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A MODIFIED CLASSICAL ALGORITHM ALPT4C FOR

SOLVING A CAPACITATED FOUR-INDEX TRANSPORTATION

PROBLEM

AAID DJAMEL, NOUI AMEL, LE THI HOAI AN AND ZIDNA AHMED

Abstract. In this paper, we focus on the theoretical study and numerical
solution of a capacitated four-index transportation problem. This model is
not properly treated before, it is linked to significant practical problems, some
theoretical properties have been shown. We constructed an algorithm for solv-
ing the problem, the implementation of the algorithm with its description has
led to an encouraging finding for the digital outcome. On the other hand, the
initialization method we used avoids unnecessary assignment and the detec-
tive method addresses adequately the problems of degeneracy by making the
algorithm robust.

1. Introduction

In 1947 G. B. Dantzig has proposed the simplex method: a very effective tech-
nique for solving linear programming problems. Since that time, linear program-
ming has raised great interest among researchers who have written hundreds of
books and published thousands of articles on the subject. Although the complex-
ity of this method is exponential, in practice it has proven very effective and very
useful, especially in the areas of planning and organization. In 1979 the Soviet
mathematician L. G. Khachiyan has implemented the first polynomial algorithm
for linear programming: the algorithm of ellipsoids. However, the proposed al-
gorithm has proven completely ineffective in practice. In 1984 N. Karmarkar has
revolutionized the field of linear programming by implementing a polynomial al-
gorithm based on methods of internal penalties. It has been a serious competitor
to the simplex algorithm. Since then, an intensive research was initiated in this
area and gave as result a large variety of algorithms of this type.

This work focuses on a linear problem which is particularly important because
it corresponds to real and practical transportation problems which appear in
different fields such as: economy, telecommunication, localization and assignment
etc...

The transport problem has been formulated for the first time by F. Hitchcock
in 1941. In 1949 Kantorovich and Savourine gave a first method to solve such
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a problem known potentials, regardless of the simplex method applied by G. B.
Dantzig to solve this problem in 1951.

The transportation problem with two indices has been widely studied in the
literature, then the study has been extended to more than two-index problems.
Since the sixties, several studies have been published on the transport problem
with three indices and more generally on the multiple indices without capacities.
The problem of axial transport (sum of axial) with l indices (PTL) has not been
widely studied for l ≥ 3, in particular the capacitated four-index transportation
problem. This case has not been previously addressed whether in its theoretical,
algorithmic or numerical aspects. In 2003 R. Zitouni and A. Keraghel introduced
for the first time, a method of solving a capacitated transport problem with
four indices [16] [17]. On one hand, this algorithm is a variant of the simplex
algorithm designed specifically to address this problem, it attacks directly the
problem without any reformulation, but each time it calls for the initialization
phase, and therefore the algorithm reiterates a considerable number of times
which costs numerically. In order to remove the problem of degeneracy, the
algorithm requires an exponential number of permutations of columns each time
to test the independence of the selected columns. Hence this process cannot
generate a base, which makes the algorithm diverge in the case of the degenerated
problem of large sizes. On the other hand, the other existing methods require
a reformulation and a problem preparation which increase the problem size and
this accumulate the number of operations that lead to the optimal solution [1]
[3].

Below we indicate the contribution of the suggested method.

(1) Once we exploit the characteristics and the theoretical particularities of
the problem, our algorithm resolves directly the problem as it is without
increasing its size and without any needs for a reformulation across the
operations. This fact is less time-consuming as we compare it with the
existing methods.

(2) Bearing in mind the degeneracy problem which is practically the most
frequent, our method uses a detective method that generates a base in
the worst cases and this allows to initiate an algorithm.

(3) In the initial phase, one uses the new heuristic method which differs from
the existing methods such as: northern corner, minimal cost, Vogel and
Russell method. This heuristic method uses assignments if it is necessary.
Consequently, one has access to fewer operations in order to find out a
feasible solution of the base. In practice, we obtain the optimal solution
during the first phase.

(4) One can deal and derive from the dual problem the stop criterion. At
the end of the algorithm, we obtain primal and dual solutions which are
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practically very important.

(5) One may use techniques of resolution that fit the theoretical particularities
and go beyond the various difficulties in order to obtain the mathematical
tools which are necessary to improve the current solution.

2. The problem position

Given m origins A1, . . . , Am of availabilities α1, . . . , αm, n destinations B1, . . . ,
Bn of demands β1, . . . , βn, p means of transportation chosen suitably S1, . . . , Sp
of reserved charges γ1, . . . , γp and q qualities of the goods taken in even units
H1, . . . ,Hq of quantities δ1, . . . , δq. We denote by dijkl the capacities of the
roads of transport and by cijkl the cost unit of transport of a quantity xijkl of
goods Hl transported from the origin Ai towards the destination Bj through
the means of transportation Sk.

2.1. The problem formulation. The capacitated four-index transportation
problem that we denote by (C4TP ) is formulated as follows:

(2.1) Minimize Z =
m∑
i=1

n∑
j=1

p∑
k=1

q∑
l=1

cijklxijkl

subject to the constraints:

n∑
j=1

p∑
k=1

q∑
l=1

xijkl = αi for all i = 1, ...,m(2.2)

m∑
i=1

p∑
k=1

q∑
l=1

xijkl = βj for all j = 1, ..., n(2.3)

m∑
i=1

n∑
j=1

q∑
l=1

xijkl = γk for all k = 1, ..., p(2.4)

m∑
i=1

n∑
j=1

p∑
k=1

xijkl = δl for all l = 1, ..., q(2.5)

(2.6) 0 ≤ xijkl ≤ dijkl for all (i, j, k, l).

In this problem, αi, βj , γk, δl, dijkl and cijkl are given and are such that for all
i,j,k,l, we have αi > 0, βj > 0, γk > 0, δl > 0, dijkl > 0 and cijkl ≥ 0. This
formulation is equivalent to the following linear program:

min[ ctx : Ax = b, 0 ≤ x ≤ d ],

where x = (xijkl)
t ∈ RN , c = (cijkl)

t ∈ RN , d = (dijkl)
t ∈ RN , b = (αi, βj , γk, δl) ∈

RM , and A is a M ×N matrix with M = m+ n+ p+ q and N = mnpq.

2.2. Conditions of feasibility [15]
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(1) For the problem C4TP to have a feasible solution, the following necessary
conditions should be verified :

(2.7)
m∑
i=1

αi =
n∑
j=1

βj =

p∑
k=1

γk =

q∑
l=1

δl = H

αi ≤
n∑
j=1

p∑
k=1

q∑
l=1

dijkl for all i = 1, ...,m,(2.8)

βj ≤
m∑
i=1

p∑
k=1

q∑
l=1

dijkl for all j = 1, ..., n,

γk ≤
m∑
i=1

n∑
j=1

q∑
l=1

dijkl for all k = 1, ..., p,

δl ≤
m∑
i=1

n∑
j=1

p∑
k=1

dijkl for all l = 1, ..., q,

(2) For the problem C4TP to have a feasible solution, the sufficient condition
(2.7), and the following condition should be verified:

(2.9)
αiβjγkδl
dijkl

≤ H3 for all (i, j, k, l).

2.3. Conditions of optimality [15]. Suppose the problem C4TP is feasible,
then a feasible solution x of this problem is optimal if and only if there exists a
vector

(u1 , . . . , um, v1, . . . , vn, . . . , w1, . . . , wp, . . . , t1, . . . , tq)
t

in RN such that

ui + vj + wk + tl ≤ cijkl if xijkl = 0(2.10)

ui + vj + wk + tl = cijkl if 0 < xijkl < dijkl

ui + vj + wk + tl ≥ cijkl if xijkl = dijkl.

2.4. Constraints matrix

Lemma 2.1. The constraints matrix is of rank M − 3.

Proof. Let us prove by recurrence that the rank of the matrix A is equal to M−3.
1) Suppose that we have a problem of transport C4TP with m = n = p = q = 1,
then A = [1111]t and rank (A) = 4− 3 = 1 = M − 3.
2) Let us suppose that this lemma is true for the problem C4TP with M = η ≥ 4,
and let us prove that it is true also for the problem with M = η + 1, bearing
in mind that the last constituent of the last row is non-zero, we denote ρ 6= 0
(see the table of transport [18]). According to the hypothesis of recurrence we
can extract a (η − 3) × (η − 3) sub-matrix Aη of size such that det(Aη) 6= 0.



A MODIFIED OF A CLASSICAL ALGORITHM ALPT4C 383

Afterward we permute the last row (column) by the (η − 2)nd row (column), we
obtain the sub-matrix A(η+1) which is the sub-matrix Aη, increased by the new
row and the new column, then we have det(A(η+1)) = ρ×det(Aη) 6= 0. So we can
extract a (η−2)× (η−2) sub-matrix of size whose determinant is non-zero, then
rank (A) ≥ η − 2 = M − 3. On the other hand, from the condition of feasibility

(2.7), we have rank (A) ≤M − 3. We conclude that rank (A) = M − 3. �

3. The algorithm description for solving

To handle the problem of degeneracy, one proposes the following method:

3.1. The detective method (DM). Let Nb be the number of vectors Pijkl such
that 0 < xijkl < dijkl. If Nb < M − 3, then the problem C4TP is degenerated,
we consider the matrix D that consists of M rows and N columns constructed of
Nb first vectors Pijkl such that 0 < xijkl < dijkl and the remaining vectors Pijkl
such that xijkl = 0 or xijkl = dijkl.

One considers the sub-matrix DB which contains M − 3 first columns of D. If
rank (DB) = M − 3, then DB is a base, otherwise, we proceed as follows in order
to detect the vectors of the base: let Nd = M − 3− rank (DB).

Consider the sub-matrix DL consisting of Nb first columns of the matrix D,
from the (Nb+1)nd vector of the matrix D. Let Pijkl = Pd (from the left to the
right) with d = 1, . . . , N −Nb, consider the matrix increased [DL, P1, . . . , Pd]; if
rank [DL, P1, . . . , Pd] > rank [DL, P1, . . . , Pd−1], then Pd is a basic vector, incre-
menting d until the Nd basic vectors are found and consequently a base will be
determined : Ib = {(i, j, k, l) such that Pijkl are independent}. We divide the
boxes which are not interesting in two disjoint sets H0 = {(i, j, k, l) such that
xijkl = 0}, Hd = {(i, j, k, l) such that xijkl = dijkl}. To determine the boxes that
form a cycle, one uses the following resolution technique.

3.2. The cycle resolution technique (CRT ). The vector Pı̄j̄k̄l̄ which enters
the base is taken as coefficient

αı̄j̄k̄l̄ =

{
1 if (̄ı, j̄, k̄, l̄) ∈ H0

−1 if (̄ı, j̄, k̄, l̄) ∈ Hd.

Taking into account of the equation cijkl = ui + vj + wk + tl ∀(i, j, k, l) ∈ Ib, we
construct the following linear system:
BX = b where B is a M × (M − 3) matrix consisting of the vectors Pijkl with

(i, j, k, l) ∈ Ib, i.e. B is a base, X = (αijkl)
t ∈ RM−3 and b ∈ RM ;

b =

{
Pı̄j̄k̄l̄ if (̄ı, j̄, k̄, l̄) ∈ H0

−Pı̄j̄k̄l̄ if (̄ı, j̄, k̄, l̄) ∈ Hd .

As the matrix B possesses M rows and M − 3 columns and the vector of the
unknown X possesses M−3 components, then the system is not compatible, one
proceeds as follows in order to remove this difficulty. Considering the increased
matrix [B, b], by using Gauss elimination with only permutation of rows, we get a

staggered matrix [B̃, b̃] of M − 3 rows and M − 2 columns. Now we can solve the
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linear system B̃X = b̃. Solutions αijkl 6= 0 of the previous system determine the
boxes forming the cycle. Let F = {(i, j, k, l) such that αijk = 1}, B = {(i, j, k, l)
such that αijk = −1}, the set F contains receivable boxes and the set B contains
sending boxes.
In order to calculate the dual variables we use the following resolution technique:

3.3. The resolution technique of the dual variables (RTDV ). We consider
the following linear system:

cijkl = ui + vj + wk + tl ∀(i, j, k, l) ∈ Ib.

As the system contains more unknowns (M) than equations (M − 3), it admits
an infinity of solutions. We construct the system: AX = b such that for all
(̄ı, j̄, k̄, l̄) ∈ Ib we have

• if I ≤M − 3

aiJ =


1 if i = i for all J ≤ m,
1 if j = j for all m < J ≤ m+ n,

1 if k = k for all m+ n < J ≤ m+ n+ p,

1 if l = l for all m+ n+ p < J ≤ m+ n+ p+ q,
0 elsewhere.

• if I > M − 3
aiJ = 0 except a1,M−2 = 1, am+1,M−1 = 1, am+n+1,M = 1.

3.4. The stop criterion

Lemma 3.1. Let define the following difference for all (i, j, k, l) /∈ Ib

Dijkl =

{
ui + vj + wk + tl − cijkl for all (i, j, k, l) ∈ H0

cijkl − (ui + vj + wk + tl) for all (i, j, k, l) ∈ Hd.

and let the set Π = {Dijkl as Dijkl > 0, for all (i, j, k, l) ∈ (H0 ∪Hd)}. If Π 6=
∅, then the current solution x = (xijkl) is not an optimal solution.

Proof. Suppose Π = ∅, that is to say, for all (i, j, k, l) ∈ (H0 ∪ Hd), we have
Dijkl ≤ 0, which indicates that ui + vj + wk + tl − cijkl ≤ 0 for all (i, j, k, l) ∈ H0

and
cijkl − (ui + vj + wk + tl) ≤ 0 for all (i, j, k, l) ∈ Hd.

That is to say

(3.1)
ui + vj + wk + tl − cijkl ≤ 0 if xijkl = 0

and
cijkl − (ui + vj + wk + tl) ≤ 0 if xijkl = dijkl.

According to the theorem of optimality, the solution xijkl verifying (2.10) is op-
timal. Consequently, if Π 6= ∅, then the solution xijkl is not optimal and hence
it can be improved. �
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3.5. Calculation of a basic feasible solution. By giving a feasible problem
C4TP , initially all variables are zero, this means no goods has passed yet. To
find a feasible solution, we order the costs in an ascending order; we assign a
value to the variable xijkl corresponding to the first box, indicating that this box
is not taken into account in the next step, using an indicator aijkl that takes the
value 0 if the xijkl is concerned by the assignment and the value 1 otherwise. On
the other hand, we update our settings, so if αi 6= 0, βj 6= 0, γk 6= 0 and δl 6= 0,
so it is necessary to assign a value to that variable xijkl. Otherwise, we pass to
the following box that verifies the necessary condition of assignment. We repeat
this process until all the concerned boxes are affected. Consequently we obtain
a basic feasible solution to our problem. We summarize the previous techniques
in an algorithm called algorithm of assignment if it is necessary for a capacitated
four-index problem of transportation that we denote by (AAINC4PT ).

4. The algorithm AAINC4PT

Phase 1

(1) Initialization:
• xijkl = 0, aijkl = 0 ∀(i, j, k, l, )
• Nb = 0
• order the costs cijkl in an ascending way

(2) Iteration:
While (∃(i, j, k, l) such that (αiβjγkδl > 0 and aijkl = 0)) do

• Take (i, j, k, l) = first box
• Take xijkl = min(αi, βj , γk, δl, dijkl), aijkl = 1

if xijkl < dijkl then Nb = Nb + 1

• Update αi, βj , γk, δl as follows:
αi = αi − xijkl, and the same for βj , γk, δl
End while.

(3) If Nb < M − 3 apply DM in order to determine a base Ib

Phase 2

(1) Initialization:
• Calculate the ui, vj , wk and tl by using RTDV
• Determine the set Π by using the lemma 2 (Stop Criterion)

(2) Iteration:
While (Π 6= ∅) do
• Find (i0, j0, k0, l0) such that Di0j0k0l0 = max

(i,j,k,l)
Π

• Use the CRT in order to determine the coefficients of the cycle.

• Calculate θ∗ = min

{
min

(i,j,k,l)∈B
(xijkl), min

(i,j,k,l)∈F
(dijkl − xijkl)

}
= θijkl

• Update the current solution and the basic boxes.

– xijkl =

{
xijkl + αijkl θ

∗ if (i, j, k, l) ∈ (F ∪B)
xijkl otherwise
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– IB =
{
IB\{(i, j, k, l)} ∪ {(i0, j0, k0, l0)}

}
• Calculate again ui, vj , wk , tl and determine the set Π.

End while.

End algorithm.

Lemma 4.1. Let x(r) and x(r+1) be two consecutive non degenerated feasible
solutions. Then their corresponding objective functions Z(r) and Z(r+1) satisfy

(1) Z(r+1) = Z(r) − θ(r)D
(r+1)
i0j0k0l0

,

(2) Z(r+1) < Z(r).

Proof. There are two cases to be considered : the first case with (i0, j0, k0, l0) ∈ H0

and the second case with (i0, j0, k0, l0) ∈ Hd. We put σ(r) = {(i, j, k, l) boxes
forming the cycle}. Let consider the first case. We have

Z(r+1) =
∑

(i,j,k,l)∈σ(r)

cijkl x
(r+1)
ijkl +

∑
(i,j,k,l)/∈σ(r)

cijkl x
(r)
ijkl.

Then
Z(r+1) = K +

∑
(i,j,k,l)∈σ(r)

cijkl (x
(r+1)
ijkl + α∗ijkl),

where
K =

∑
(i,j,k,l)/∈σ(r)

cijkl x
(r)
ijkl.

So if αi0j0k0l0 = 1 and σ̂(r) = σ(r) − {(i0, j0, k0, l0)} then

(4.1) Z(r+1) = Z(r) − θ(r)(ci0j0k0l0 +
∑

(i,j,k,l)∈σ̂(r)

αijkl (u
(r)
i + v

(r)
j + w

(r)
k + t

(r)
l ).

Let

i(σ̂(r)) = {(j, k, l) such that (i, j, k, l) ∈ σ̂(r)}
j(σ̂(r)) = {(i, k, l) such that (i, j, k, l) ∈ σ̂(r)}
k(σ̂(r)) = {(i, j, l) such that (i, j, k, l) ∈ σ̂(r)}
l(σ̂(r)) = {(i, j, k) such that (i, j, k, l) ∈ σ̂(r)}.

It is easy to verify that for all i 6= i0, we have

(4.2)
∑

(i,j,k,l)∈i(σ̂(r))

αijkl = 0,

and for i = i0,

u
(r)
i0

 ∑
(i0,j,k,l)∈σ̂(r)

αi0jkl + 1

 = 0.

Consequently, ∑
(i0,j,k,l)∈σ̂(r)

αi0jkl u
(r)
i0

= −u(r)
i0
.
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We obtain results similar to (4.1) and (4.2) for j, k, l. Therefore∑
(i,j,k,l)∈i(σ̂(r))

αijkl(u
(r)
i + v

(r)
j + w

(r)
k + t

(r)
l ) = −(u

(r)
0 + v

(r)
0 + w

(r)
0 + t

(r)
0 ).

By substituting this value in (4.1), we obtain

Z(r+1) = Z(r) − θ(r)D
(r+1)
i0j0k0l0

.

This shows that Z(r+1) < Z(r) since θ(r) > 0 and D
(r+1)
i0j0k0l0

> 0. �
One can prove in a similar way the second case (i0, j0, k0, l0) ∈ Hd.

Theorem 4.2. Suppose that the problem is not degenerated, then the algorithm
AAINC4PT converges in a finite number of iterations.

Proof. The previous lemma shows that the algorithm AAINC4PT guarantees that
the same base can never appear in two distinct iterations and as the number of
visited vertices is necessarily finite, the algorithm converges and its convergence
is over. �

5. Numerical tests

(i, j, k, l) 1111 1121 1211 1122 1221 2111 2121 2221
dijkl 15 10 8 9 7 11 11 9
cijkl 5 4 6 7 2 1 5 4

Table 1. Quantities cijkl and dijkl of the problem

Problem Size M ×N Number of Optimal value Execution time

iterations z∗ in seconds
AAINC4TP ALPTAC AAINC4TP ALPTAC AAINC4TP ALPTAC

1 8× 16 3 38 9 9 0 0

2 9× 24 3 45 11 11 0 0.015

3 10× 36 5 55 140 140 0 0.015

4 11× 54 7 66 180 1.031 0 0.015

5 12× 81 7 76 186 186 0 0.047

6 13× 108 8 87 193 193 0 0.078

7 14× 144 8 98 2950 2950 0 0.141

8 18× 360 12 152 253 253 0 0.687

9 19× 600 13 185 1100 1100 0 6.125

10 20× 648 14 184 269 269 0 1.406

11 21× 720 14 202 235.93 235.93 0 8.578

12 21× 750 14 203 237.75 237.75 0 2.734

13 22× 900 14 220 242.18 242.18 0 4.312

Table 2. Comparison of the two methods AAINC4PT and
ALPT4C with sample problems generated randomly

Firstly, let consider a transportation problem with C4TP of the form: m =
n = p = 2, q = 1, α1 = 5, α2 = 10, β1 = 9, β2 = 6, γ1 = 12, γ2 = 3, δ1 = 15. The
quantities cijkl and dijkl are given in Table 1 above. In this illustrative example,
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Example

Number

Size of

Problem M ×N
Number of

Iterations

Optimal

value z∗
Execution Time

in seconds

14 23× 1080 6 189.063 0.062
15 24× 1296 6 212.625 0.110
16 25× 1512 7 7150 0.125
17 26× 1764 7 3777.5 0.187
18 27× 2058 7 8425 0.265
19 28× 2401 7 2744 0.407
20 29× 2744 8 3096 0.422
21 30× 3136 8 492.5 0.610
22 31× 3584 8 401 0.843
23 32× 4096 8 714 1.187
24 33× 4608 9 113.25 1.250
25 34× 5184 9 691.5 1.719
26 35× 5832 9 351.75 2.297
27 36× 6561 9 477 3.078
28 37× 7290 10 130.75 3.250
29 38× 8100 10 266 4.312
30 39× 9000 10 405.75 5.610
31 40× 10000 10 550 7.282
32 41× 11000 11 298.5 7.625
33 42× 12100 11 303.5 9.828
34 43× 13310 11 115.688 12.469
35 44× 14641 11 117.536 15.782
36 45× 15972 12 42.1875 16.469
37 46× 17424 12 42.875 20.781
38 47× 19008 12 30.688 25.871
39 48× 20736 12 44.25 32.016
40 49× 22446 13 47.3125 33.281

Table 3. Numerical result for the proposed method AAINC4PT

with sample problem generated randomly

we only present the optimal solution by their non-zero components. Solving this
problem by AAINC4PT leads to the results: The non-zero components of the
optimal solution x∗ = (xijkl) are: x1211 = 5, x2111 = 6, x2121 = 3, and x2211 = 1.
The number of iterations = 2. The time of execution = 0, 000 sec. The optimal
value is z∗ = 50.

Secondly, we compare our method to the method (ALPT4C) described in [18],
on 40 sample problems with different sizes as shown in Tables 2 and 3 above. All
these problems are generated randomly. We note that the degenerated problems
of large sizes affected highly the method ALPT4C . Beyond the problem 14 of
size (23× 108), the algorithm ALPT4C could not reach an optimal solution. This
means that it could not go beyond the degeneracy phenomenon. That is why, in
Table 2, we summarize the numerical results corresponding to the problems 1 to
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13, which are concerned with the two methods. In Table 3, we only expose the
results of our method for the problems 14 to 40. Our tests are performed on an
Intel (R) Pentium (R) Dual Windows and the programs are written in C.

Through numerical tests that we made, we realize the stability and robustness
of our algorithm against the existing method [1] [3]. However, for the degenerated
problems (most common in practice), the algorithm uses the detective method
AAINC4PT , previously introduced, to overcome this phenomenon.

6. Conclusion

A new algorithm for solving a problem of transport capacity with four indices
has been proposed in this paper. For problems of variant size, the optimal so-
lution is often reached during the initialization phase, as it avoids unnecessary
assignments and uses a detective method to handle the problems of degeneracy,
making the algorithm very robust even in the worst cases. We were able to in-
novate successfully the solving techniques which play a crucial role in improving
an initial basic solution for the optimum.
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Manuscrit auteur, publié dans CIFA, Roumanie 2008.

[11] A. Kumar, A. Kaur and A. Gupta, Fuzzy linear programming approach for solving fuzzy
transportation problems with Transshipment, J. Math. Model. Algorithms 10(2) (2011),
163-180.

[12] Rafael A. Melo and Laurence A. Wolsey, Optimizing production and transportation in a
commit-to-delivery business mode, European J. Oper. Res. 203(3) (2010), 614-618.

[13] M. Kh. Prilutskii, Multicriterial Multi-Index Resource Scheduling Problems, J. Comput.
Syst. Sci. Int. 46(1) (2007), 78-82.



390 AAID DJAMEL, NOUI AMEL, LE THI HOAI AN AND ZIDNA AHMED

[14] S. Puri and M. C. Puri, Max-min sum minimization transportation problem, Ann. Oper.
Res. 143(1) (2006), 265-275.
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Université Paul Verlaine - Metz, Ile du Saulcy, 57045 Metz, France
E-mail address: zidna@univ-metz.fr


