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STRONG POLYNOMIAL-TIME SOLVABILITY
OF A MINIMUM CONCAVE COST

NETWORK FLOW PROBLEM

HOANG TUY

Abstract. A new simple proof is given of the strong polynomial-time
solvability of the single source uncapacitated minimum concave cost net-
work flow problem (SSUMCCNFP) with a fixed number of nonlinear arc
costs.

1. The Problem

Let G = (NG, AG) be a directed graph consisting of a set NG of N
nodes and a set AG of n ordered pairs of distinct nodes called arcs. With
each arc ai we associate a concave cost function gi(t) : R+ → R+ and

with each node j a demand dj such that
N∑

j=1

dj = 0. For each j let A+
j

(A−j , resp.) be the set of arcs entering (leaving, resp.) node j. One of the
most challenging problems of combinatorial and global optimization is the
following

MCCNFP min
∑

i:ai∈AG

gi(xi)(1)

s.t.
∑

i:ai∈A+
j

xi −
∑

i:ai∈A−j

xi = dj j = 1, . . . , N(2)

0 ≤ xi ≤ qi i = 1, . . . , n.(3)

Nodes with negative demands are called the sources, nodes with positive
demands are the sinks. If dj < 0 is the demand of a source then sj = −dj

is also called the supply. A vector x = (xi, ai ∈ AG) such that 0 ≤ xi ≤ qi

∀ai ∈ AG is called a flow in G. The component xi is the value of the
flow on the arc ai. A flow x satisfying (3) is said to be feasible. So the
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MCCNFP is, for a given demand vector d, to find a feasible flow in G
with minimum cost.

In view of its relevance to numerous applications in operations research,
economics, engineering, etc. MCCNFP has been a subject of intensive
research (see e.g. [1], [2], [3], [8], [9] and references therein).

MCCNFP is a concave minimization problem under network constraints.
When qi = +∞ ∀i and there is only one single source, i.e. dj > 0 for
just one j, the problem is referred to as the single-source uncapacitated
minimum concave cost network flow problem (SSU MCCNFP). It is well
known that this special variant of MCCNFP is still NP-hard (see e.g. [9]).
Since the arcs with nonlinear costs are the only nonlinear elements in SSU
MCNFP, the complexity of this problem should critically depend on the
number k of these arcs.

For the sake of convenience, denote the problem SSU MCCNFP with
a fixed number k of nonlinear arc costs by FP(k). While the general
linearly constrained concave minimization problem is still NP-hard even
when the number of nonlinear variables is fixed, FP(k) has been proved
to be solvable in polynomial time. Recall that in the complexity model
generally adopted for problems with a nonlinear objective function (cf [4],
it is assumed that there exists an oracle providing us with the required
function values. An algorithm is then called (strongly) polynomial-time
if both the number of operations (additions, multiplications, comparisons
etc.) and the number of objective function evaluations it performs are
(strongly) polynomial in the input length.

Actually the first strongly polynomial-time algorithm for FP(k) was
given in [14]. In a preliminary stage this algorithm reduces FP(k) to a
polynomially equivalent production-transportation problem with r = k+1
factories:

PTP(r) minimize h(y1, . . . , yr) +
∑

i,j

cijxij

subject to
m∑

j=1

xij = yi, i = 1, . . . , r

r∑

i=1

xij = dj j = 1, . . . ,m

xij ≥ 0 i = 1, . . . , r, j = 1, . . . ,m

where h(y1, . . . , yr) is a continuous concave function on Rr
+. The main

stage of the mentioned algorithm then solves PTP(r) by a procedure re-
quiring at most Pr(m) elementary operations and Qr(m) evaluations of
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the nonlinear function h(y), where Pr(m) and Qr(m) are polynomials in
m. Although strongly polynomial-time, the algorithm in [14] is rather
complicated and has been established by a quite elaborate argument.

In the present paper we shall provide a new and much simpler strongly
polynomial-time algorithm for PTP(r) and thereby for FP(k). This new
algorithm turns out to be a direct extension of a very efficient algorithm
earlier proposed for PTP(2), i.e. FP(1), in [6] and [13]. For small values
of r it should also be much more practical than the one given earlier in
[14].

2. Equivalent Parametric Problem

As usual, we assume that cij ≥ 0 ∀i, j, and h(y) is increasing on Rr
+,

i.e. h(y′) ≥ h(y) whenever y′ ≥ y. By substituting
n∑

j=1

xij for yi in h(y)

we can reformulate PTP(r) as

PTP(r) min h
( ∑

j

x1j , . . . ,
∑

j

xrj) +
∑

i,j

cijxij

s.t.
r∑

i=1

xij = dj j = 1, . . . , m

xij ≥ 0 i = 1, . . . , r, j = 1, . . . , m

To this problem we associate the parametric program

P(t) min
r∑

i=1

ti

m∑

j=1

xij +
∑

i,j

cijxij

s.t.
r∑

i=1

xij = dj j = 1, . . . ,m

xij ≥ 0 i = 1, . . . , r, j = 1, . . . ,m

where t ∈ Rr
+. It is well known that the parameter domain Rr

+ can then
be partitioned into a finite collection P of polyhedrons (“cells”), such that
∪{

Π
∣∣Π ∈ P}

= Rn
+ and for each Π ∈ P there is a basic solution xΠ which

is optimal to P (t) for all t ∈ Π. If P is such a collection of cells, then

Proposition 1. An optimal solution of PTP(r) is xΠ∗ where

(4) Π∗ ∈ argmin
{

h
( m∑

j=1

xΠ
1j , . . . ,

m∑

j=1

xΠ
kj

)
+

∑

i,j

cijx
Π
ij

∣∣ Π ∈ P
}

.
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Proof. This result can be derived from a general theorem on monotonic
optimization (see [7], [12]). For completeness we give here a direct proof.
To simplify the notation we rewrite PTP(r) and P(t) as

(5) min
{

h(Dx) + 〈c, x〉∣∣ x ∈ G
}

, min
{
〈t,Dx〉+ 〈c, x〉∣∣ x ∈ G

}

where x ∈ Rrm, G is a polytope in Rrm
+ , c ∈ Rrm

+ , D ∈ Rr×(rm), and
h : Rr

+ → R a continuous quasiconcave function such that h(y′) ≥ h(y)
whenever y ∈ Rr

+, y′ ≥ y. Let f(x) = h(Dx) + 〈c, x〉. For each (t, λ) ∈
Rr

+×R+ let x(t,λ) be an arbitrary basic optimal solution of the parametric
problem

(6) min
{
〈t, Dx〉+ λ〈c, x〉

∣∣ x ∈ G
}

.

Let γ = inf
{
f(x(t,λ))

∣∣ t ∈ Rr
+, λ ≥ 0

}
. We first show that

(7) min
{
f(x)

∣∣ x ∈ G
}

= γ.

Denote by E the convex hull of the set
{
x(t,λ)

∣∣ t ∈ Rr
+, λ ≥ 0

}
. This set

is finite because it is contained in the vertex set of G, so E is a polytope
and if we define K =

{
x|〈c, x〉 ≥ 0, Dx ≥ 0

}
, then M := E + K is

a polyhedral set ([10], Corollary 19.3.2). Furthermore, for any x ∈ M .
i.e. x = y + z with y ∈ E, z ∈ K one has Dz ≥ 0, 〈c, z〉 ≥ 0, hence,
f(x) = h(D(y + z)) + 〈c, y + z〉 ≥ h(Dy) + 〈c, y〉 = f(y). Therefore,
f(x) ≥ γ ∀x ∈ M . Now suppose [7] is not true, so that there exists
x̄ ∈ G\M . Since x̄ 6∈ M one can find p ∈ Rn and x1 ∈ ∂M (the boundary
of M) satisfying

(8) 〈p, x− x1〉 ≥ 0 ∀x ∈ M ; 〈p, x̄− x1〉 < 0.

([10], Corollary 11.6.2). For any y ∈ K, we have x1 + y ∈ M + K =
M , hence 〈p, y〉 ≥ 0, and therefore, p = λc + DT t, with λ ≥ 0, t ∈
Rr

+. Since x(t,λ) is an optimal solution of (6) while x ∈ G, we have
〈p, x(t,λ)〉 ≤ 〈p, x̄〉 < 〈p, x1〉, (by the right inequality (8)), hence 〈p, x(t,λ)−
x1〉 < 0, conflicting with the left inequality (8) because x(t,λ) ∈ M . This
contradiction proves (7), and so

(9) min
{

f(x)
∣∣x ∈ G

}
= min

{
f(x(t,λ))

∣∣ t ∈ Rn
+, λ ≥ 0

}
.
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Further, since for every t ∈ Rn
+ we have x(t,0) = lim

ν→∞
x(t,1/ν), the conti-

nuity of f(x) implies that

inf
{

f(x(t,λ))
∣∣ t ∈ lRn

+, λ ≥ 0
}

= inf
{

f(x(t,λ))
∣∣ t ∈ Rn

+, λ > 0
}

= inf
{

f(x(t,λ))
∣∣ t ∈ Rn

+

}
.(10)

Now if P is a collection of cells covering Rn
+ then the relation (4) follows

from (9) and (10) by taking x(t,1) = xΠ for all t ∈ Π
Thus, to solve PTP(r) it suffices to generate a collection P of cells

covering the whole Rr
+. We show that for fixed r such a collection P exists

whose cardinality is bounded by a polynomial in m.

3. Construction of the collection P
Observe that the dual of P(t) is

P∗(t) max
m∑

j=1

djuj

s.t. uj ≤ ti + cij , i = 1, . . . , r j = 1, . . . , m.

Also for any fixed t ∈ Rr
+, a basic solution of P(t) is a vector xt such that

for every j = 1, . . . , m there is an ij satisfying

(11) xt
ij =

{
dj i = ij

0 i 6= ij .

By the duality theorem of linear programming, xt defined by (11) is a
basic optimal solution of P(t) if and only if there exists a feasible solution
u = (u1, . . . , um) of P∗(t) satisfying

(12) uj

{
= ti + cij i = ij

≤ ti + cij i 6= ij

or, alternatively, if and only if for every j = 1, . . . , m:

(13) ij ∈ argmini=1,... ,r{ti + cij}.
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Now let I2
∗ be the set of all pairs (i1, i2) such that i1 < i2 ∈ {1, . . . , r}.

Define a cell to be a polyhedron Π ⊂ Rr
+ which is the solution set of

a linear system formed by taking, for every pair (i1, i2) ∈ I2
∗ and every

j = 1, . . . , m, one of the following inequalities:

(14) ti1 + ci1j ≤ ti2 + ci2j , ti1 + ci1j ≥ ti2 + ci2j .

Then for every j ∈ {1, . . . , m} the order of magnitude of the sequence

ti + cij , i = 1, . . . , r

remains unchanged as t varies over a cell Π. Hence the index ij satisfying
(12) and (13) remains the same for all t ∈ Π, in other words, xt (basic
optimal solution of P(t)) equals a constant vector xΠ for all t ∈ Π. Let P
be the collection of all cells defined that way. Since every t ∈ Rr

+ satisfies
one of the inequalities (14) for every (i1, i2) ∈ I2

∗ and every j = 1, . . . ,m,
the collection P covers all of Rr

+. Let us estimate an upper bound of the
number of cells in P.

Observe that for any fixed pair (i1, i2) ∈ I2
∗ we have ti1 +ci1j ≤ ti2 +ci2j

if and only if ti1 − ti2 ≤ ci2j − ci1j . Let us sort the numbers ci2j − ci1j ,
j = 1, . . . , m, in increasing order

(15) ci2j1 − ci1j1 ≤ ci2j2 − ci1j2 ≤ · · · ≤ ci2jm − ci1jm

and let νi1,i2(j) be the position of ci2j − ci1j in this ordered sequence.

Proposition 2. A cell Π is characterized by a mapping `Π : I2
∗ →

{1, . . . ,m, m + 1} such that Π is the solution set of the linear system

(16) ti1 + ci1j ≤ ti2 + ci2j ∀(i1, i2) ∈ I2
∗ , ∀j ∈ {j| νi1,i2(j) ≥ `Π(i1, i2)}

(17) ti1 + ci1j ≥ ti2 + ci2j ∀(i1, i2) ∈ I2
∗ , ∀j ∈ {j| νi1,i2(j) < `Π(i1, i2)}

Proof. Let Π ⊂ Rr
+ be a cell. For every pair (i1, i2) with i1 < i2 denote

by J i1i2
Π the set of all j = 1, . . . , m such that the left inequality (14) holds

for all t ∈ Π, and define

(18) `Π(i1, i2) =

{
min

{
νi1,i2(j)

∣∣ j ∈ J i1i2
Π

}
if J i1,i2

Π 6= ∅
m + 1 if J i1,i2

Π = ∅.



STRONG POLYNOMIAL-TIME SOLVABILITY 215

It is easy to see that Π is then the solution set of the system (16)-(17).
Indeed, let t ∈ Π. If νi1,i2(j) ≥ `Π(i1, i2) then `Π(i1, i2) 6= m + 1, so
`Π(i1, i2) = νi1,i2(l) for some l ∈ J i1,i2

Π . Then ti1 + ci1l ≤ ti2 + ci2l,
hence ti1 − ti2 ≤ ci2l − ci1l and since the relation νi1,i2(j) ≥ νi1,i2(l)
means that ci2j − ci1j ≥ ci2l − ci1l it follows that ti1 − ti2 ≤ ci2j − ci1j ,
i.e. ti1 + ci1j ≤ ti2 + ci2j . Therefore (16) holds. On the other hand,
if νi1,i2(j) < `Π(i1, i2) then by definition j 6∈ J i1,i2

Π , hence (17) holds,
too (since from the definition of a cell, any t ∈ Π must satisfy one of
one of inequalities (14). Thus, every t ∈ Π is a solution of the system
(16)-(17). Conversly, if t satisfies (16)-(17) then for every (i1, i2) ∈ I2

∗ ,
t satisfies the left inequality (14) for j ∈ J i1,i2

Π and the right inequality
for j 6∈ J i1.i2

Π , hence t ∈ Π. Therfore, each cell Π is determined by a
mapping `π : I2

∗ → {1, . . . .m + 1}. Furthermore, it is easily seen that
`Π 6= `Π′ for two different cells Π, Π′. Indeed, if Π 6= Π′ then at least for
some (i1, i2) ∈ I2

∗ and some j = 1, . . . , m, one has j ∈ J i1i2
Π \ J i1i2

Π′ . Then
`Π(i1, i2) ≤ νi1,i2(j) but `Π′(i1, i2) > νi1,i2(j).

Corollary 1. The total number of cells is bounded above by (m+1)r(r−1)/2.

Proof. The number of cells does not exceed the number of different map-
pings ` : I∗2 → {1, . . . , m+1} and there are (m+1)r(r−1)/2 such mappings.

In particular, for r = 2 there are at most m + 1 cells, as was proved in
[12]. In fact the above method is a direct (but far from trivial) extension
of the method in the latter paper.

Remark. The formulation of PTP(r) in Section 2 as a concave minimiza-
tion problem over a polytope indicates that an optimal solution can be
sought among the (r + 1)m vertices of the feasible polytope

G =
{

x = (xij) ≥ 0
∣∣

r∑

i=1

xij = dj , j = 1, . . . , m
}

.

The above approach shows that only (m + 1)r(r−1)/2 of these vertices
should be investigated. Furthermore, as can be seen from the proof of
Proposition 1, this approach is still valid even if the function h(y) is qua-
siconcave but f(x) = h(Dx) + 〈c, x〉 is not.

For every cell Π (defined by a mapping `Π : I2
∗ → {1, . . . , m + 1})

the associated basic solution xΠ can be computed as follows: for every
j = 1, . . . , m, use the relations (i1 < i2):

ti1 + ci1j ≤ ti2 + ci2j if and only if νi1,i2(j) ≥ `Π(i1, i2)
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to define the index ij satisfying (11) (i.e. (13)). Then xΠ is the vector
such that (see (11)):

xΠ
ijj = dj , xΠ

ij = 0 for i 6= ij .

To sum up, the proposed algorithm for solving PTP(r) involves the fol-
lowing steps:

1) Ordering the sequences ci2j − ci1j , j = 1, . . . , m for every pair
(i1, i2) ∈ I2

∗ , so as to determine νi1,i2(j), j = 1, . . . ,m, (i1, i2) ∈ I2
∗ .

2) Computing the vector xΠ for every cell Π ∈ P (P is the collection
of cells defined by the mappings `Π : I∗2 → {1, . . . , m + 1}).

3) Computing the values f(xΠ) and select Π∗ according to (4).
The steps 1) and 2) require obviously a number of elementary opera-

tions bounded by a polynomial in m, while the step 3) requires mr(r−1)/2

evaluations of f(x).
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