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A FINITENESS THEOREM FOR GALOIS

REPRESENTATIONS OF FUNCTION FIELDS OVER

FINITE FIELDS (AFTER DELIGNE)

HÉLÈNE ESNAULT AND MORITZ KERZ

Abstract. We give a detailed account of Deligne’s letter [13] to Drinfeld
dated June 18, 2011, in which he shows that there are finitely many irreducible
lisse Q̄ℓ-sheaves with bounded ramification, up to isomorphism and up to
twist, on a smooth variety defined over a finite field. The proof relies on
Lafforgue’s Langlands correspondence over curves [27]. In addition, Deligne
shows the existence of affine moduli of finite type over Q. A corollary of
Deligne’s finiteness theorem is the existence of a number field which contains
all traces of the Frobenii at closed points, which was the main result of [12]
and which answers positively his own conjecture [9, Conj. 1.2.10 (ii)].

1. Introduction

In Weil II [9, Conj. 1.2.10] Deligne conjectured that if X is a normal connected
scheme of finite type over a finite field of characteristic p, and V is an irreducible
lisse Q̄ℓ-sheaf of rank r, with finite determinant, then

(i) V has weight 0,
(ii) there is a number field E(V ) ⊂ Q̄ℓ containing all the coefficients of the

local characteristic polynomials det(1−tFx|Vx), where x runs through the
closed points of X and Fx is the geometric Frobenius at the point x,

(iii) V admits ℓ′-companions for all prime numbers ℓ′ 6= p.

As an application of his Langlands correspondence for GLr, Lafforgue [27] proved
(i), (ii), (iii) for X a smooth curve, out of which one deduces (i) in general. Using
Lafforgue’s results, Deligne showed (ii) in [12]. Using (ii) and ideas of Wiesend,
Drinfeld [15] showed (iii) assuming in addition X to be smooth. A slightly more
elementary variant of Deligne’s argument for (ii) was given in [18].

Those conjectures were formulated with the hope that a more motivic state-
ment could be true, which would say that those lisse sheaves come from geome-
try. On the other hand, over smooth varieties over the field of complex numbers,
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Deligne in [11] showed finiteness of Q-summands of polarized variations of pure
Hodge structures over Z of bounded rank, a theorem which, in weight one, is
due to Faltings [19]. Those are always regular singular, while lisse Q̄ℓ-sheaves
are not necessarily tame. However, any lisse sheaf has bounded ramification (see
Proposition 3.9 for details). Furthermore, one may twist a lisse Q̄ℓ-sheaf by a
character coming from the ground field. Thus it is natural to expect:

Theorem 1.1 (Deligne). There are only finitely many irreducible lisse Q̄ℓ-sheaves

of given rank up to twist on X with suitably bounded ramification at infinity.

Deligne shows this theorem in [13] by extending his arguments from [12]. A
precise formulation is given in Theorem 2.1 based on the ramification theory
explained in Section 3.3.

Our aim in this note is to give a detailed account of Deligne’s proof of this
finiteness theorem for lisse Q̄ℓ-sheaves and consequently of his proof of (ii). For
some remarks on the difference between our method and Deligne’s original argu-
ment for proving (ii) in [12] see Section 8.2.

In fact Deligne shows a stronger finiteness theorem which comprises finiteness
of the number of what we call 2-skeleton sheaves 1 on X. A 2-skeleton sheaf
consists of an isomorphism class of a semi-simple lisse Q̄ℓ-sheaf on every smooth
curve mapping to X, which are assumed to be compatible in a suitable sense.
These 2-skeleton sheaves were first studied by Drinfeld [15]. His main theorem
roughly says that if a 2-skeleton sheaf is tame at infinity along each curve then it
comes from a lisse sheaf on X, extending the rank one case treated in [35], [36].
Deligne suggests that a more general statement should be true:

Question 1.2. Does any 2-skeleton sheaf with bounded ramification come from
a lisse Q̄ℓ-sheaf on X?

For a precise formulation of the question see Question 2.3. The answer to this
question is not even known for rank one sheaves, in which case the problem has
been suggested already earlier in higher dimensional class field theory. On the
other hand Deligne’s finiteness for 2-skeleton sheaves has interesting consequences
for relative Chow groups of 0-cycles over finite fields, see Section 8.1.

Some comments on the proof of the finiteness theorem: Deligne uses in a crucial
way his key theorem [12, Prop. 2.5] on curves asserting that a semi-simple lisse
Q̄ℓ-sheaf is uniquely determined by its characteristic polynomials of the Frobenii
at all closed points of some explicitly bounded degree, see Theorem 5.1. This
enables him to construct a coarse moduli space of 2-skeleton sheaves Lr(X,D) as
an affine scheme of finite type over Q, such that its Q̄ℓ-points correspond to the
2-skeleton sheaves of rank r and bounded ramification by the given divisor D at
infinity.

We simplify Deligne’s construction of the moduli space slightly. Our method
yields less information on the resulting moduli, yet it is enough to deduce the

1we thank Lars Kindler for suggesting this terminology
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finiteness theorem. In fact finiteness is seen by showing that irreducible lisse Q̄ℓ-
sheaves up to twist are in bijection with (some of) the one-dimensional irreducible
components of the moduli space (Corollary 7.2).

We give some applications of Deligne’s finiteness theorem in Section 8.
Firstly, it implies the existence of a number field E(V ) as in (ii) above, see

Theorem 8.2. This number field is in fact stable by an ample hyperplane section
if X is projective, see Proposition 7.4.

Secondly, as mentioned above the degree zero part of the relative Chow group
of 0-cycles with bounded modulus is finite (Theorem 8.1).

Deligne addresses the question of the number of irreducible lisse Q̄ℓ-sheaves
with bounded ramification. In [14] some concrete examples on the projective line
minus a divisor of degree ≤ 4 are computed. In Section 9 we formulate Deligne’s
qualitative conjecture. This formulation rests on emails he sent us and on his
lecture in June 2012 in Orsay on the occasion of the Laumon conference.

Acknowledgment: Our note gives an account of the 9 dense pages written by
Deligne to Drinfeld [13]. They rely on [12] and [15] and contain a completely new
idea of great beauty, to the effect of showing finiteness by constructing moduli
of finite type and equating the classes of the sheaves one wants to count with
some of the irreducible components. We thank Pierre Deligne for his willingness
to read our note and for his many enlightening comments.

Parts of the present note are taken from our seminar note [18]. They grew out
of discussions at the Forschungsseminar at Essen during summer 2011. We thank
all participants of the seminar.

We thank Ngô Ba’o Châu and Phùng Hò̂ Ha’i for giving us the possibility to
publish this note on the occasion of the first VIASM Yearly Meeting.

2. The finiteness theorem and some consequences

2.1. Deligne’s finiteness theorem for sheaves. We begin by formulating a
version of Deligne’s finiteness theorem for ℓ-adic Galois representations of func-
tions fields. Later in this section we introduce the notion of a 2-skeleton ℓ-adic
representation, which is necessary in order to state a stronger form of Deligne’s
finiteness result.

Let SmFq be the category of smooth separated schemes X/Fq of finite type
over the finite field Fq. We fix once for all an algebraic closure F ⊃ Fq. To
X ∈ SmFq connected one associates functorially the Weil group W (X) [9, 1.1.7
], a topological group, well-defined up to an inner automorphism by π1(X ⊗Fq F)
whenX is geometrically connected over Fq. If so, then it sits in an exact sequence

0→ π1(X ⊗Fq F)→W (X)→W (Fq)→ 0.

There is a canonical identification W (Fq) = Z.
We fix a prime number ℓ with (ℓ, q) = 1. Let Rr(X) be the set of lisse Q̄ℓ-Weil

sheaves on X of dimension r up to isomorphism and up to semi-simplification.
For X connected, a lisse Q̄ℓ-Weil sheaf on X is the same as a continuous repre-
sentations W (X) → GLr(Q̄ℓ). As we do not want to talk about a topology on
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Q̄ℓ we define the latter continuous representations ad hoc as the homomorphisms
which factor through a continuous homomorphism W (X) → GLr(E) for some
finite extension E of Qℓ, see [9, (1.1.6)].

The weaker form of the finiteness theorem says that the number of classes of
irreducible sheaves in Rr(X) with bounded wild ramification is finite up to twist.
Let us give some more details. Let X ⊂ X̄ be a normal compactification of the
connected scheme X such that X̄ \X is the support of an effective Cartier divisor
on X̄. Let D ∈ Div+(X̄) be an effective Cartier divisor with support in X̄ \X.
In Section 3.3 we will define a subset Rr(X,D) of representations whose Swan
conductor along any smooth curve mapping to X̄ is bounded by the pullback of
D to the completed curve. We show that for any V ∈ Rr(X) there is a divisor
D with V ∈ Rr(X,D), see Proposition 3.9.

For V ∈ Rr(X,D) we have the notion of twist χ ·V by an element χ ∈ R1(Fq).

Theorem 2.1 (Deligne). Let X ∈ SmFq be connected and D ∈ Div+(X̄) be an

effective Cartier divisor with support in X̄ \ X. The set of irreducible sheaves

V ∈ Rr(X,D) is finite up to twist by elements of R1(Fq).

In particular the theorem implies that for any integer N > 0 there are only
finitely many irreducible V ∈ Rr(X,D) with det(V )⊗N = 1. Theorem 2.1 is a
consequence of the stronger Finiteness Theorem 2.4.

Remark 2.2. Any irreducible lisse Weil sheaf on X is a twist of an étale sheaf,
Proposition 4.3. So the theorem could also be stated with étale sheaves instead
of Weil sheaves.

2.2. Existence problem and finiteness theorem for 2-skeleton sheaves.
By Cu(X) we denote the set of normalizations of closed integral subschemes of
X of dimension one.

We say that a family (VC)C∈Cu(X) with VC ∈ Rr(C) is compatible if for all
pairs (C,C ′) we have

VC |(C×XC′)red = VC′ |(C×XC′)red ∈ Rr((C ×X C ′)red).

We write Vr(X) for the set of compatible families – also called 2-skeleton sheaves.
It is not difficult to see that the canonical map Rr(X) → Vr(X) is injective,

Proposition 4.1. One might ask, what the image of Rr(X) in Vr(X) is.
With the notation as above we can also define the set Vr(X,D) of 2-skeleton

sheaves with bounded wild ramification, see Definition 3.6. Deligne expresses the
hope that the following question about existence of ℓ-adic sheaves might have a
positive answer.

Question 2.3. Is the mapRr(X,D)→ Vr(X,D) bijective for any Cartier divisor
D ∈ Div+(X̄) with support in X̄ \X?

To motivate the question one should think of the set of curves Cu(X) together
with the systems of intersections of curves as the 2-skeleton of X. To be more
precise, the analogy is as follows: For a CW -complex S let S≤d be the union of
i-cells of S (i ≤ d), i.e. its d-skeleton. Assume that S≤0 consists of just one point.
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CW -complex S (with S≤0 =
{∗})

Variety X/Fq

1-sphere S1 with topological
fundamental group π1(S

1) =
Z

Finite field Fq with Weil group
W (Fq) = Z

S1-bouquet S≤1 Set of closed points |X|

2-cell in S Curve in Cu(X)

Relation in π1(S) coming
from 2-cell

Reciprocity law on curve

2-skeleton S≤2 System of curves Cu(X)

Local system on S Lisse Q̄ℓ-Weil sheaf on X

In the sense of this analogy, Deligne’s Question 2.3 is the analog of the fact that
the fundamental groups of S and S≤2 are the same [23, Thm. 4.23], except that
we consider only the information contained in ℓ-adic representations, in addition
only modulo semi-simplification, and that there is no analog of wild ramification
over CW -complexes.

For D = 0 a positive answer to Deligne’s question is given by Drinfeld [15,
Thm 2.5]. His proof uses a method developed by Wiesend [36] to reduce the
problem to Lafforgue’s theorem. For r = 1 and D = 0 it was first shown by
Schmidt–Spiess [35] using motivic cohomology, and later by Wiesend [37] using
more elementary methods.

The stronger form of Deligne’s finiteness theorem says that Theorem 2.1 re-
mains true for 2-skeleton sheaves. We say that a 2-skeleton sheaf V ∈ Vr(X) on
a connected scheme X is irreducible if it cannot be written in the from V1 ⊕ V2
with Vi ∈ Vri(X) and r1, r2 > 0. In Appendix B, Proposition B.1, we give a proof
of the well known fact that a sheaf V ∈ Rr(X) is irreducible if and only if its
image in Vr(X) is irreducible.

The main result of this note now says:

Theorem 2.4 (Deligne). Let X ∈ SmFq be connected and D ∈ Div+(X̄) be

an effective Cartier divisor supported in X̄ \X. The set of irreducible 2-skeleton

sheaves V ∈ Vr(X,D) is finite up to twist by elements from R1(Fq). Its cardinality
does not depend on ℓ 6= p.

The theorem implies in particular that for a given integer N > 0 there are
only finitely many V ∈ Vr(X,D) with det(V )⊗N = 1. Following Deligne we
will reduce the theorem to the one-dimensional case, where it is a well known
consequence of the Langlands correspondence of Drinfeld–Lafforgue. Some hints
how the one-dimensional case is related to the theory of automorphic forms are
given in Section 4.3. The proof of Theorem 2.4 is completed in Section 7.

Idea of proof. The central idea of Deligne is to define an algebraic moduli space
structure on the set Vr(X,D), such that it becomes an affine scheme of finite type
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over Q. In fact Vr(X,D) will be the Q̄ℓ-points of this moduli space. One shows
that the irreducible components of the moduli space over Q̄ℓ are ‘generated’ by
certain twists of 2-skeleton sheaves, which implies the finiteness theorem, because
there are only finitely many irreducible components.

Firstly, one constructs the moduli space structure of finite type over Q for
dim(X) = 1. Then one immediately gets an algebraic structure on Vr(X,D) in
the higher dimensional case and the central point is to show that Vr(X,D) is of
finite type over Q for higher dimensional X too.

The main method to show the finite type property is a result of Deligne (The-
orem 5.1), relying on Weil II and the Langlands correspondence, which says that
for one-dimensional X there is a natural number N depending logarithmically on
the genus of X̄ and the degree of D such that V ∈ Vr(X,D) is determined by
the polynomials fV (x) with deg(x) ≤ N . Here for V ∈ Vr(X,D) we denote by
fV (x) the characteristic polynomial of the Frobenius at the closed point x ∈ |X|,
see Section 4.1 for a precise definition.

3. Ramification theory

In this section we review some facts from ramification theory. We work over
the finite field Fq. In fact all results remain true over a perfect base field of
positive characteristic and for lisse étale ℓ-adic sheaves.

3.1. Local ramification. We follow [28, Sec. 2.2]. Let K be a complete dis-
cretely valued field with perfect residue field of characteristic p > 0. Let G =
Gal(K̄/K), where K̄ is a separable closure of K. There is a descending filtration

(I(λ))0≤λ∈R by closed normal subgroups of G with the following properties:

•
⋂
λ′<λ I

(λ′) = I(λ),

•
⋂
λ∈R I

(λ) = 0,

• I(0+) is the unique maximal pro-p subgroup of the inertia group I(0),

where I(λ+) is defined as
⋃
λ′>λ I

(λ′).

Let G → GL(V ) be a continuous representation on a finite dimensional Q̄ℓ-
vector space V with ℓ 6= p.

Definition 3.1. The Swan conductor of V is defined as

Sw(V ) =
∑

λ>0

λdim(V I(λ+)
/V I(λ)).

The Swan conductor is additive with respect to extensions of ℓ-adic Galois
representations, it does not change if we replace V by its semi-simplification.

For later reference we recall the behavior of the Swan conductor with respect
to direct sum and tensor product. If V, V ′ are two Q̄ℓ-G-modules as above and
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V ∨ denotes the dual representation, then

Sw(V ⊕ V ′) = Sw(V ) + Sw(V ′),(3.1)

Sw(V ⊗ V ′)

rank(V )rank(V ′)
≤

Sw(V )

rank(V )
+

Sw(V ′)

rank(V ′)
,(3.2)

Sw(V ∨) = Sw(V ).(3.3)

3.2. Global ramification (dim = 1). Let X/Fq be a smooth connected curve
with smooth compactification X ⊂ X̄ . Let V be in Rr(X).

The Swan conductor Sw(V ) is defined to be the effective Cartier divisor
∑

x∈|X̄|

Swx(V ) · [x] ∈ Div+(X̄).

Here Swx(V ) is the Swan conductor of the restriction of the representation class

V to the complete local field frac(ÔX̄,x). We say that V is tame if Sw(V ) = 0.
Clearly the Swan conductor of V is the same as the Swan conductor of any

twist χ · V, χ ∈ R1(Fq).
Let φ : X ′ → X be an étale covering of smooth curves with compactification

φ̄ : X̄ ′ → X̄. By DX̄′/X̄ ∈ Div+(X̄) we denote the discriminant [32] of X̄ ′ over

X̄, cf. Section 3.3.

Lemma 3.2 (Conductor-discriminant-formula). For V ∈ Rr(X) with φ∗(V )
tame the inequality of divisors

Sw(V ) ≤ rank(V )DX̄′/X̄ .

holds on X̄.

Proof. By abuse of notation we write V also for a sheaf representing V . There is
an injective map of sheaves on X

V → φ∗ ◦ φ
∗(V ).

For any x ∈ |X|

Swx(V ) ≤ Swx(φ∗ ◦ φ
∗(V )) ≤ rank(V )multx(DX̄′/X̄).

The second inequality follows from [30, Prop. 1(c)]. �

Definition 3.3. Let D ∈ Div+(X̄) be an effective Cartier divisor. The subset
Rr(X,D) ⊂ Rr(X) is defined by the condition Sw(V ) ≤ D. If V ∈ R(X) lies in
Rr(X,D), we say that its ramification is bounded by D.

Let Fqn be the algebraic closure of Fq in k(X).

Definition 3.4. For a divisor D ∈ Div+(X̄) we define the complexity of D to be

CD = 2g(X̄) + 2degFqn
(D) + 1,

where g(X̄) is the genus of X̄ over Fqn and degFqn
is the degree over Fqn .
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Proposition 3.5. Assume X/Fq is geometrically connected. For D ∈ Div+(X̄)
with supp(D) = X̄ \X and for V ∈ Rr(X, rD), the inequality

dimQ̄ℓ
H0
c (X ⊗Fq F, V ) + dimQ̄ℓ

H1
c (X ⊗Fq F, V ) ≤ rank(V ) CD

holds.

Proof. Grothendieck-Ogg-Shafarevich theorem says that

χc(X ⊗Fq F, V ) = (2− 2g(X̄)) rank(V )−
∑

x∈X̄\X

(rank(V ) + sx(V )),

see [28, Théorème 2.2.1.2]. Furthermore

dim H0
c (X ⊗Fq F, V ) ≤ r and

dim H2
c (X ⊗Fq F, V ) = dim H0(X ⊗Fq F, V

∨) ≤ r.

�

3.3. Global ramification (dim ≥ 1). We follow an idea of Alexander Schmidt
for the definition of the discriminant for higher dimensional schemes.

Let X be a connected scheme in SmFq . Let X ⊂ X̄ be a normal compactifica-

tion of X over k such that X̄ \X is the support of an effective Cartier divisor on
X̄. Clearly, such a compactification always exists.

Let Cu(X) be the set of normalizations of closed integral subschemes of X of
dimension one. For C in Cu(X) denote by φ : C → X the natural morphism.
By C̄ we denote the smooth compactification of C over Fq and by φ̄ : C̄ → X̄ we
denote the canonical extension.

Recall that in Section 2 we introduced the set of lisse Q̄ℓ-Weil sheaves Rr(X)
and of 2-skeleton sheaves Vr(X) on X of rank r.

Definition 3.6. For V ∈ Rr(X) or V ∈ Vr(X) and D ∈ Div+(X̄) an effective
Cartier with support in X̄ \X we (formally) write Sw(V ) ≤ D and say that the
ramification of V is bounded by D if for every curve C ⊂ Cu(X) we have

Sw(φ∗(V )) ≤ φ̄∗(D)

in the sense of Section 3.2. The subsets Rr(X,D) ⊂ Rr(X) and Vr(X,D) ⊂
Vr(X) are defined by the condition Sw(V ) ≤ D.

In the rest of this section we show that for any V ∈ Rr(X) there is an effective
divisor D with Sw(V ) ≤ D.

Let ψ : X ′ → X be an étale covering (thus finite) and let ψ̄ : X̄ ′ → X̄ be the
finite, normal extension of X ′ over X̄.

Definition 3.7 (A. Schmidt). The discriminant I(DX̄′/X̄) is the coherent ideal
sheaf in OX̄ locally generated by all elements

det(TrK ′/K(xi xj))i,j

where x1, . . . , xn ∈ ψ∗(OX̄′) are local sections restricting to a basis of K ′ over K.
Here K = k(X) and K ′ = k(X ′).
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Clearly, I(DX̄′/X̄)|X = OX . This definition extends the classical definition for

curves [32], in which case I(DX̄′/X̄) = OX̄(−DX̄′/X̄), where X ⊂ X̄ and X ′ ⊂ X̄ ′

are the smooth compactifications.
The following lemma is easy to show.

Lemma 3.8 (Semi-continuity). In the situation of Definition 3.7 let φ̄ : C̄ → X̄
be a smooth curve mapping to X̄ with C = φ̄−1(X) non-empty. Let C ′ be a

connected component of C×XX
′ and let C ′ →֒ C̄ ′ be the smooth compactification.

Then

φ̄−1(I(DX̄′/X̄)) ⊂ OC̄(−DC̄′/C̄).

Proposition 3.9. For V ∈ Rr(X) there is an effective Cartier divisor D ∈
Div+(X̄) such that Sw(V ) ≤ D.

Proof. By Remark 2.2 we can assume that V is an étale sheaf on X. Then there
is a local field E ⊂ Q̄ℓ finite over Qℓ with ring of integers OE such that V comes
from an ℓ-adic OE-sheaf V1. Let Ê be the finite residue field of OE . There is a
connected étale covering ψ : X ′ → X such that ψ∗(V1 ⊗OE

Ê) is trivial. This
implies that ψ∗(V ) is tame. Let D1 ∈ Div+(X̄) be an effective Cartier divisor
with support in X̄ \X such that OX̄(−D1) ⊂ I(DX̄′/X̄) and set D = rank(V )D1.
With the notation of Lemma 3.8 we obtain

φ̄∗(D1) ≥ DC̄′/C̄

As the pullback of V to C ′ is tame we obtain from Lemma 3.2 the first inequality
in

Sw(φ∗(V )) ≤ rank(V )DC̄′/C̄ ≤ φ̄
∗(D).

�

Remark 3.10. We do not know any example for a V ∈ Vr(X) for which there
does not exist a divisor D with Sw(V ) ≤ D. If such an example existed, it would
in particular show, in view of Proposition 3.9, that not all 2-skeleton sheaves are
actual sheaves.

We conclude this section by a remark on the relation of our ramification theory
with the theory of Abbes-Saito [4]. We expect that for V ∈ Rr(X), Sw(V ) ≤ D
is equivalent to the following: For every open immersion X ⊂ X1 over Fq with the
property that X1 \X is a simple normal crossing divisor and for any morphism
h : X1 → X̄, the Abbes-Saito log-ramification Swan conductor of h∗(V ) at a
maximal point of X1 \X is ≤ the multiplicity of h∗(D) at the maximal point.

For D = 0 this equivalence is shown in [26] relying on [36]. For r = 1 it is
known modulo resolution of singularities by work of I. Barrientos (forthcoming
Ph.D. thesis, Universität Regensburg).

4. ℓ-adic sheaves

4.1. Basics. For X ∈ SmFq we defined in Section 2 the set Rr(X) of lisse Q̄ℓ-
Weil sheaves on X of rank r up to isomorphism and up to semi-simplification
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and the set Vr(X) of 2-skeleton sheaves. Clearly, Rr and Vr form contravariant
functors from SmFq to the category of sets.

For V ∈ Rr(X), taking the characteristic polynomials of Frobenius defines a
function

fV : |X| → Q̄ℓ[t], fV (x) = det(1− t Fx, Vx̄).

For V ∈ Vr(X) we can still define fV (x) by choosing a curve C ∈ Cu(X) such that
C → X is a closed immersion in a neighborhood of x and we set fV (x) = fVC (x).
It follows from the definition that fV (x) does not depend on the choice of C.

We define the trace

tnV : X(Fqn)→ Q̄ℓ, tnV (x) = tr(Fx, Vx̄)

for V ∈ Rr(X) and similarly for V ∈ Vr(X).

We define Pr to be the affine scheme over Q whose points Pr(A) with values
in a Q-algebra A consist of the set of polynomials 1+ a1t+ · · ·+ art

r ∈ A[t] with
ar ∈ A

×. Mapping (αi)1≤i≤r with αi ∈ A
× to

(1− α1t) · · · (1− αrt) ∈ A[t]

defines a scheme isomorphism

(4.1) Gr
m/Sr

≃
−→ Pr,

where Sr is the permutation group of r elements.
For d ≥ 1 the finite morphismGr

m → Gr
m which sends (α1, . . . , αr) to (α

d
1, . . . , α

d
r)

descends to Pr to define the finite scheme homomorphism ψd : Pr → Pr.
Let Lr(X) be the product

∏
|X| Pr with one copy of Pr for every closed point

of X. It is an affine scheme over Q which if dim(X) ≥ 1 is not of finite type over
Q. Denote by πx : Lr(X) → Pr the projection onto the factor corresponding to
x ∈ |X|. We make Lr into a contravariant functor from SmFq to the category of
affine schemes over Q as follows: Let f : Y → X be a morphism of schemes in
SmFq . The image of (Px)x∈|X| ∈ Lr(X) under pullback by f is defined to be

(
ψ[k(y):k(f(y))]Pf(y)

)
y∈|Y |

∈ Lr(Y ).

For N > 0 we similarly define L≤Nr (X) to be the product over all x ∈ |X|
with deg(x) ≤ N over Fq, with the corresponding forgetful morphism Lr(X) →
L≤Nr (X).

Putting things together we get morphisms of contravariant functors

(4.2) Rr(X) −→ Vr(X)
κ:V 7→fV−−−−−→ Lr(X)(Q̄ℓ).

Proposition 4.1. For X ∈ SmFr the maps Rr(X) → Lr(X)(Q̄ℓ) and Vr(X)
κ
−→

Lr(X)(Q̄ℓ) are injective.

Proof. We only have to show the injectivity for Rr(X), since the curve case for
Rr(X) implies already the general case for Vr(X). We can easily recover the trace
functions tnV from the characteristic polynomials fV . The Chebotarev density
theorem [20, Ch. 6] implies that the traces of Frobenius determine semi-simple
sheaves, see [28, Thm. 1.1.2]. �
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In Section 5 we will prove a much stronger result, saying that a finite number of
characteristic polynomials fV (x) are sufficient to recover V up to twist, as long
as V runs over ℓ-adic sheaves with some fixed bounded ramification and fixed
rank.

For later reference we recall the relation between Weil sheaves and étale sheaves
from Weil II [9, Prop. 1.3.4]. We say that V ∈ Rr(X) is étale if it comes from a
lisse étale Q̄ℓ-sheaf on X.

Proposition 4.2. For X connected and V ∈ R1(X), which we consider as a

continuous homomorphism V : W (X) → Q̄×
ℓ , the geometric monodromy group

im(π1(XF̄)) ⊂ W (X)/ ker(V ) is finite, in particular the monodromy group

W (X)/ ker(V ) is discrete. The sheaf V extends to a continuous homomorphism

π1(X)→ Q̄×
ℓ , i.e. V is étale, if and only if im(V ) ⊂ Z̄×

ℓ .

Proposition 4.3. For X connected an irreducible V ∈ Rr(X) is étale if and

only if its determinant det(V ) is étale. In particular there is always a twist χ ·V
with χ ∈ R1(Fq) which is étale.

4.2. Implications of Langlands. In this section we recall some consequences
of the Langlands correspondence of Drinfeld and Lafforgue [27] for the theory of
ℓ-adic sheaves.

The following theorem is shown in [27, Théorème VII.6].

Theorem 4.4. For X ∈ SmFq connected of dimension one and for V ∈ Rr(X)
irreducible with determinant of finite order the following hold:

(i) For an arbitrary, not necessarily continuous, automorphism σ
∈ Aut(Q̄ℓ/Q), there is a Vσ ∈ Rr(X), called σ-companion, such that

fVσ = σ(fV ),

where σ acts on the polynomial ring Q̄ℓ[t] by σ on Q̄ℓ and by σ(t) = t.
(ii) V is pure of weight 0.

Later, we deduce from the theorem that σ-companions exist for arbitrary V ∈
Rr(X) in dimension one, not necessarily of finite determinant, see Corollary 4.7.

For dim(X) arbitrary and V ∈ R1(X), which we consider as a continuous
homomorphism V : W (X) → Q̄×

ℓ , the σ-companion Vσ simply corresponds to

the continuous map σ ◦ V : W (X) → Q̄×
ℓ . In fact σ ◦ V is continuous, because

W (X)/ ker(V ) is discrete by Proposition 4.2.
From Lafforgue’s theorem one can deduce certain results on higher dimensional

schemes.

Corollary 4.5. Let X be a connected scheme in SmFq of arbitrary dimension.

For an irreducible V ∈ Rr(X) the following are equivalent:

(i) V is pure of weight 0,
(ii) there is a closed point x ∈ X such that Vx̄ is pure of weight 0,
(iii) there is χ ∈ R1(Fq) pure of weight 0 such that the determinant det(χ ·V )

is of finite order.



542 HÉLÈNE ESNAULT AND MORITZ KERZ

Proof. (iii) ⇒ (i):
For a closed point x ∈ X choose a curve C/k and a morphism φ : C → X such
that x is in the set theoretic image of φ and such that φ∗V is irreducible. A proof
of the existence of such a curve is given in an appendix, Proposition B.1. Then
by Theorem 4.4 the sheaf φ∗V is pure of weight 0 on C, so Vx̄ is also pure of
weight 0.

(i) ⇒ (ii): Trivially.

(ii) ⇒ (iii):
Choose χ ∈ R1(Fq) such that (χ|k(x))

⊗r = det(Vx̄)
∨. By Proposition 4.2 it follows

that the determinant det(χ · V ) has finite order. �

Let W be the quotient of Q̄×
ℓ modulo the numbers of weight 0 in the sense

of [9, Def. 1.2.1] (algebraic numbers all complex conjugates of which have absolute
value 1).

Corollary 4.6. A sheaf V ∈ Rr(X), resp. a 2-skeleton sheaf V ∈ Vr(X), can be

decomposed uniquely as a sum

V =
⊕

w∈W

Vw

with the property that Vw ∈ R(X), resp. Vw ∈ V(X), such that for each point

x ∈ |X|, all eigenvalues of the Frobenius Fx on Vw lie in the class w.

Corollary 4.7. Assume dim(X) = 1. For V ∈ Rr(X) and an automorphism

σ ∈ Aut(Q̄ℓ/Q), there is a σ-companion to V , i.e. Vσ ∈ Rr(X) such that

fVσ = σ(fV ).

Proof. Without loss of generality we may assume that V is irreducible. In the
same way as in the proof of Corollary 4.5 we find χ ∈ R1(Fq) such that χ ·V has
determinant of finite order. A σ-companion of χ · V exists by Theorem 4.4 and
a σ-companion of χ exists by the remarks below Theorem 4.4. As the formation
of σ-companions is compatible with tensor products, Vσ = (V · χ)σ · (χσ)

∨ is a
σ-companion of V . �

Deligne showed a compatibility result [10, Thm. 9.8] for the Swan conductor
of σ-companions.

Proposition 4.8. Let V and Vσ be σ-companions on a one-dimensional X ∈
SmFq as in Corollary 4.7. Then Sw(V ) = Sw(Vσ).

Recall from (4.2) that there is a canonical injective map of sets Vr(X)
κ
−→

Lr(X)(Q̄ℓ). In the following corollary we use the notation of Section 3.3.

Corollary 4.9. For X ∈ SmFq and an effective Cartier divisor D ∈ Div+(X̄)

with support in X̄ \X the action of Aut(Q̄ℓ/Q) on Lr(X)(Q̄ℓ) stabilizes α(Vr(X))
and α(Vr(X,D)).

Remark 4.10. Drinfeld has shown [15] that Corollary 4.7 remains true for higher
dimensional X ∈ SmFq . His argument relies on Deligne’s Theorem 8.2.
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4.3. Proof of Theorem 2.1 (dim = 1). Theorem 2.1 for one-dimensional schemes
is a well-known consequence of Lafforgue’s Langlands correspondence for GLr
[27]. Let X ∈ SmFq be of dimension one with smooth compactification X̄,
L = k(X). The Langlands correspondence says that there is a natural bijec-
tive equivalence between cuspidal automorphic irreducible representations π of
GLr(AL) (with values in Q̄ℓ) and continuous irreducible representations of the
Weil group σπ : W (L) → GLr(Q̄ℓ), which are unramified almost everywhere.
For such an automorphic π one defines an (Artin) conductor Ar(π) ∈ Div+(X)
and one constructs an open compact subgroup K ⊂ GLr(AL) depending only on
Ar(π) such that the space of K invariant vectors of π has dimension one, see [22].

The divisor Ar(π) has support in X̄ \X if and only if σπ is unramified over X.
Moreover

Swx(σπ) + r ≥ Arx(π)

for x ∈ |X̄ |.
For an arbitrary compact open subgroupK ⊂ GLr(AL) the number of cuspidal

automorphic irreducible representations π with fixed central character and which
have a non-trivial K-invariant vector is finite by work of Harder, Gelfand and
Piatetski-Shapiro, see [29, Thm. 9.2.14].

Via the Langlands correspondence this implies that for given D ∈ Div+(X̄)
with support in X̄ \ X and for given W ∈ R1(X) the number of irreducible
V ∈ Rr(X) with det(V ) = W and with Sw(V ) ≤ D is finite. Recall that the
determinant of σπ corresponds to the central character of π via class field theory.

As written by Deligne in an email to us dated July 30, 2012, one can also use
the quasi-orthogonality relations from Claim 5.4 and a sphere packing argument
to conclude, but Claim 5.4 relies on purity, which again comes from the Langlands
correspondence on curves, so we do not make the argument explicit.

4.4. Structure of a lisse Q̄ℓ-sheaf over a scheme over a finite field. Let
the notation be as above. The following proposition is shown in [5, Prop. 5.3.9].

Proposition 4.11. Let V be irreducible in Rr(X).

(i) Let m be the number of irreducible constituents of VF. There is a unique

irreducible V ♭ ∈ Rr/m(XFqm
) such that

– the pullback of V ♭ to X ⊗Fq F is irreducible,

– V = bm,∗V
♭, where bm is the natural map X ⊗Fq Fqm → X.

(ii) V is pure of weight 0 if and only if V ♭ is pure of weight 0.
(iii) If V ′ ∈ Rr(X) is another sheaf on X with V ′

F = VF, then there is a unique

sheaf W ∈ R1(Fqm) with

V ′ = bm,∗(V
♭ ⊗W ).

A special case of the Grothendieck trace formula [28, (1.1.1.3)] says:
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Proposition 4.12. Let V and m be as in Proposition 4.11. For n ≥ 1 and

x ∈ X(Fqn)

tnV (x) =
∑

y∈XFqm
(Fqn )

y 7→x

tnV ♭(y).

Concretely, tnV (x) = 0 if m does not divide n.

5. Frobenius on curves

We now present Deligne’s key technical method for proving his finiteness theo-
rems. It strengthens Proposition 4.1 on curves by allowing us to recover an ℓ-adic
sheaf from an effectively determined finite number of characteristic polynomials
of Frobenius.

Our notation is explained in Section 2 and Section 4.1. Throughout this section
X is a geometrically connected scheme in SmFq with dim(X) = 1.

Theorem 5.1 (Deligne). The natural map

Rr(X,D)
κN−−→ L≤Nr (X)(Q̄ℓ)

is injective if

(5.1) N ≥ 4r2⌈logq(2r
2CD)⌉.

Here for a real number w we let ⌈w⌉ be the smallest integer larger or equal to
w. Theorem 5.1 relies on the Langlands correspondence and weight arguments
form Weil II. The Langlands correspondence enters via Corollary 4.6.

We deduce Theorem 5.1 from the following trace version:

Proposition 5.2. If V, V ′ ∈ Rr(X,D) are pure of weight 0 and satisfy tnV = tnV ′

for all

(5.2) n ≤ 4r2⌈logq(2r
2 CD)⌉,

then V = V ′.

Prop. 5.2 ⇒ Thm. 5.1. Let V, V ′ ∈ Rr(X,D). We write

V =
⊕

w∈W

Vw and V ′ =
⊕

w∈W

V ′
w

as in Corollary 4.6. The condition αN (V ) = αN (V
′) implies αN (Vw) = αN (V

′
w),

thus tnVw = tnV ′
w
for all w ∈ W and all n as in (5.2). By Proposition 5.2, applied

to some twist of weight 0 of Vw and V ′
w by the same χ, this implies Vw = V ′

w for
all w ∈ W. �
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5.1. Proof of Proposition 5.2. Let J be the set of irreducibleW ∈ Rs(X), 1 ≤
s ≤ r, which are twists of direct summands of V ⊕ V ′. Set I = J/twist. Choose
representative sheaves Si ∈ R(X) which are pure of weight 0 (i ∈ I). In particular
this implies that HomX⊗FqF(Si1 , Si2) = 0 for i1 6= i2 ∈ I by Proposition 4.11. Also

for each i ∈ I we have

Si = bmi,∗S
♭
i

for positive integers mi and geometrically irreducible S♭i ∈ R(XFqmi
) with the

notation of Proposition 4.11.
It follows from Proposition 4.11 that there areWi,W

′
i ∈ R(Fqmi ) pure of weight

0 such that

V =
⊕

i∈I

bmi,∗(S
♭
i ⊗Q̄ℓ

Wi)

and

V ′ =
⊕

i∈I

bmi,∗(S
♭
i ⊗Q̄ℓ

W ′
i ).

For n > 0 set

In = {i ∈ I, mi|n}.

Lemma 5.3. Let Si be in R(X) pairwise distinct, geometrically irreducible, pure

of weight 0. Then the functions

tnSi
: X(Fqn)→ Q̄ℓ (i ∈ In)

are linearly independent over Q̄ℓ for n ≥ 2 logq(2r
2CD).

Proof. Fix an isomorphism ι : Q̄ℓ
∼
→ C. Assume we have a linear relation

(5.3)
∑

i∈In

λi t
n
Si

= 0, λi ∈ Q̄ℓ,

such that not all λi are 0. Multiplying by a constant in Q̄×
ℓ , we may assume that

|ι(λi◦)| = 1 for one i◦ ∈ In and |ι(λi)| ≤ 1 for all i ∈ In. Set

〈Si1 , Si2〉n =
∑

x∈X(Fqn )

tn
Hom(Si1

,Si2
)(x)

for i1, i2 ∈ In. Observe that

tn
Hom(Si1

,Si2
) = tnS∨

i1

· tnSi2
.

Multiplying (5.3) by tnS∨

i◦

and summing over all x ∈ X(Fqn) one obtains

(5.4)
∑

i∈In

λi 〈Si◦ , Si〉n = 0.

Claim 5.4. One has

(i)

|ι〈Si◦ , Si〉n| ≤ rank(Si◦)rank(Si) CD q
n/2

for i 6= i◦,
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(ii)

|mi◦ q
n − ι〈Si◦ , Si◦〉n| ≤ rank(Si◦)

2 CD q
n/2.

Proof of (i):
By [9, Théorème 3.3.1] the eigenvalues α of Fn on Hk

c (X ⊗Fq F,Hom(Si◦ , Si◦))
for k ≤ 1 fulfill

|ια| ≤ qn/2.

On the other hand

dimQ̄ℓ
(H0

c (X ⊗Fq F,Hom(Si◦ , Si))) + dimQ̄ℓ
(H1

c (X ⊗Fq F,Hom(Si◦ , Si))) ≤

rank(Si◦)rank(Si) CD

by Proposition 3.5. In fact we have

Sw(Hom(Si◦ , Si)) ≤ rank(Si◦)rank(Si)D

by (3.1) - (3.3). Under the assumption i 6= i◦ one has

H2
c (X ⊗Fq F,Hom(Si◦ , Si)) = HomX⊗FqF(Si, Si◦)⊗ Q̄ℓ(−1) = 0

by Poincaré duality. Putting this together and using Grothendieck’s trace formula
[28, 1.1.1.3] one obtains (i).
Proof of (ii):
It is similar to (i) but this time we have

dimQ̄ℓ
H2
c (X ⊗Fq F,Hom(Si◦ , Si)) = mi◦

and for an eigenvalue α of Fn on

H2
c (X ⊗Fq F,Hom(Si◦ , Si)) = HomX⊗FqF(Si, Si◦)⊗ Q̄ℓ(−1)

we have α = qn. This finishes the proof of the claim.

Since under the assumption on n from Lemma 5.3

CD rank(Si◦)
∑

i∈In

rank(Si) < qn/2,

we get a contradiction to the linear dependence (5.3).
�

By Proposition 4.12 for any n ≥ 0 we have

tnV =
∑

i∈In

tnWi
tnSi

and

tnV ′ =
∑

i∈In

tnW ′

i
tnSi
.

Under the assumption of equality of traces from Theorem 5.2 and using Lemma 5.3
we get

(5.5) Tr(Fn,Wi) = Tr(Fn,W ′
i ) i ∈ In
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for

2 logq(2r
2CD) ≤ n ≤ 4r2⌈logq(2r

2 CD)⌉.

In particular this means that equality (5.5) holds for

n ∈ {miA,mi (A+ 1), . . . ,mi (A+ 2r − 1)},

where A = ⌈2 logq(2r
2CD)⌉. So Lemma 5.5 applied to the set {b1, . . . , bw} of

eigenvalues of Fmi of Wi and W
′
i (so w ≤ 2r) shows that Wi =W ′

i for all i ∈ I.

Lemma 5.5. Let k be a field and consider elements a1, . . . , aw ∈ k, b1, · · · bw ∈
k× such that

F (n) :=
∑

1≤j≤w

aj b
n
j = 0

for 1 ≤ n ≤ w. Then F (n) = 0 for all n ∈ Z.

Proof. Without loss of generality we can assume that the bj are pairwise different
for 1 ≤ j ≤ w. Then the Vandermonde matrix

(bnj )1≤j,n≤w

has non-vanishing determinant, which implies that aj = 0 for all j. �

6. Moduli space of ℓ-adic sheaves

In Section 4.1 we introduced an injective map

κ : Vr(X)→ Lr(X)(Q̄ℓ)

from the set of 2-skeleton ℓ-adic sheaves to the Q̄ℓ-points of an affine scheme
Lr(X) defined over Q, which is not of finite type over Q if dim(X) ≥ 1. Assume
that there is a connected normal projective compactification X ⊂ X̄ such that
X̄ \X is the support of an effective Cartier divisor on X̄. We use the notation
of Section 4.1.

The existence of the moduli space of ℓ-adic sheaves on X is shown in the
following theorem of Deligne.

Theorem 6.1. For any effective Cartier divisor D ∈ Div+(X̄) with support in

X̄ \X there is a unique reduced closed subscheme Lr(X,D) of Lr(X) which is of

finite type over Q and such that

Lr(X,D)(Q̄ℓ) = κ(Vr(X,D)).

Uniqueness is immediate from Proposition A.1. In Section 6.2 we construct
Lr(X,D) for dim(X) = 1. In Section 6.3 we construct Lr(X,D) for general X.
Before we begin the proof we introduce some elementary constructions on Lr(X).
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6.1. Direct sum and twist as scheme morphisms. For r = r1 + r2 the
isomorphism

Gr1
m ×Q Gr2

m
≃
−→ Gr

m

together with the embedding of groups Sr1 × Sr2 ⊂ Sr1+r2 induces a finite sur-
jective map

−⊕− : Pr1 ×Q Pr2 → Pr, (P,Q) 7→ PQ(6.1)

via the isomorphism (4.1). We call it the direct sum.

There is a twisting action by Gm

Gm ×Q Pr → Pr, (α,P ) 7→ α · P

defined by the diagonal action of Gm on Gr
m

(α, (α1, . . . , αr)) 7→ (α · α1, . . . , α · αr)

and the isomorphism (4.1).
We now extend the direct sum and twist morphisms to L(X).
By taking direct sum on any factor of L(X) we get for r1+ r2 = r a morphism

of schemes over Q

(6.2) −⊕− : Lr1(X) × Lr2(X)→ Lr(X).

Note that the direct sum is not a finite morphism in general, since we have an
infinite product over closed points of X.

The twist is an action of Gm

(6.3) Gm ×Q Lr(X)→ Lr(X)

given by

(α, (Px)x∈|X|) 7→ α · (Px)x∈|X| = (αdeg(x) · Px)x∈|X|

where we take the degree of a point x over Fq.

Let k be a field containing Q and Pi ∈ Lri(k), i = 1, . . . , n. Assume ri > 0 for
all i and set r = r1 + · · · + rn.

Lemma 6.2. The morphism of schemes over the field k

ρ : Gn
m → Lr(X), (αi)i=1,...,n 7→ α1 · P1 ⊕ · · · ⊕ αn · Pn

is finite.

Proof. In fact already the composition of ρ with the projection to one factor Pr
of Lr(X), corresponding to a point x ∈ |X|, is finite. To see this write this
morphism as the composition of finite morphisms over k

Gn
m

ψdeg(x)
−−−−→ Gn

m
·(P1,...,Pn)
−−−−−−−→ Pr1 × · · · × Prn

⊕
−→ Pr.

�
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6.2. Moduli over curves. In this section we prove Theorem 6.1 for dim(X) = 1.
The dimension one case of Theorem 2.1 was shown in Section 4.3. In particular
we get:

Lemma 6.3. There are up to twist only finitely many irreducible direct sum-

mands of the sheaves V ∈ Rr(X,D) = Vr(X,D).

Step 1:

Consider V1 ⊕ · · · ⊕ Vn ∈ Rr(X,D) and the map

(6.4) (R1(Fq))
n → Lr(X)(Q̄ℓ), (χ1, . . . , χn) 7→ κ(χ1 · V1 ⊕ · · · ⊕ χn · .Vn)

This map is just the induced map on Q̄ℓ-points of the finite scheme morphism
over k = Q̄ℓ from Lemma 6.2, where we take Pi = κ(Vi). By Proposition A.3
there is a unique reduced closed subscheme L(Vi) of Lr(X) ⊗ Q̄ℓ of finite type
over Q̄ℓ such that L(Vi)(Q̄ℓ) is the image of the map (6.4).

Step 2:

By Lemma 6.3 there are only finitely many direct sums

(6.5) V1 ⊕ · · · ⊕ Vn ∈ Rr(X,D)

with Vi irreducible up to twists χi 7→ χi · Vi with χi ∈ R1(Fq). Let

Lr(X,D)Q̄ℓ
→֒ Lr(X) ⊗Q Q̄ℓ

be the reduced scheme, which is the union of the finitely many closed subschemes
L(Vi) →֒ Lr(X) ⊗Q Q̄ℓ corresponding to representatives of the finitely many
twisting classes of direct sums (6.5). Clearly Lr(X,D)Q̄ℓ

(Q̄ℓ) = κ(Rr(X,D)) and

Lr(X,D)Q̄ℓ
is of finite type over Q̄ℓ.

Step 3:

By Corollary 4.9 the automorphism group Aut(Q̄ℓ/Q) acting on Lr(X) stabilizes
κ(Rr(X,D)). Therefore by the descent Proposition A.2 the scheme Lr(X,D)Q̄ℓ

→֒

Lr(X)⊗Q Q̄ℓ over Q̄ℓ descends to a closed subscheme Lr(X,D) →֒ Lr(X). This is
the moduli space of ℓ-adic sheaves on curves, the existence of which was claimed
in Theorem 6.1.

From the proof of Lemma 6.2 and the above construction we deduce:

Lemma 6.4. For any x ∈ |X| the composite map

Lr(X,D)→ Lr(X)
πx−→ Pr

is a finite morphism of schemes.

6.3. Higher dimension. Now the dimension d = dim(X) of X ∈ SmFq is al-
lowed to be arbitrary. In order to prove Theorem 6.1 in general we first construct
a closed subscheme Lr(X,D) →֒ Lr(X) such that

Lr(X,D)(Q̄ℓ) = κ(Vr(X,D))

relying on Theorem 6.1 for curves. However from this construction it is not clear
that Lr(X,D) is of finite type over Q. The main step is to show that it is of finite
type using Theorem 5.1.
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Step 1:

We define the reduced closed subscheme Lr(X,D) →֒ Lr(X) by the Cartesian
square (in the category of reduced schemes)

Lr(X,D) //

��

Lr(X)

��∏
C∈Cu(X)

Lr(C, φ̄
∗(D)) //

∏
C∈Cu(X)

Lr(C)

where Cu(X) is defined in Section 2.2. Clearly, from the curve case of Theorem 6.1
and the definition of Vr(X,D) we get

Lr(X,D)(Q̄ℓ) = κ(Vr(X,D)).

In addition, as L(X) →
∏

C∈Cu(X)

Lr(C) is a closed immersion, so is L(X,D) →

∏
C∈Cu(X)

Lr(C, φ̄
∗(D)).

Step 2:

Let C be a purely one-dimensional scheme which is separated and of finite type
over Fq. Let φi : Ei → C (i = 1, . . . ,m) be the normalizations of the irre-
ducible components of C and let φ : E =

∐
iEi → C be the disjoint union.

Let D ∈ Div+(Ē) be an effective divisor with supports in Ē \ E. Here Ē is the
canonical smooth compactification of E. Define the reduced scheme Lr(C,D) by
the Cartesian square (in the category of reduced schemes)

Lr(C,D) //

��

∏
j=1,...,m Lr(Ej ,Dj)

��∏
i=1,...,m Lr(Ei,Di) //

∏
(i,j) Lr((Ei ×C Ej)red)

Step 3:

By an exhaustive system of curves on X we mean a sequence (Cn)n≥0 of purely
one-dimensional closed subschemes Cn →֒ X with the properties (a) – (d) listed
below. We write φ : En → X for the normalization of Cn. For a divisor D′ ∈
Div+(Ēn) we let CD′ be the maximum of the complexities of the irreducible
components of En ⊗ F, see Definition 3.4.

(a) Cn →֒ Cn+1 for n ≥ 0,
(b) En(Fqn)→ X(Fqn) is surjective,
(c) the fields of constants of the irreducible components of En (n ≥ 0) are

bounded,
(d) the complexity Cφ̄∗n(D) of En satisfies

Cφ̄∗n(D) = O(n).

Lemma 6.5. Any X ∈ SmFq admits an exhaustive system of curves.
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The proof of the lemma is given below.
In order to show that Lr(X,D) is of finite type, one can assume that the

support of D is X̄\X. Let now (Cn) be an exhaustive system of curves on X.
Set Dn = φ̄∗n(D) ∈ Div+(Ēn). An immediate consequence of (a)–(d) and the
Riemann hypothesis for curves is that for n ≫ 0 any irreducible component of
Cn+1 meets Cn. This implies by Lemma 6.4 that the tower of affine schemes of
finite type over Q

· · · → Lr(Cn+1,Dn+1)
τ
−→ Lr(Cn,Dn)→ · · ·

has finite transition morphisms. Clearly, Lr(X,D) maps to this tower. Since the
complexities of the irreducible curves grow linearly in n and the fields of constants
are bounded, Theorem 5.1 implies that there is N ≥ 0 such that the map

Lr(Cn+1,Dn+1)(Q̄ℓ)→ L
≤n
r (En+1)

is injective for n ≥ N . As this map factors through

τ : Lr(Cn+1,Dn+1)(Q̄ℓ)→ Lr(Cn,Dn)(Q̄ℓ)

by (b), we get injectivity of τ on Q̄ℓ-points for n ≥ N . Consider the intersection
of the images

In =
⋂

i≥0

τ i(Lr(Cn+i,Dn+i)) →֒ Lr(Cn,Dn),

endowed with the reduced closed subscheme structure. Then the transition maps
in the tower

· · · → In+1 → In → · · ·

are finite and induce bijections on Q̄ℓ-points for n ≥ N . By Proposition A.4
we get an N ′ ≥ 0 such that In+1 → In is an isomorphism of schemes for n ≥
N ′. The closed immersion Lr(X,D) → Lr(X) factors through Lr(X,D) →
lim
←−n

Lr(Cn,Dn), which is therefore itself a closed immersion. Thus we obtain a
closed immersion

Lr(X,D)→ lim←−
n

Lr(Cn,Dn) ∼= lim←−
n

In
≃
−→ IN ′ ,

and therefore Lr(X,D) is of finite type over Q.

Proof of Lemma 6.5. Using Noether normalization we find a finite number of
finite surjective morphisms

η̄s : X̄ → Pd, s = 1, . . . , w

with the property that every point x ∈ |X| is in the étale locus of one of the
ηs = η̄s|X . See [25, Theorem 1] for more details.

Claim 6.6. For a point y ∈ Pd(Fqn) there is a non-constant morphism φy : P
1 →

Pd of degree < n with y ∈ φy(P
1(Fqn)).
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Proof of Claim. The closed point y lies in an affine chart

AdFq
= Spec (Fq[T1, . . . , Td]) →֒ PdFq

and gives rise to a homomorphism Fq[T1, . . . , Td]→ Fqn . We choose an embedding
SpecFqn →֒ A1

Fq
= Spec (Fq[T ]) and a lifting

Fq[T1, . . . , Td]→ Fq[T ]

with deg(φ(Ti)) < n (1 ≤ i ≤ d). By projective completion we obtain a morphism
φy : P

1
Fq
→ PdFq

of degree less than n factoring the morphism y → Pd.
�

For x ∈ |X| of degree n choose a lift x ∈ X(Fqn) and an s such that x is in

the étale locus of ηs. Furthermore choose φy : P1 → Pd as in the claim with
y = ηs(x). Clearly x lifts to a smooth point of (P1 ×Pd X)(Fqn) contained in an
irreducible component which we call Z. Let φx : Cx → X be the normalization
of the image of Z in X. Then x ∈ φx(Cx(Fqn)).

We assume now that we have made the choice of the curve φx : Cx → X above
for any point x ∈ |X|. As usual φ̄x : C̄x → X̄ denotes the smooth compactification
of Cx. From the Riemann-Hurwitz formula [21, IV, Cor. 2.4] we deduce the
growth property

Cφ̄∗x(D) = O(deg(x))

for the complexity of C̄x. Furthermore it is clear that the fields of constants of
the curves Cx are bounded. Therefore the subschemes

Cn =
⋃

deg(x)≤n

φx(Cx) →֒ X

satisfy the conditions (a)–(d) above. �

7. Irreducible components and proof of finiteness theorems

Recall that we defined irreducible 2-skeleton sheaves in Section 2 and that in
Section 6 we constructed an affine scheme Lr(X,D) of finite type over Q, the Q̄ℓ-
points of which are in bijection with 2-skeleton sheaves of rank r with ramification
bounded by D. For this we had to assume that X̄ is a normal projective variety
defined over Fq and D is an effective Cartier divisor supported in X̄ \X.

The following theorem describes the irreducible components of Lr(X,D) over
Q̄ or, what is the same, over Q̄ℓ.

Theorem 7.1. 1) Given V1, . . . , Vm irreducible in V(X) such that V1⊕ . . .⊕
Vm ∈ Vr(X,D), there is a unique irreducible component Z →֒ Lr(X,D)⊗
Q̄ such that

Z(Q̄ℓ) = {κ(χ1 · V1 ⊕ . . .⊕ χm · Vm) |χi ∈ R1(Fq)}(7.1)

2) If Z →֒ Lr(X,D)⊗Q̄ is an irreducible component, then there are V1, . . . , Vm
irreducible in V(X,D) such that (7.1) holds true.
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Proof. We first prove 2). Let d be the dimension of Z, so Q̄(Z) has transcendence
degree d over Q̄. Let κ(V ) ∈ Z(Q̄ℓ) be a geometric generic point, corresponding
to ι : Q̄(Z) →֒ Q̄ℓ.

By definition, the coefficients of the local polynomials fV (x), x ∈ |X| span
ι(Q̄(Z)). The subfield K of Q̄ℓ spanned by the (inverse) roots of the fV (x) is
algebraic over ι(Q̄(Z)), and thus has transcendence degree d over Q̄ as well.

Writing

V = ⊕w∈WVw(7.2)

thanks to Corollary 4.6, the number m of such w with Vw 6= 0 is ≥ d. Indeed
those w have the property that they span K.

On the other hand, the map (6.4) corresponding to the decomposition (7.2) is
the Q̄ℓ-points of a finite map with source Gm

m, which is irreducible, and has image
contained in Z. So we conclude m = d and that the morphism Gm

m → Z is finite
surjective.

We prove 1). By Corollary 4.6, the Vi have the property that there is a wi ∈ W
such that all the inverse eigenvalues of the Frobenius Fx on Vi lie in the class of
wi. Replacing Vi by χi · Vi for adequately chosen χi ∈ R1(Fq), we may assume
that wi 6= wj inW if i 6= j. We consider the irreducible reduced closed subscheme
Z →֒ Lr(X,D) ⊗ Q̄ℓ defined by its Q̄ℓ-points {κ(χ1 · V1 ⊕ . . . ⊕ χm · Vm) | χi ∈
R1(Fq)}. Let Z ′ be an irreducible component of Lr(X,D) ⊗ Q̄ℓ containing Z.
Thus by B),

Z ′(Q̄ℓ) = {κ(χ
′
1 · V

′
1 ⊕ . . . χ

′
m′ · V ′

m′) | χ′
i ∈ R1(Fq)}.

So there are χ′
i such that

V1 ⊕ . . .⊕ Vm = χ′
1V

′
1 ⊕ . . .⊕ χ

′
m′V ′

m′ .(7.3)

As V ′
j is irreducible for any j ∈ {1, . . . ,m′}, it is of class w for some w ∈ W in

the sense of Corollary 4.6. So for each j ∈ {1, . . . ,m′}, there is a i ∈ {1, . . . ,m}
with χ′

j · V
′
j ⊂ Vi, and thus χ′

j · V
′
j = Vi as Vi is irreducible. This implies m = m′

and the decompositions (7.3) are the same, up to ordering. So Z = Z ′. �

Corollary 7.2. A 2-skeleton sheaf V ∈ Vr(X,D) is irreducible if and only if

κ(V ) lies on a one-dimensional irreducible component of Lr(X,D)⊗ Q̄ℓ. In this

case κ(V ) lies on a unique irreducible component Z/Q̄ℓ. The component Z has

the form

Z(Q̄ℓ) = {κ(χ · V ) |χ ∈ R1(Fq)}

and it does not meet any other irreducible component.

Remark 7.3. If Question 2.3 had a positive answer and using a more refined
analysis of Deligne [13] one could deduce that the moduli space Lr(X,D) is
smooth and any irreducible component is of the from Gs1

m × As2 (s1, s2 ≥ 0).

Proof of Theorem 2.4. Using the Chow lemma [1, Sec. 5.6] we can assume without
loss of generality that X̄ is projective. By Corollary 7.2, the set of one-dimensional
irreducible components of Lr(X,D)⊗ Q̄ is in bijection with the set of irreducible
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2-skeleton sheaves on X up to twist by R1(Fq). Since Lr(X,D) is of finite type,
there are only finitely many irreducible components. �

Proof of Theorem 8.2. By Corollary 4.9 there is a natural action of Aut(Q̄ℓ/Q)
on Vr(X,D) compatible via fV with the action on Q̄ℓ[t] which fixes t. Let N > 0
be an integer such that det(V )⊗N = 1. For σ ∈ Aut(Q̄ℓ/Q) we then have

1 = σ(det(V )⊗N ) = det(σ(V ))⊗N .

Then Theorem 2.4, (see also the remark following the theorem), implies that the
orbit of V under Aut(Q̄ℓ/Q) is finite. Let H ⊂ Aut(Q̄ℓ/Q) be the stabilizer group
of V . As [Aut(Q̄ℓ/Q) : H] <∞ we get that E(V ) = Q̄H

ℓ is a number field. �

In order to effectively determine the field E(V ) for V ∈ Rr(X) with X ∈ SmFq

projective one can use the following simple consequence of a theorem of Drinfeld
[15], which itself relies on Deligne’s Theorem 8.2.

Proposition 7.4. For X/Fq a smooth projective geometrically connected scheme

and H →֒ X a smooth hypersurface section with dim(H) > 0 consider V ∈
Rr(X). Then E(V ) = E(V |H).

Proof. Observe that the Weil group of H surjects onto the Weil group of X, so we
get an injection Rr(X) → Rr(H). By [15] Corollary 4.7 remains true for higher
dimensional smooth schemes X/Fq, i.e. for any σ ∈ Aut(Q̄ℓ/Q) there exists a
σ-companion Vσ to V . By the above injectivity, the sheaves V and V |H have the
same stabilizer G in Aut(Q̄ℓ/Q). We get

E(V ) = Q̄G
ℓ = E(V |H).

�

8. Applications

We now explain applications of the finiteness theorem for 2-skeleton sheaves
to a conjecture from Weil II [9, Conj. 1.2.10 (ii)] and to Chow groups of 0-cycles.

8.1. Finiteness of relative Chow group of 0-cycles. It was shown by Colliot-
Thélène–Sansuc–Soulé [8] and by Kato–Saito [24] that over a finite field, the Chow
group of 0-cycles of degree 0 of a proper variety is finite.

Assume now that X ⊂ X̄ is a compactification as above and let D ∈ Div+(X̄)
be an effective Cartier divisor with support in X̄ \X. For a curve C ∈ Cu(X) and
an effective divisor E ∈ Div+(C̄) with support in C̄ \ C, where C̄ is the smooth
compactification of C, let

Pk(C)(E) = {g ∈ k(C)×|ordx(1− g) ≥ multx(E) + 1 for x ∈ C̄ \ C}

be the unit group with modulus well known from the ideal theoretic version of
global class field theory. Set

CH0(X,D) = Z0(X)/im[
⊕

C∈Cu(X)

Pk(C)(φ̄
∗D)].
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Here φ̄ : C̄ → X̄ is the extension of the natural morphism φ : C → X. A similar
Chow group of 0-cycles is used in [17], [31] to define 2-skeleton Albanese varieties.
For D = 0 and X̄ \ X a simple normal crossing divisor it is isomorphic to the
Suslin homology group H0(X) [34]. For dim(X) = 1 it is the classical ideal class
group with modulus D+E, where E is the reduced divisor with support X̄ \X.

From Deligne’s finiteness Theorem 2.4 and class field theory one immediately
obtains a finiteness result which was expected to hold in higher dimensional class
field theory.

Theorem 8.1. For any D ∈ Div+(X̄) as above the kernel of the degree map from

CH0(X,D) to Z is finite.

8.2. Coefficients of characteristic polynomial of the Frobenii at closed
points. In [9, Conjecture 1.2.10] Deligne conjectured that sheaves V ∈ Rr(X)
with certain obviously necessary properties should behave as if they all came
from geometry, i.e. as if they were ℓ-adic realizations of pure motives over X. In
particular they should not only be ‘defined over’ Q̄ℓ, but over Q̄. In this section
we explain how this latter conjecture of Deligne (for the precise formulation see
Corollary 8.3 below), follows from Theorem 2.4.

In fact Corollary 8.3 is the main result of Deligne’s article [12]. His proof uses
Bombieri’s upper estimates for the ℓ-adic Euler characteristic of an affine variety
defined over a finite field, (and Katz’ improvement for the Betti numbers) in
terms of the embedding dimension, the number and the degree of the defining
equations, which rests, aside of Weil II, on Dwork’s p-adic methods. In [18] it
was observed that one could replace the use of p-adic cohomology theory by some
more elementary ramification theory. After this Deligne extended his methods
in [13] to obtain the Finiteness Theorem 2.4.

For V ∈ Vr(X) and x ∈ |X| one defines the characteristic polynomial of
Frobenius fV (x) ∈ Q̄ℓ[t] at the point x, see Section 4.1. Let E(V ) be the subfield
of Q̄ℓ generated by all coefficients of all the polynomials fV (x) where x ∈ |X|
runs through the closed points.

Theorem 8.2. Let D ∈ Div+(X̄) be an effective Cartier divisor with support in

X̄ \X. For V ∈ Vr(X,D) irreducible with det(V ) of finite order, the field E(V )
is a number field.

In Section 7 we deduce Theorem 8.2 from Theorem 2.4. By associating to
V ∈ Rr(X) its 2-skeleton sheaf in Vr(X), one finally obtains Deligne’s conjecture
[12, Conj. 1. 2.10(ii) ] from Weil II.

Corollary 8.3. For V ∈ Rr(X) irreducible with det(V ) of finite order the field

E(V ) is a number field.

In fact by Proposition 3.9 there is a divisor D such that V ∈ Rr(X,D). Then
apply Theorem 8.2 to the induced 2-skeleton sheaf in Vr(X,D).
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9. Deligne’s conjecture on the number of irreducible lisse sheaves

of rank r over a smooth curve with prescribed local monodromy

at infinity

Let C be a smooth quasi-projective geometrically irreducible curve over Fq,
and C →֒ C̄ be a smooth compactification. One fixes an algebraic closure F ⊃ Fq
of Fq. For each point s ∈ (C̄ \ C)(F), one fixes a Q̄ℓ-representation Vs of the
inertia

I(s) = Gal(Ksep
s /Ks)

where Ks is the completion of the function field K = k(C) at s. We write

I(s̄) = P ⋊
∏

ℓ′ 6=p

Zℓ(1),

where P is the wild inertia, a pro-p-group. A generator ξℓ′ of Zℓ′(1), ℓ
′ 6= p, acts

on Vs for all s ∈ (C̄ \C)(F) . Since the open immersion j : C →֒ C̄ is defined over
Fq, if s ∈ (C̄ \C)(F) is defined over Fqn , for any conjugate point s′ ∈ (C̄ \C)(F),
the group I(s′) is conjugate to I(s) by Gal(F/Fq). One requires the following
condition to be fulfilled.

i) If s′ ∈ (C̄ \ C)(F) is Gal(F/Fq)-conjugate to s, the conjugation which
identifies I(s′) and I(s) identifies Vs′ and Vs.

Let V be an irreducible lisse Q̄ℓ sheaf of rank r on C ⊗Fq F such that the set of
isomorphism classes of restrictions {V ⊗Ks} to SpecKs is the set {Vs} defined
above with the condition i). Then if for a natural number n ≥ 1, V is Fn

invariant, V descends to a Weil sheaf on C ⊗Fq Fqn . By Weil II, (1.3.3), det(V )
is torsion. Thus by the dimension one case of Theorem 2.1 the cardinality of the
set of such Fn-invariant sheaves V is finite.

If such a V exists, then the set {Vs̄} satisfies automatically

ii) For any ℓ′ 6= p, ξℓ′ acts trivially on ⊗s∈(C̄\C)(F)det(Vs).

Indeed, as det(V ) is torsion, a p power det(V )p
N

has torsion t prime to p, thus
defines a class in H1(C ⊗Fq F, µt). The exactness of the localization sequence

H1(C ⊗Fq F, µt)
res
−−→ ⊕s∈(C̄\C)(F)Z/t

sum
−−→ H2(C̄ ⊗Fq F, µt) = Z/t implies that the

sum of the residues is 0. This shows ii).

Furthermore, if such a V exists, then the set {Vs̄} satisfies automatically

iii) The action of ξℓ′ on Vs is quasi-unipotent for all ℓ′ 6= p and all s ∈
(C̄ \ C)(F).

Indeed, this is Grothendieck’s theorem, see [33, Appendix].

Given a set {Vs} for all s ∈ (C̄ \ C)(F), satisfying the conditions i), ii), iii),
Conjecture 9.1 predicts a qualitative shape for the cardinality of the Fn invariants
of the set M of irreducible lisse Q̄ℓ sheaves on C ⊗Fq F of rank r with V ⊗ Ks

isomorphic to Vs.
If V is an element of M , then H0(C̄ ⊗Fq F, j∗End(V )) = Q̄ℓ, spanned by the

identity. Indeed, a global section is an endomorphism V
f
−→ V on C ⊗Fq F.
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f is defined by an endomorphism of the Q̄ℓ vector space Va which commutes
with the action of π1(C̄, a), where a ∈ C(F) is a given closed geometric point.
Since this action is irreducible, the endomorphism is a homothety. We write
End(V ) = End(V )0⊕ Q̄ℓ, where End(V )0 is the trace-free part, thus j∗End(V ) =
j∗End(V )0 ⊕ Q̄ℓ. Thus H

0(C̄ ⊗Fq F, j∗End
0(V )) = 0. The cup-product

j∗End(V ))× j∗End(V )→ j∗Q̄ℓ = Q̄ℓ

obtained by composing endomorphisms and then taking the trace induces the
perfect duality

H i(C̄ ⊗Fq F, j∗End
0(V ))×H2−i(C̄ ⊗Fq F, j∗End

0(V ))→ H2(C̄ ⊗Fq F, Q̄ℓ).

(9.1)

For i = 1, the bilinear form (9.1) is symplectic. We conclude that H2(C̄ ⊗Fq

F, j∗End
0(V )) = 0 and that H1(C̄ ⊗Fq F, j∗End

0(V )) is even dimensional. But

dim H1(C̄ ⊗Fq F, Q̄ℓ) = 2g thus H1(C̄ ⊗Fq F, j∗End(V )) is even dimensional as
well. We define

2d = dim H1(C̄ ⊗Fq F, j∗End(V )).

Conjecture 9.1. (Deligne’s conjecture)

i) There are finitely many Weil numbers ai, bj of weight between 0 and 2d
such that

N(n) =
∑

i

ani −
∑

j

bnj .

ii) If M 6= ∅, there is precisely one of the numbers ai, bj of weight 2d and

moreover, it is one of the ai and is equal to qd.

An example whereM = ∅ is given by C̄ = P1, C is the complement of 3 rational
points {0, 1,∞}, the rank r is 2 and the Vs are unipotent, so in particular, the
Swan conductor at the 3 points is 0. Indeed, fixing ℓ′, the inertia groups I(s) at the
3 points, which depend on the choice of a base point, can be chosen so the product
over the 3 points of the ξℓ′ is equal to 1. Thus the set {Vs, s = 0, 1,∞} is defined
by 3 unipotent matrices A0, A1, A∞ in GL(2, Q̄ℓ) such that A0 ·A1 ·A∞ = 1. Since
A0 ·A1 is then unipotent, A0 and A1, and thus A∞, lie in the same Borel subgroup
of GL(2, Q̄ℓ). Thus the 3 matrices have one common eigenvector. Since the tame
fundamental group is spanned by the images of I(0), I(1), I(∞), a Q̄ℓ-sheaf of
rank 2 with V ⊗Ks isomorphic to Vs is not irreducible. Thus M = ∅.

Two further examples are computed in [14]. For the first case [14, section 7],
C = P1 \ D where D is a reduced degree 4 divisor, with unipotent Vs̄. The
answer is N(n) = qn. For the second case, C = P1 \ D where D is a reduced
non-irreducible degree 3 divisor with unipotent Vs̄ with only one Jordan block
(a condition which could be forced by the irreducibility condition for V ). Then
N(n) = qn as well.
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Appendix A

In this appendix we gather a few facts on how to recognize through their closed
points affine schemes of finite type as subschemes of affine schemes not necessarily
of finite type.

Proposition A.1. Let k be an algebraically closed field, let Y be an affine k-
scheme. Then the map

Z 7→ Z(k)

embeds the set of reduced closed subschemes Z →֒ Y of finite type into the power

set P(Y (k)).

Proof. Choose a filtered direct system Bα ⊂ B = k(Y ) of affine k-algebras (of
finite type), such that B = lim−→α

Bα. Set Yα = SpecBα. Consider two closed
subschemes

Z1 = SpecB/I1 →֒ Y, Z2 = SpecB/I2 →֒ Y(A.1)

of finite type over k such that Z1(k) = Z2(k) ⊂ Y (k). After replacing the direct
system α by a cofinal subsystem we can assume that Bα → B/I1 and Bα → B/I2
are surjective. Hilbert’s Nullestellensatz for the closed subschemes Z1 →֒ Yα and
Z2 → Yα implies I1 ∩Bα = I2 ∩Bα. So I1 = I2 and the closed subschemes (A.1)
agree. �

Proposition A.2. Let k be a characteristic 0 field, let K ⊃ k be an algebraically

closed field extension. Let Y be an affine scheme over k, and Z →֒ Y ⊗k K be

a closed embedding of an affine scheme of a finite type. If the subset Z(K) of

Y (K) is invariant under the automorphism group of K over k, then there is a

reduced closed subscheme Z0 →֒ Y of finite type over k such that

(Z →֒ Y ⊗k K) = (Z0 →֒ Y )⊗k K.

Proof. Let G = Aut(K/k), B = k(Y ), Z = Spec ((B ⊗k K)/I). The G-stability
of Z(K) ⊂ Y (K) and Proposition A.1 imply that I ⊂ B ⊗k K is stable under
G. Then [6, Sec. V.10.4] implies that I0 = IG ⊂ B satisfies I0 ⊗k K = I. Set
Z0 = SpecB/I0.

�

Proposition A.3. Let k be an algebraically closed field, let ϕ : Z → Y be an

integral k-morphism of affine schemes, with Z of finite type over k. Then there

is a uniquely defined reduced closed subscheme X →֒ Y of finite type over k such

that

ϕ(Z(k)) = X(k).

Proof. Write Y = SpecB, Z = SpecC, for commutative k-algebras B, C with C
of finite type over k. Without loss of generality assume that B and C are reduced.
There are finitely many elements of C which span C as a k-algebra. They are
integral over B. This defines finitely many minimal polynomials, thus finitely
many coefficients of those polynomials in B. Thus there is an affine k-algebra
of finite type B0 ⊂ B containing them all. It follows that C is finite over B0.
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Choose a filtered inverse system Yα = SpecBα of affine k-schemes of finite type,
such that Bα ⊂ B and

Y = SpecB = lim
←−
α

Yα.

The morphisms ϕα : Z
ϕ
−→ Y → Yα are all finite. Let Xα = SpecCα →֒ Yα be the

(reduced) image of ϕα. We obtain finite ring extensions Cα ⊂ C. By Noether’s
basis theorem the filtered direct system Cα stabilizes at some α0. Then

X = SpecCα0 = lim
←−
α

SpecCα →֒ Y

is of finite type over k and satisfies ϕ(Z(k)) = X(k). �

Proposition A.4. Let k be an algebraically closed field of characteristic 0, let Y
be an affine k-scheme, such that Y = SpecB = lim

←−n
Yn, n ∈ N is the projective

limit of reduced affine schemes Yn of finite type. If the transition morphisms

induce bijections Yn+1(k)
∼=
−→ Yn(k) on closed points, then there is a n0 ∈ N such

that Yn → Yn0 is an isomorphism for all n ≥ n0. In particular, Y → Yn0 is an

isomorphism as well.

Proof. Applying Zariski’s Main Theorem [2, Thm.4.4.3], one constructs induc-
tively affine schemes of finite type Ȳn, Ȳ0 = Y0, together with an open embed-
ding Yn →֒ Ȳn, such that the transition morphisms Yn+1 → Yn extend to finite
transition morphisms Ȳn+1 → Ȳn. On the other hand, the assumption implies
that the morphisms Yn+1 → Yn are birational on every irreducible component.
So the same property holds true for Ȳn+1 → Ȳn. One thus has a factorization

Ỹ0 → Ȳn → Y0 for all n, where Ỹ0 → Y0 is the normalization morphism. Since

Ỹ0 is of finite type, there is a n0 such that Ȳn → Ȳn0 is an isomorphism for all
n ≥ n0. Thus the composite morphism Yn → Yn0 → Ȳn0 is an open embedding
for all n ≥ n0, and thus Yn+1 → Yn is an open embedding as well. Since it
induces a bijection on points, and the Yn are reduced, the transition morphisms
Yn+1 → Yn are isomorphisms for n ≥ n0. �

Remark A.5. If in Proposition A.4, one assumes in addition that the transition
morphisms Yn+1 → Yn are finite, then one does not need Zariski’s Main Theorem
to conclude.

Appendix B

In the proof of Corollary 4.5 we claim the existence of a curve with certain
properties. The Bertini argument given in [27, p. 201] for the construction of
such a curve is, as such, not correct. We give a complete proof here relying on
Hilbert irreducibility instead of Bertini.

Let X be in SmFq .

Proposition B.1. For V ∈ Rr(X) irreducible and a closed point x ∈ X, there

is an irreducible smooth curve C/Fq and a morphism ψ : C → X such that

• ψ∗(V ) is irreducible,

• x is in the image of ψ.
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Lemma B.2. For an irreducible Q̄ℓ-étale sheaf V on X there is a connected étale

covering X ′ → X with the following property:

For a smooth irreducible curve C/Fq and a morphism ψ : C → X the implication

C ×X X ′ irreducible =⇒ ψ∗(V ) irreducible

holds.

Proof. Choose a finite normal extension R of Zℓ with maximal ideal m ⊂ R such
that V is induced by a continuous representation

ρ : π1(X)→ GL(R, r).

Let H1 be the kernel of π1(X) → GL(R/m, r) and let G be the image of ρ. The
subgroup

H2 =
⋂

ν∈Hom(H1,Z/ℓ)

ker(ν)

is open normal in π1(X) according to [3, Th. Finitude]. Indeed observe that
H1/H2 = Hab

1 /ℓ is Pontryagin dual to H1
ét(XH1 ,Z/ℓ), where XH1 is the étale

covering of X associated to H1. Since the image of H1 in G is pro-ℓ, and therefore
pro-nilpotent, any morphism of pro-finite groups K → π1(X) satisfies:

(K → π1(X)/H2 surjective ) =⇒ (K → G surjective ).

(Use [6, Cor. I.6.3.4].)
Finally, let X ′ → X be the Galois covering corresponding to H2. �

Proof of Proposition B.1. We can assume that X is affine. By Proposition 4.3
we can, after some twist, assume that V is étale. Let X ′ be as in the lemma.
By Noether normalization, e.g. [16, Corollary 16.18], there is a finite generically
étale morphism

f : X → Ad.

Let U ⊂ Ad be an open dense subscheme such that f−1(U) → U is finite étale.
Let y ∈ Ad be the image of x. Choose a linear projection π : Ad → A1 and set
z = π(y) and consider the map h : U → A1. By definition, Uk(A1) ⊂ Ad−1

k(A1)
.

Let F = k(Γ) ⊃ k(A1) be a finite extension such that X ′⊗k(A1)F is irreducible

and the smooth curve Γ→ A1 contains a closed point z′ with k(z′) = k(y).

It is easy to see that there is an F̂ -point in Uk(A1) which specializes to y. By
Hilbert irreducibility, see [15, Cor. A.2], we find an F -point u ∈ Uk(A1) which

specializes to y and such that u does not split in X ′ ×A1 Γ.
Let v ∈ X be the unique point over u. By the going-down theorem [7, Thm.

V.2.4.3] the closure {v} contains x. Finally, we let C be the normalization of

{v}. �
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[8] J.-L. Colliot-Thélène, J.-J. Sansuc and Ch. Soulé, Quelques théorèmes de finitude en
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