Acta Mathematica Vietnamica

CURRENT ISSUE


 

RECENT ISSUES

Volume 42, 2017

Volume 41, 2016

Volume 40, 2015

Volume 39, 2014

Volume 38, 2013


 

 
mod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_counter

Print

 

Feynman-Kac Representation of Fully Nonlinear PDEs and Applications
Huyên Pham

 

Abstract

The classical Feynman-Kac formula states the connection between linear parabolic partial differential equations (PDEs), like the heat equation, and expectation of stochastic processes driven by Brownian motion. It gives then a method for solving linear PDEs by Monte Carlo simulations of random processes. The extension to (fully)nonlinear PDEs led in the recent years to important developments in stochastic analysis and the emergence of the theory of backward stochastic differential equations (BSDEs), which can be viewed as nonlinear Feynman-Kac formulas. We review in this paper the main ideas and results in this area, and present the implications of these probabilistic representations for the numerical resolution of nonlinear PDEs, together with some applications to stochastic control problems and model uncertainty in finance.

You are here: Home No. 2