Example 3.1. Consider the differential equation in R1:

ẋ = −(
e−t + 1

) 1
2 γ(x), t ≥ 0,

where γ(.) : R+ → R is any given non-decreasing bounded in W function
satisfying: xγ(x) > 0, γ(0) = 0, where W = {x ∈ R : |x| ≤ a, a > 0}. For
(t, x) ∈ R+ ×W we consider V (t, x) = |x|3. It is easy to verify that

D−V (t, x) ≤ −(
e−t + 1

) 1
2 3x2|γ(x)| ≤ −3x2|γ(x)|

and hence the above system is then uniformly asymptotically stable. Note
that we can take the function γ(x) = xn, where n is an arbitrary odd
positive integer.
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Remark 3.3. It is noticed that instead of the boundedness condition (8)
we can assume that f(t, x) is a Lipschitz function in x uniformly w.r.t.
t ∈ R+. In this case, we will take a number n > N1 such that

tn < min
{ 1

L
ln

δ1

δ3
,
1
L

ln
δ2

δ3
,
1
L

ln
δ1

ε

}
,

where L > 0 is the Lipschitz constant of f(t, x), and use the same argu-
ments of the proof by applying the Gronwall’s inequality to the estimate

‖x(t0 + (k + 1)tn)‖ ≤ ‖x(t0 + ktn)‖eLtn .

Theorem 3.3. Assume the condition (8). If system (1) admits a gen-
eralized Lyapunov-like function, then the zero solution is asymptotically
stable.

Proof. In view of Remark 3.2, if system (1) admits generalized Lyapunov-
like function satisfying (7), then D−V (t, x) ≤ 0, and then stability of
the system is proved by the same arguments used in the proof of part a)
of Theorem 3.2, where the number δ2 > 0 is a solution of the following
equation

b(t0, δ2) = a(t0, ε),

which is always solvable due to the strict continuously increasing assump-
tion on the function b(t0, .). It remains to prove the asymptotic stabil-
ity of the system. For this, we first note that from the stability of (1)
it follows that for δ1 > 0, where δ1 > 0 is chosen so that Bδ1 ⊂ W ,
there is a number δ2 > 0 such that for every solution x(t) of (1) with
‖x0‖ < δ2 implies ‖x(t)‖ < δ1. Consider any solution x(t) of (1) with
‖x0‖ < δ = min{δ1, δ2}. Let ε > 0 be an arbitrary number such that
Bε ⊂ Bδ1 , and for any t0 ∈ R+ we take δ3 > 0 satisfying the equation
b(t0, δ3) = a(t0, ε). Let δ4 ∈ (0, δ3). Using the condition (7) and Lemma
3.1, for every T > 0, there exist a sequence {tn > 0} going to zero and a
number N1 > 0 such that for every n > N1,

(17)
V (t + tn, x(t + tn))− V (t, x(t))

tn
≤ −

t+T∫

t

γ(s, ‖x(s)‖)ds,

for all (t, x(t)) ∈ R+ ×W \ {0}. In view of condition (9), there exists an
integer N > N1 large enough such that tN < T and

(18)

t+tN∫

t

M(s)ds < min{δ4, δ3 − δ4}, ∀t ∈ R.
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We first prove that there is an integer K > 0 such that

(19) ‖x(t0 + KtN )‖ < δ4.

Indeed, if (19) is violated, we have ‖x(t0 + ktN )‖ ≥ δ4 for all k ∈ Z+.
From (17) we have

V (t0 + (k + 1)tN , x(t0 + (k + 1)tN ))

≤ V (t0 + ktN , x(t0 + ktN ))− tN

t̄0+T∫

t̄0

γ(s, ‖x(t0 + ktN )‖)ds

≤ V (t0 + ktN , x(t0 + ktN ))− tN

t̄0+tN∫

t̄0

γ(s, ‖x(s)‖)ds,

(20)

where t̄0 := t0 +kT . On the other hand, for every t ∈ [t̄0, t̄0 + tN ] we have

‖x(t)‖ ≥ ‖x(t̄0)‖ −
t∫

t̄0

‖f(s, x(s)‖ ≥ δ4 −
t̄0+tN∫

t̄0

M(s)ds.

In view of (18) we have

‖x(t)‖ ≥ δ4 −
t̄0+tN∫

t̄0

M(s)ds = η > 0,

which gives

(21)

t̄0+tN∫

t̄0

γ(s, ‖x(s)‖ds ≥ tNγ(t0, η).

Therefore, from (20), (21) it follows that

V (t0 + (k + 1)tN , x(t0 + (k + 1)tN )) ≤ V (t0 + ktN , x(t0 + ktN ))

− γ(t0, η)t2N .
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Repeating the same arguments we obtain

V (t0 + (k + 1)tN , x(t0 + (k + 1)tN )) ≤ V (t0, x0)− (k + 1)M, ∀k ∈ Z+,

where M := γ(t0, η)t2N > 0. Since the Lyapunov-like function V (t, x) is
non-negative, we have

0 ≤ V (t0, x0)− (k + 1)M, ∀k ∈ Z+,

or equivalently

(k + 1)M ≤ V (t0, x0) ≤ b(t0, ‖x0‖) < b(t0, δ) < +∞,

which is a contradiction since the above inequality holds for all k ∈ Z+.
Thus, the condition (19) is proved. The proof is completed as follows.
For very t ≥ t0 + KtN there are numbers k0 > K, τ0 ∈ [0, tN ) such that
t− t0 = k0tN + τ0. Taking (19) into account we have

‖x(t0 + KtN + τ0)‖ ≤ ‖x(t0 + KtN )‖+

t0+KtN+τ0∫

t0+KtN

M(s)ds

< δ4 +

t0+KtN+tN∫

t0+KtN

M(s)ds < δ3.

Therefore

a(t0, ‖x(t)‖) ≤ a(t, ‖x(t)‖) ≤ V (t, x(t))

≤ V (t0 + KtN + τ, x(t0 + KtN + τ0))

≤ b(t0, ‖x(t0 + KtN + τ0)‖) < b(t0, δ3) = a(t0, ε),

which gives ‖x(t)‖ < ε. The theorem is proved.

Remark 3.4. It is worth to note that Theorem 3.3 remains true in
the case when we replace (7) by the following conditions: There are a
sequence of positive numbers {tn} going to zero and integrable functions
γ(h) : R+ → R+, c(.) : R+ → R, such that

(22) lim
n→∞,y→0

{
∆tn,yV (t, x) +

1
tn

t+tn∫

t

c(s)γ(‖x‖)ds
}
≤ 0,



244 TRAN TIN KIET AND VU NGOC PHAT

for all t ∈ R+, x ∈ W × {0}, where γ(h) is strictly increasing in h ∈ R+,
vanishing at zero and c(s) satisfies

(23) lim
n→∞

1
tn

t+tn∫

t

c(s)ds ≥ c > 0, ∀t ∈ R+,

for some positive number c > 0. Indeed, in this case, we take a number
N > 0 large enough so that

t+tN∫

t

M(s)ds ≤ min{δ4, δ3 − δ4}, 1
tN

t+tN∫

t

c(s) ≥ c.

The inequality (20) becomes

V (t0 + (k + 1)tN , x(t0 + (k + 1)tN )) ≤ V (t0 + ktN , x(t0 + ktN ))

− tN

∫ t̄0+tN

t̄0

c(s)γ(‖x(s)‖)ds,

and (21) is
t̄0+tN∫

t̄0

c(s)γ(‖x(s)‖)ds ≥ ctNγ(η).

The proof of Theorem 3.3 is then completed similarly.

Example 3.2. We consider the asymptotic stability of a semilinear system
the form

(24)
{

ẋ(t) = Ax(t) + g(t, x(t)), t ≥ 0,

x(t0) = x0, x(t) ∈ Rn.

Let us assume that the matrix A is asymptotically stable, i.e., the lin-
ear system ẋ(t) = Ax(t) is asymptotically stable. Then, by a classical
Lyapunov theorem (see, e.g. [17]), there exist positive definite symmetric
matrices X, Y , which are solutions of the Lyapunov equation

XA + A′X = −Y.
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We assume that the nonlinear function g(t, x) satisfies the following growth
condition

‖g(t, x)‖ ≤ K(t)‖x‖, ∀(t, x) ∈ R+ ×W,

where K(t) : R+ → R+ is a bounded and integable function, W = {x ∈
Rn : ‖x‖ ≤ 1}. Consider the Lyapunov function V (t, x) = 〈Xx, x〉 : W →
R+. The derivative along the trajectories x(t) of system (24) is given by

d

dt
V (t, x) = −〈Y x(t), x(t)〉+ 〈Xx(t), g(t, x(t))〉.

Thus, we can not apply the classical stability Lyapunov theorem since
the derivative of V (t, x) may take positive and negative values. Taking
Remark 3.4 into account, we can show that if

(25) lim inf
h→0+

1
h

t+h∫

t

[α− ‖X‖K(s)]ds ≥ c > 0, ∀t ∈ R+,

where α > 0 is defined from the positive definite property of the matrix
Y (since Y is positive definite, there is a positive number α > 0 such that
〈Y x(t), x(t)〉 ≥ α‖x(t)‖2, ∀t ≥ 0), then the zero solution of system (24)
is uniformly asymptotically stable. Indeed, from the condition (25), it
follows that there is a sequence {tn} going to zero such that

lim
n→∞

1
tn

t+tn∫

t

[α− ‖X‖K(s)]ds ≥ c > 0, ∀t ∈ R+.

For this sequence tn, and for any t ≥ 0, x ∈ W , y ∈ Rn, and let x(t) be
any solution of (24), x(t) = x, we have

V (t + tn, x + tnf(t, x) + tny)− V (t, x))

≤ V (t + tn, x(t + tn))− V (t, x(t))

+ L‖x(t + tn)− x(t)− tnf(t, x(t))− tny‖

=

t+tn∫

t

V̇ (s, x(s))ds + H(tn, y),



246 TRAN TIN KIET AND VU NGOC PHAT

where H(tn, y) := L‖x(t+tn)−x(t)−tnf(t, x(t))−tny)‖, and
H(tn, y)

tn
→

0, when tn → 0, y → 0. Consequently, we have

∆tn,yV (t, x) ≤ 1
tn

t+tn∫

t

[−α‖x(s)‖2 + 〈Xx(s), g(s, x(s))〉]ds +
H(tn, y)

tn

≤ − 1
tn

t+tn∫

t

[α− ‖X‖K(s)]|‖x(s)‖2ds +
H(tn, y)

tn

= − 1
tn

t+tn∫

t

c(s)γ(‖x(s)‖)ds +
H(tn, y)

tn
,

and hence

lim
n→∞,y→0

{
∆tn,yV (t, x) +

1
tn

t+tn∫

t

c(s)γ(‖x‖)ds
}
≤ lim

n→∞
H(tn, y)

tn
= 0,

where c(s) = [α − ‖X‖K(s)], γ(h) = h2 and the conditions (22), (23) are
satisfied, since γ(h) : R+ → R+ is strictly inscreasing function and c(s)
satisfies (23).

We conclude this section with an application to some stabilizability
problem of a class of nonlinear control systems using feedback controls.
Consider a nonlinear control system of the form

(26) ẋ(t) = f(t, x(t), u(t)), t ≥ 0,

where the state x(t) ∈ X; the control u(t) takes values in some m-
dimensional space U = Rm; f(t, x, u) is a given nonlinear function with
f(t, 0, 0) = 0, t ≥ 0. We recall that the system (26) is stabilizable by a
feedback control u(t) = g(x(t)), where g(x) : X → U , g(0) = 0, is a given
function, if the zero solution of the following system without control

(27) ẋ(t) = f(t, x(t), g(x(t)) := F (t, x(t)), x(t0) = x0, t0 ≥ 0,

is asymptotically stable. Stabilization of system (26) has become, during
the last decades, one of the most impotant problems in control theory.
This problem has been investigated usually by using the stability results
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of corresponding systems without controls (27) [1, 7, 10, 14, 15]. Some
sufficient conditions below for the stabilizability using Lyapunov functions
were established for a class of nonlinear autonomous system

(28) ẋ(t) = f(x(t), u(t)), t ≥ 0.

Theorem 3.4. [10] Consider autonomous system (28). If there are a func-
tion g(x) : Rn → U , g(0) = 0, g(x) ∈ C1

t,x and a positive definite function
V (x) : Rn → R+, V (x) ∈ C1

x and V (x) is proper (i.e. lim
‖x‖→∞

V (x) = +∞)

such that

∂V

∂xi
f i(x, g(x)) < 0, ∀i = 1, 2, . . . , n, ∀x 6= 0.

Then the system is stabilizable by feedback control u(t) = g(x(t)).

Note that the proposed Lyapunov function in the above theorems is,
by the assumptions, non-increasing in t. Based on the stability results
obtained in previous section, we can derive the following sufficient con-
dition for the stabilizability of control system (26) with a discontinuous
Lyapunov-like function.

Theorem 3.5. Assume that there exists a function g(x) : X → U such
that the system (27) satisfies the condition (8). Assume that there exist a
function V (t, x) : R+ × W → R, where W ⊂ X is a open neighborhood
of zero, and functions a(t, h), b(t, h) : R+ × R+ → R+ \ {0}, which are
continuously strictly increasing in h; a(t, h) is non-decreasing in t, b(t, h)
is non-increasing in t such that
(i)

(29) a(t, ‖x‖) ≤ V (t, x) ≤ b(t, ‖x‖), ∀(t, x) ∈ R+ ×W \ {0}.

(ii) For every T > 0 there are a sequence of positive numbers tn going to
zero, a positive function γ(t, h) : R+×R+, which is integrable and strictly
increasing in (t, h) such that

lim
n→∞,y→0

∆tn,yV (t, x) ≤ −
t+T∫

t

γ(s, ‖x‖)ds, ∀(t, x) ∈ R+ ×W \ {0}.

Then the system (26) is stabilizable by feedback control u(t) = g(x(t)).
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Remark 3.5. Note that the condition (29), where a(t, h), b(t, h) need not
be continuous in t, provides enough information to prove the stabilizability
of the system.

4. Conclusions

Asymptotic stability of nonlinear time-varying differential equations by
Lyapunov direct method has been investigated. Nondifferentiable Lyapunov-
like functions are proposed for obtaining sufficient stability conditions.
The stability conditions obtained in the paper can be extended to any
infinite-dimensional Banach space X. The problem of finding numeri-
cal Lyapunov-like functions is usually a difficult task and has remained
under our further investigation. However, the obtained stability results
are applied to some stabilization problems of nonlinear control systems
by feedback controls, which can be considered as an addendum to some
control results given in [10, 14, 15, 17].
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