Acta Mathematica Vietnamica

CURRENT ISSUE


 

RECENT ISSUES

Volume 42, 2017

Volume 41, 2016

Volume 40, 2015

Volume 39, 2014

Volume 38, 2013


 

 
mod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_counter

Print

 

Alexander Representation of Tangles
Stephen Bigelow, Alessia Cattabriga, Vincent Florens

 

Abstract

A tangle is an oriented 1-submanifold of the cylinder whose endpoints lie on the two disks in the boundary of the cylinder. Using an algebraic tool developed by Lescop, we extend the Burau representation of braids to a functor from the category of oriented tangles to the category of Z[t,t1] -modules. For (1,1)-tangles (i.e., tangles with one endpoint on each disk), this invariant coincides with the Alexander polynomial of the link obtained by taking the closure of the tangle. We use the notion of plat position of a tangle to give a constructive proof of invariance in this case.

You are here: Home No. 2