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AN IMPROVED DESCENT CONJUGATE GRADIENT

METHOD AND ITS CONVERGENCE

MIN SUN AND JING LIU

Abstract. Recently, a new family of conjugate gradient methods with a
Grippo-Lucidi type step length rule is proposed by Shi and Guo [A new fam-
ily of conjugate gradient methods. Journal of Computational and Applied
Mathematics, 2009, 224:444-457]. In this paper, we improve Shi and Guo’s
method by adopting an improved Grippo-Lucidi type step length rule, and the
improvement is twofold: (1) We drop the local Lipschitz constant in the step
length, which is beyond the problem data and has to be further estimated;
(2) The search direction dk only needs to satisfy the descent property instead
of the sufficient descent property. The global convergence result of the modi-
fied method is established under some mild conditions. Preliminary numerical
results are also reported to show the efficiency of the improved method.

1. Introduction

Consider the unconstrained nonlinear optimization problem

(1.1) min f(x), x ∈ R
n,

where f : R
n → R is smooth and its gradient g(x) is available. Conjugate gra-

dient method is very effective for solving large-scale unconstrained optimization
problem (1.1) due to its low memory requirements, and its iterative formula is
given by

(1.2) xk+1 = xk + αkdk.

with

(1.3) dk =

{

−gk, k = 1,
−gk + βkdk−1, k ≥ 2,

where x1 is a given initial point, αk is a step-length along dk which is computed
by carrying out some line search, gk denotes g(xk) and βk is a suitable scalar
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given by different formulae which result in distinct conjugate gradient methods.
βk can be defined by

βFR
k =

‖gk‖
2

‖gk−1‖2
, βPRP

k =
g>k (gk − gk−1)

‖gk−1‖2
, βDY

k =
‖gk‖

2

d>
k−1(gk − gk−1)

,

βCD
k = −

‖gk‖
2

g>
k−1dk−1

, βHS
k =

g>k (gk − gk−1)

d>
k−1(gk − gk−1)

, βLS
k =

g>k (gk − gk−1)

−g>
k−1dk−1

,

where ‖ · ‖ stands for the Euclidean norm. The corresponding method is re-
spectively called FR (Fletcher-Revees), PRP (Polyak-Ribiére-Polyak), DY (Dai-
Yuan), CD (Conjugate Descent), HS (Hestenes-Stiefel), LS (Liu-Storey) conju-
gate gradient method.

The PRP method is globally convergent when the objective function is strictly
convex and the line search are exact, but for a general objective function, the PRP
method can cycle infinitely without approaching a solution point even when the
line search is exact, and therefore many authors have contributed to this topic.
Under several practical line searches, one can prove the global convergence of the
PRP method[1, 2, 9].

Recently, Shi and Guo [1] proposed a new family of conjugate methods, and
the parameter βk is defined by

βSG
k =

g>k (gk − gk−1)

(1 − u)‖gk−1‖2 − ug>k−1dk−1
,

where u ∈ [0, 1]. It is obvious that if u = 0 then βSG
k = βPRP

k and if u = 1 then

βSG
k = βLS

k . Shi and Guo [1] proposed a new nonmonotone Grippo-Lucidi type
line search, that is, for given constants ρ ∈ (0, 1), c ∈ (0, 1/2), u ∈ [0, 1], setting

sk =
1 − c

Lk

(1 − u)‖gk‖
2 − ug>k dk

‖dk‖2
,

then let

αk = max{ρjsk; j = 0, 1, . . .},

such that αk satisfies

f(xk + αkdk) ≤ max
0≤j≤m(k)

f(xk−j) + µαk[g
>
k dk +

1

2
αkLk‖dk‖

2],

and

(1.4) g(xk + αkdk)
>d(xk + αkdk) ≤ −c‖g(xk + αkdk)‖

2,

where

d(xk + αkdk) = −g(xk + αkdk) +
g(xk + αkdk)

>(g(xk + αkdk) − gk)

(1 − u)‖gk‖2 − ug>k dk

dk.

Shi and Guo [1] proved that the new method with the above nonmonotone line
search is globally convergent for nonconvex minimization. In this paper, we im-
prove Shi and Guo’s method in twofold: (1) We drop the local Lipschitz constant
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in the step length αk, which is beyond the problem data and has to be further
estimated; (2) The direction dk only needs to satisfy the descent property

(1.5) g>k dk < 0

instead of the sufficient descent property [4]. Obviously, the computation load of
descent property (1.5) is less than the sufficient descent property (1.4).

From now on, we always suppose the following assumption holds.

Assumption 1.1. (H1): The level set L(x1) = {x ∈ Rn|f(x) ≤ f(x1)} is
bounded, where x1 is the initial point.

(H2): In some convex set B that contains the level set L(x1), the gradient g is
Lipschitz continuous, i.e., there exists an L > 0 such that

‖g(x) − g(y)‖ ≤ L‖x − y‖.

Under (H1), there exists a positive constant τ > 0 such that

(1.6) ‖gk‖ ≤ τ.

The remainder of the paper is organized as follows. We describe the improved
method and show it is well-defined in Section 2. In Section 3, we prove its global
convergence under some mild conditions, and preliminary computational results
are given in Section 4. Finally, Section 5 contains some conclusions.

2. The improved method

Motivated by Shi and Guo [1] and the convergence analysis for the PRP method
by Yu et al. [2], we propose an improved conjugate gradient method, in which
the scalar βk is defined by

(2.1) βnew
k =

g>k (gk − gk−1)

u1‖gk−1‖2 − u2g
>
k−1dk−1

,

where u1 ≥ 0, u2 ≥ 0, u1 + u2 > 0. Now we present the improved method as
follows.

Algorithm 2.1. The improved method
Step 0: Given ε > 0. Choose x1 ∈ R

n, c > 0, ρ ∈ (0, 1), µ ∈ (0, 1), u1 ≥ 0, u2 ≥
0, u1 + u2 > 0.

Step 1: Compute g1. If ‖g1‖ < ε, then stop; else, set d1 = −g1, k := 1.

Step 2: Set

sk = c
u1‖gk‖

2 − u2g
>
k dk

‖dk‖2
,

and let

(2.2) αk = max{ρjsk; j = 0, 1, · · · }

satisfies

(2.3) f(xk + αkdk) ≤ f(xk) + µαk(g
>
k dk − cαk‖dk‖

2),
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and

(2.4) g(xk + αkdk)
>d(xk + αkdk) < 0,

where

d(xk + αkdk) = −g(xk + αkdk) +
g(xk + αkdk)

>(g(xk + αkdk) − gk)

u1‖gk‖2 − u2g>k dk

dk.

Set xk+1 = xk + αkdk, and compute gk+1.

Step 3: If ‖gk+1‖ ≤ ε, then stop. Otherwise, set k := k + 1, and go to Step 2.

Remark 2.1. In fact, inequality (2.3) in the above line search is motivated by
the line search in [2].

Lemma 2.1. Suppose that ‖gk‖ 6= 0 holds, then the line search (2.2)-(2.4) in
Algorithm 2.1 is well defined.

Proof. The proof easily follows from Lemma 2.1 in [2]. Thus it is omitted here. �

Remark 2.2. By induction, noting that as g>1 d1 = −‖g1‖
2 < 0 we will have

g>k dk < 0 for all k ≥ 1.

3. Global convergence

To establish the global convergence of Algorithm 2.1, we need the following
result.

Lemma 3.1. Assume that Assumption 1.1 holds, and Algorithm 2.1 generates
an infinite sequence {xk}, then

(3.1) ‖dk‖ ≤ %‖gk‖ ∀ k ≥ 1,

where % > 0 is a constant.

Proof. For k = 1, we have ‖dk‖ = ‖gk‖. For k > 1, we have

αk ≤ sk ≤ c
u1‖gk‖

2 − u2g
>
k dk

‖dk‖2
.

By Cauchy-Schwarz inequality and the above inequality, we have

‖dk+1‖ = ‖ − gk+1 + βnew
k+1dk‖

≤ ‖gk+1‖ +
|g>k+1(gk+1 − gk)|

u1‖gk‖2 − u2g>k dk

‖dk‖

≤ ‖gk+1‖(1 + αk

L‖dk‖
2

u1‖gk‖2 − u2g
>
k dk

)

≤ (1 + Lc)‖gk+1‖,

then, taking % = 1 + Lc yields the desired result. �

Lemma 3.2. Suppose that Assumption 1.1 holds and {xk} is generated by Algo-
rithm 2.1. Then

(3.2) lim
k→∞

αk‖dk‖ = 0.
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Proof. Since {f(xk)} is a decreasing sequence, it is clear that the sequence {xk}
generated by Algorithm 2.1 is contained in the level set L(x1), and there exists
a constant f∗ such that

lim
k→∞

f(xk) = f∗.

Hence, we have

(3.3)

∞
∑

k=1

(fk − fk+1) = f1 − f∗ < +∞.

By (2.3), we obtain

fk − fk+1 ≥ −µαkg
>
k dk + cµα2

k‖dk‖
2 ≥ cµ(αk‖dk‖)

2,

which, together with (3.3), implies that (3.2) holds. The proof is complete. �

The next result shows that Algorithm 2.1 is global convergent. If u1 = 0, we
assume Lc < 1.

Theorem 3.1. In the setting of Lemma 3.1, we have

lim inf
k→∞

‖gk‖ = 0.

Proof. Suppose that the conclusion does not hold. Then there exists a constant
ε > 0 such that for all k,

(3.4) ‖gk‖ > ε.

We will divide our proof into two cases: αk = sk and αk < sk. In the first case,
we have

(3.5) αk ≥ c
u1‖gk‖

2 − u2g
>
k dk

‖dk‖2
.

If αk < sk, this implies that αk/ρ violates one of the conditions (2.3) and (2.4).
If αk/ρ does not satisfy (2.3), we have

f(xk + (αk/ρ)dk) > f(xk) + µ(αk/ρ)[g>k dk − c(αk/ρ)‖dk‖
2].

Using the mean value theorem in the above inequality, we obtain θk ∈ (0, 1), such
that

g(xk + θk(αk/ρ)dk)
>dk > µ[g>k dk − c(αk/ρ)‖dk‖

2].

Subtracting g>k dk in both sides of the above inequality, we obtain

(g(xk + θk(αk/ρ)dk) − gk)
>dk > −(1 − µ)g>k dk − c(αk/ρ)µ‖dk‖

2,

which, together with (H1) shows that

Lθk(αk/ρ)‖dk‖
2 > −(1 − µ)g>k dk − c(αk/ρ)µ‖dk‖

2.

Therefore

(3.6) αk >
(1 − µ)ρ

L + cµ

|g>k dk|

‖dk‖2
.
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If αk/ρ does not satisfy (2.4), we have

0 ≤ −‖g(xk + (αk/ρ)dk)‖2 +
g(xk + (αk/ρ)dk)>(g(xk + (αk/ρ)dk) − gk)

u1‖gk‖2 − u2g>k dk

×g(xk + (αk/ρ)dk)>dk

≤ −‖g(xk + (αk/ρ)dk)‖2 +
‖g(xk + (αk/ρ)dk)‖

2

u1‖gk‖2 − u2g>k dk

L(αk/ρ)‖dk‖
2.

Dividing both sides of the above inequality by ‖g(xk + (αk/ρ)dk)‖2 yields

(3.7) αk ≥
ρ

L

u1‖gk‖
2 − u2g

>
k dk

‖dk‖2
.

Letting

M1 =
(1 − µ)ρ

L + cµ
, M2 = min{c,

ρ

L
},

from (3.5), (3.6) and (3.7), we have

αk ≥ M1
|g>k dk|

‖dk‖2
or αk ≥ M2

u1‖gk‖
2 − u2g

>
k dk

‖dk‖2
,

and then we have two possible cases. The first case is the set K1 := {k|αk ≥
M1|g

>
k dk|/‖dk‖

2} is infinite. From (1.6) and (3.1), there exists a constant M > 0
such that for all k ∈ K1,

(3.8) ‖dk‖ ≤ M.

From (3.2) and (3.8), we have

(3.9) lim
k∈K1,k→∞

αk‖dk‖
2 = 0,

then by αk ≥ M1|g
>
k dk|/‖dk‖

2 we have

(3.10) lim
k∈K1,k→∞

|g>k dk| = 0.

On the other hand, from (1.3), we have

g>k dk = −‖gk‖
2 +

g>k (gk − gk−1)

u1‖gk−1‖2 − u2g
>
k−1dk−1

g>k dk−1,

i.e.,

(3.11) ‖gk‖
2 = −g>k dk +

g>k (gk − gk−1)

u1‖gk−1‖2 − u2g>k−1dk−1
g>k dk−1.

By (H1) we have

(3.12) ‖gk‖
2 ≤ |g>k dk| +

‖gk‖
2Lαk−1‖dk−1‖

2

u1‖gk−1‖2 − u2g>k−1dk−1
.

If u1 > 0, from (1.6), (3.4), (3.12) and (H1), we have

‖gk‖
2 ≤ |g>k dk| +

‖gk‖
2Lαk−1‖dk−1‖

2

u1‖gk−1‖2
≤ |g>k dk| +

τ2Lαk−1‖dk−1‖
2

u1ε2
.
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From (3.9), (3.10), and taking limits for the above inequality, we have

lim
k∈K1,k→∞

‖gk‖ = 0,

which contradicts (3.4). If u1 = 0, then u2 > 0. From (3.4), (3.11), we have

−g>k dk = ‖gk‖
2 − βkg

>
k dk−1

≥ ‖gk‖
2 −

‖gk‖
2‖gk − gk−1‖

−u2g>k−1dk−1
‖dk−1‖

≥ ‖gk‖
2 −

Lαk−1‖gk‖
2

−u2g
>
k−1dk−1

‖dk−1‖
2

≥ ‖gk‖
2 −

Lsk−1‖gk‖
2

−u2g>k−1dk−1
‖dk−1‖

2

= ‖gk‖
2 −

L‖gk‖
2

−u2g>k−1dk−1

c(−u2g
>
k−1dk−1)

‖dk−1‖2
‖dk−1‖

2

= ‖gk‖
2 − Lc‖gk‖

2 ≥ (1 − Lc)ε2 := $

Because we have assumed Lc < 1 for u1 = 0, then $ > 0. The above inequality
contradicts (3.10).

Consider the second case that K2 := {k|αk ≥ M2(u1‖gk‖
2 − u2g

>
k dk)/‖dk‖

2}

is an infinite set. If u1 = 0, u2 > 0, then αk ≥ M2u2|g
>
k dk|/‖dk‖

2, and its proof
is similar to the first case. If u1 > 0, then αk ≥ M2u1‖gk‖

2/‖dk‖
2, i.e.,

‖gk‖
2 ≤

1

M2u1
αk‖dk‖

2,

which combing with (3.9) yields a contradiction to (3.4). The proof is
complete. �

4. Numerical results

In this section, we provide the implementation details of Algorithm 2.1 to
verify its efficiency. The codes were written in Matlab 7.1 and run on a portable
computer. For each problem, the limiting number of function evaluations is set
to 10000. ‘F’ means the method failed.

Our numerical results are listed in the form NI/NF/NG, where the symbols NI,
NF and NG mean the number of iterations, the number of function evaluations
and the gradient evaluations, respectively. For PRP method, FR method, HS
method and DY method, we use the same Armijo-line search as Algorithm 2.1.
The parameters in the Armijo-line search were chosen to be c = 1, u1 = 0.3, u2 =
0.7, ρ = 0.5 and µ = 0.4. For each test problem, the stopping criterion is

‖gk‖ ≤ 10−5.

Problem 4.1.

f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5(x1 + x2) − 21x3 + 7x4, x1 = (1, 1, 1, 1)> .
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Problem 4.2.

f(x) = (1 − x1)
2 + (1 − x10)

2 +

9
∑

i=1

(x2
i − xi+1)

2, x1 = (−2, · · · ,−2)>.

Problem 4.3.

f(x) = ex1 + x2
1 + 2x1x2 + 4x2

2, x1 = (1, 1)>.

Problem 4.4.

f(x) =

n
∑

i=1

(exi − xi), x1 = (n/(n − 1), · · · , n/(n − 1))>.

P n PRP FR HS DY Algorithm 2.1
P1 4 22/67/67 19/56/56 F 14/40/40 22/67/67
P2 10 353/702/702 F F F 308/530/530
P3 2 19/65/65 17/53/53 F 19/60/60 18/61/61
P4 10 16/35/35 23/47/47 47/2537/2537 23/47/47 15/34/34

100 17/37/37 25/51/51 29/1422/1422 25/51/51 16/36/36
500 18/39/39 26/53/53 30/1394/1394 27/55/54 17/39/38

Table 1. Numerical results of Problems 4.1-4.4

From Table 4 we can see that the average performances of the PRP method is
better than FR and DY methods, and much better than the HS method, and the
average performances of Algorithm 2.1 is a little better than the PRP method.

5. Conclusion

In this paper, we have proposed a new descent conjugate gradient method for
solving unconstrained optimization problems. The new method is a modification
of Shi and Guo’s method by dropping the local Lipschitz constant. The global
convergence result of the improved method is established under some mild condi-
tions. Preliminary numerical results show that the performance of the improved
method is a little more efficient than the PRP method for given test problems.
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