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GLAESKE-KILBAS-SAIGO FRACTIONAL INTEGRATION AND

FRACTIONAL DIXMIER TRACE

EL-NABULSI AHMAD RAMI

Abstract. The Dixmier trace was introduced by Jacques Dixmier in 1966
and its key role in noncommutative geometry was discovered by Connes around
1990 during his development of non-commutative infinitesimal calculus. Re-
markably, the Dixmier trace is used to define dimension, integration and has
been used along with heat kernel type expansions, to define ‘spectral actions’
for noncommutative quantum field theories. This work concerns a generaliza-
tion of the Dixmier trace to its fractional counterpart. Some new properties
are raised and explored in some details.

The pursuit for an ultimate theory of quantum gravity, in particular the un-
derstanding of the spacetime organization at Planck’s distance, is actually one
of the major objectives in contemporary mathematical physics. As it is usually
believed that the spacetime at very tiny distance may not be described by a
physical manifold of any type, the conventional geometrical setting of Einstein’s
General Relativity seems to be deficient to elucidate the non-manifold spacetime
structure at very short distances. So it is normal to ask about a generalization
of the standard geometry. One beautiful attempt is Connes’s Noncommutative
Geometry (CNG) which attracts an ever increasing attention of researchers es-
pecially after the greatest success of unifying the forces of nature into a single
gravitational action-the spectral action in a purely algebraic way, rather than
a completely new formalism. It has introduced a new twist in the search for a
quantum theory of gravity. Therefore, the possibility that our spacetime is a
noncommutative one should be taken seriously.

In CNG, differential structures augmented by spin structure are used to re-
cover geometry from the spectrum of a differential operator [6]. The points of
the manifold defined as a noncommutative algebra ′A′ of N × N matrices with
entries as functions on spacetime acting in addition to the hermitian self-adjoint
Dirac operator ′D′ on a Hilbert space ′H′, generally unbounded. ′H′ is in fact a
vector space of N×N matrices with entries as spinors. Thus, a CNG is defined by
a spectral triple (A,H,D) where the algebra A = C∞(M) is the pre-C∗ algebra
of smooth functions onM with respect to the C0-norm acting in H by multipli-
cation operators as follows: (fg)(x) = f(x)g(x), ∀x ∈M. M is an orientable, c-
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onnected, compact, N -dimensional differentiable unbounded manifold which may
not be a manifold. The total Riemannian spin geometry of M can be recon-
structed from (A,H,D). The set of manifolds which allow to be described by a
spectral triple must be Riemannian, i.e. of Euclidian signature, and they have
to admit a Dirac operator, which is not true for any manifold. More generally,
CNG generalizes (C∞(M), L2(M, S), D) → (A,H,D) where D is an unbounded
Dirac operator acting onH = L2(M, S) of square-integrable spinors with positive-
definite signature specifying the metric and C∞(M) acts on ′H′ by multiplication
operators with ||[D, π(x)]|| = ||gradπ(x)||∞, π ∈ C(M). A positive functional on
the affine space set F containing all the possible Dirac operators onM is needed
to obtain the dynamics on the gravitational field. In fact, once we operate the
original Riemannian geometry for its corresponding commutative triple we need
a replacement for the Einstein-Hilbert action. The so-called spectral action is one
possible candidate [4]. It depends only on the eigenvalues of the Dirac operators
and contains the Einstein-Hilbert action as a dominant term. It was observed that
the existence of Dirac operators is determined by topological properties of the
manifold and therefore contains information about the geometry of the manifold.
This feature was exploited in the use of Dirac operators in the Seiberg-Witten
theory of differential topological invariants for 4-manifolds.

For a definite choice of matrix algebras, one obtains in the limit of high eigen-
values of the Dirac operator onM and in particular in the asymptotic expansion
of the spectral triples action, the pure Einstein-Hilbert gravity including the cos-
mological constant term. In contrast to the diffeomorphisms of the geometrical
manifold, the automorphisms of the algebra permit to be extended to comprise
compact Lie groups. As the entire notion of a spectral triple is autonomous, i.e.
independent of the commutativity of the algebra, it is possible to bond the alge-
bra of functions over the space-time manifold with an algebra being the sum of
simple matrix algebras automorphisms by simply tensorising. These techniques
are entitled “almost-commutative geometries” and the part of the spectral triple
based on the matrix algebra is often called the “finite or internal part”. Choosing
as matrix algebras C⊕H⊕M3(C), where H are the quaternions, one recovers with
a suitable choice for the Hilbert space, the Einstein-Hilbert action and the Yang-
Mills theory for the gauge group SU(N) of the standard model of elementary
particle physics with the spontaneous symmetry-breaking Higgs potential action
of the standard model. The Higgs scalar together with its potential emerges natu-
rally as the “Einstein-Hilbert action” in the noncommutative part of the algebra.
At this point, it has become potential for the first time to give the Higgs scalar a
geometrical interpretation. The Yang-Mills gauge potential emerges as the inner
part of the spacetime metric in a similar way as the group of gauge transforma-
tions for SU(N) appears as the group of inner diffeomorphisms. They provide
a natural elucidation of the Higgs boson as a connection in the noncommutative
part of the geometry.

The most general form of the bosonic action is given by S = Tr[F[D2]/Λ2] :
F → R

+. Here F : R
+ → R

+ is any regular and fast decreasing function at
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infinity for which the Hilbert space trace exists and Λ ∈ R is a cut-off homoge-
neous to the mass of order of Planck’s mass, e.g. it fixes the mass scale. The
bosonic action counts the Dirac operator eigenvalues smaller than Λ. Note that
S is spectral invariant, i.e. it is invariant under all unitaries on ′H′ and thus
in particular under all diffeomorphisms. It depends merely on the eigenvalues
of the Dirac operators and contains the Einstein-Hilbert action as a dominant
term. While occasionally pure mathematicians are motivated from theoretical
physics, more frequently what induce mathematical progress and enhancement is
the internal logic of the theoretical investigated subjects. Understanding deeply
the mathematical formalism, one can overpass a connection between the diverse
theoretical frameworks by modifying or creating new ideas that will be able to
build a new link that the old one couldn’t succeed to do. This kind of research
and explorations require us to pay profound awareness to the subject of precisely
what it is that one understands.

Recently, in an attempt to investigate about the characteristic properties of the
triplet action satisfied by a class of fractional integrals and derivatives, namely
the Riemann-Liouville (RL) and the Erdelyi-Kober (EK) fractional operators of
a function G ∈ Lp(0,∞) defined respectively by:

(1) I
RL
α (s) = lim

t→∞

1

Γ(α)

t
∫

0

G(τ)(t− τ)α−1e−sτdτ, N − 2 < 2k ≤ N,

(2) I
EK
α (s) = lim

t→∞

1

Γ(α)

t
∫

0

G(τ)τN/2−k−1(tm − τm)α−1e−sτdτ,

N − 2m < 2k ≤ N , where 0 < α ≤ 1,m ∈ R
+, n is the number of spacetime

dimensions, τ is the intrinsic time and t is the observer time (t 6= τ), remark-
ably the fractional spectral triplet action was found to be complexified [8]. The
complexified spectral action is similar in form to the canonical/loop approach [27]
with the major differentiation: the gravitational coupling constant is complexified
in the fractional structure. The emergent imaginary spectral triplet action will
contribute as a corrector to the real part when applied to a physical problem, i.e.
the Yang-Mills-Higgs theory. Accordingly, the fractional spectral triplet action
is expected to bring new topological terms to the standard theory. In particular,
the ghost solutions arising from the real part do not survive in the classical phase
space, but somewhat in the space of the complexified metric and consequently
complex periodic orbits may take place. In the semi-classical limit (h→ 0), their
contributions to the fractional path integral are insignificant, but rather become
significant for not too small h. Even in the limit h → ∞, the vanishing of the
complex part of such an orbit would lead to a non-vanishing contribution to the
propagator which invalidates standard semiclassical quantization involving only
real orbits. Moreover, within the same fractional approach, it was argued that the
Connes 2-points space distance problem amazingly is finite even at the classical
level and differs to some extent from the quantum results.
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In fact, fractional integral and derivative approaches have been shown to be
useful in the study of several complex dynamical systems [26, 29, 31-33], in partic-
ular quantum field theory [9-11, 14-16, 20]. Today, fractional integration appears
in various fields, some in the form of not-so-subtle variation and generalizations.
It is noteworthy that the main argument for dealing with fractional operators
concerns the fact that it may represent an analytic framework suitable for the
description of physical phenomena that are likely to arise in the TeV realm of
particle physics. For example strong-gravity effects emerging from the short dis-
tance behavior of quantum field theory necessitate the use of fractional operators.
Moreover, the macroscopic description of phenomena in terms of conventional
differential and integral operators breaks down due of dynamical instabilities
developed on long time scales, i.e. unstable vacuum fluctuations leading to self-
organized criticality and therfore, this is one of the main arguments for using
fractional differential and integral operators within the context of field theory
[10, 12, 13, 19, 20, 25].

Motivated by all these, we would like in this work to enlarge our search to
investigate about some properties of the fractional spectral triples, namely the
fractional integration and Dixmier trace. The Dixmier trace, in a broad sense,
by taking a class of compact operators for which the common trace diverges at a
given rate. In this paper, we will explore the fractional aspects in noncommuta-
tive geometry making use of the Riemann-Liouville fractional integral approach
and we left the Erdélyi-Kober approach for a future work. Our main aim is to
introduce the basic settings. It is notable that one can associate spectral triples
to certain fractal sets and calculate their spectra. Moreover it has inspired the
designation of fractional dimension and of Hausdorff (and Hausdorff-Besicovitch)
measure in the abstract setting of spectral triples, because of the strong analogies
with the fractal case. We start by proposing the following definition:

Definition 1. If D is the Dirac operator and λ its corresponding eigenvalue,
we define its matching fractional RL-Mellin integral transformation through this
work and in particular after limitation to the λ-eigenspace by:

(3) |D|−ω =
1

Γ((ω + 2α− 2)/2)
|λ|−ω

∞
∫

0

(t− τ)(ω−2)/2et−τdτ.

Here α and ω could take any fractional value and they could have complex values
as well. The operator et−τ ≡ e−T , T = τ − t, namely e−T : f → g is the solution
of the operator for the heat equation ∂T g + g = 0 with initial value g(t = 0) =
f . In the standard noncommutative approach, the condition ||[D, f ]||C0 ≤ 1
which means that the gradient of f is bounded by one is significant since it
implies that we can renovate the distance function and therefore the metric onM
from the spectral triples (A,H,D). In order to get a fractional noncommutative
generalization, we have to express classical geometric fractional operators in terms
of the triples (A,H,D) [1]. We will perform this for fractional integration over
M. For this, we let λ1, λ2, . . . be the eigenvalues of the generalized Dirac operator
ordered by increasing absolute values, |λ1| ≤ |λ2| ≤ . . . ↗ ∞. Besides, 0 is not
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an eigenvalue of D. It is notable that the square D is a generalized Laplacian
with eigenvalues 0 < λ2

1 ≤ λ2
2 ≤ . . .↗∞.

As in general the RL fractional operator has the effect of increasing the di-
mension of the manifold and turns it into a fractional dimension by its relation
to the index of fractional integration we can introduce the following proposition:

Proposition 1. The Dirac operator |D|−dim M, dimM = n is fractionalized as

follows

(4) |D|−dim M,dimM = n→ |D|−(n+1−α), n < dimM = n + 1− α ≤ n + 1.

Here |D|−1 has order 1/(n + 1−α) so that |D|−(n+1−α) has order one, and hence

|D|−(n+1−α) ∈ L1,∞(H) and since

L1,∞(H) := {D ∈ K(H) :

n
∑

i=1

λk(D) = 0(log n)}

is an ideal, then for any compact operator T ∈ A on a finite dimensional Hilbert
space H, T |D|−(n+1−α) ∈ L1,∞(H), (n + 1 − α) ∈ (0,∞). When A consists of
measurable operators, we can define a fractional trace on A by setting

∫

T =

Trω(T |D|−(n+1−α)). Here Trω is a logarithmic Dixmier trace [7], i.e. a singular
trace summing logarithmic divergences. This is to say that

Trω(T |D|−(n+1−α)
fractional )←→ volume of the space that has dimensions (n + 1− α).

Lemma 1. A spectral triple (A,H,D) has dimension n > α−1 if the infinitesimal

unit of length L = |D|−1 has order 1/(n + 1− α).

Definition 2. We call the (n + 1− α)-dimensional function the map:

T → Trω(T |D|−(n+1−α))

and the fractional dimension of the spectral triples, the number

d(A,H,D) = inf{n > α− 1 : |D|−(n+1−α) ∈ L1,∞
0 (H)},

= sup{n > α− 1 : |D|−(n+1−α) 6∈ L1,∞(H)}.

Here L1,∞
0 (H) := {D ∈ K(H) :

n
∑

i=1
λk(D) = o(log n)} and ω is a generalized limit

[24].

Theorem 2. Given the spectral triples (A,H,D). Let E →M be a Riemannian

or Hermitian vector bundle overM and Ψ = f ·I ∈ C∞(M)(End (E)) and f = 1,
then

Trω(|D|α−n−1) =
cos(((n + α− 3)/2)[2m + 1]π)

Γ((n + 3α− 3)/2)
(4π)−n/2 2rk(E)

(n + α− 1)
Vol (M)

+ j
sin(((n + α− 3)/2)[2m + 1]π)

Γ((n + 3α− 3)/2)
(4π)−n/2 2rk(E)

(n + α− 1)
Vol (M),

j =
√
−1.
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Proof. By Weyl’s theorem, ∃C ∈ R
+/|λi| ≥ C

1/(n−α+1)
i ,

C = [rk(E) ·Vol (M)]/[(4π)n/2Γ((n/2) + 1)], i = (1, 2, . . . , N).

Therefore, the Dixmier trace of the fractional operator |D|1−α−n assumed to have
non-zero eigenvalue is given by

Trω(|D|1−α−n) = lim
N→∞

1

log N

N
∑

i=1

|λi|1−α−n ≤ C · lim
N→∞

1

log N

N
∑

i=1

i−1 <∞,

where C ∈ R
+. Let E →M be a Riemannian or Hermitian vector bundle over

M and Ψ ∈ C∞(M)(End(E)) be an endomorphism field, i.e. Ψ = f · I with
f ∈ C∞(M). First, we have to manage the integral kernel of |D|1−α−p, p > n,
making use of the fractional Mellin transformation. After restriction to the λ-
eigenspace of D, we may write simple algebra, making use of the fractional RL-
Mellin transformation (3)

|D|1−α−p =
1

Γ((p + 3α− 3)/2)
|λ|1−α−p

∞
∫

0

(t− τ)(p+α−3)/2et−τdτ

=
1

Γ((p + 3α− 3)/2)
|λ|1−α−p

∞
∫

0

(−T )(p+α−3)/2e−T dT, (T = τ − t)

=
1

Γ((p + 3α− 3)/2)

∞
∫

0

(−s)(p+α−3)/2e−λ2sds

=
1

Γ((p + 3α− 3)/2)

∞
∫

0

(−T )(p+α−3)/2e−TD2

dT,

p− 3

2
<

p + α− 3

2
≤ p

2
. Therefore the kernel of |D|1−α−p is

k(x, y; |D|1−α−p) =
(−1)(p+α−3)/2

Γ((p + 3α− 3)/2)

∞
∫

0

T (p+α−3)/2kT (x, y)dT,

kT is the heat kernel of the generalized Laplacian D2. Using the relation:

(−1)α = exp(jα[2m + 1]π), m ∈ N,

we may write the previous equation as

k(x, y; |D|1−α−p) =
ej(p+α−3)/2[2m+1]π

Γ((p + 3α − 3)/2)

∞
∫

0

T (p+α−3)/2kT (x, y)dT

=
cos(((p + α− 3)/2)[2m + 1]π)

Γ((p + 3α− 3)/2)

∞
∫

0

T (p+α−3)/2kT (x, y)dT
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+ j
sin(((p + α− 3)/2)[2m + 1]π)

Γ((p + 3α− 3)/2)

∞
∫

0

T (p+α−3)/2kT (x, y)dT.

Obviously, the integral kernel is complexified. Then, Ψ ◦ |D|1−α−p has integral
complexified kernel

k(x, y; Ψ ◦ |D|1−α−p) =
cos(((p + α− 3)/2)[2m + 1]π)

Γ((p + 3α− 3)/2)

∞
∫

0

T (p+α−3)/2Ψ ◦ kT (x, y)dT

+j
sin(((p + α− 3)/2)[2m + 1]π)

Γ((p + 3α− 3)/2)

∞
∫

0

T (p+α−3)/2Ψ ◦ kT (x, y)dT,

and therefore

Tr(Ψ ◦ |D|1−α−p) =

∫

M

Tr(k(x, x; Ψ ◦ |D|1−α−p))dV (x)

=
cos(((p + α− 3)/2)[2m + 1]π)

Γ((p + 3α− 3)/2)

∞
∫

0

T (p+α−3)/2

∫

M

Tr(Ψ(x)kT (x, x))dV (x)dT

+ j
cos(((p + α− 3)/2)[2m + 1]π)

Γ((p + 3α− 3)/2)

∞
∫

0

T (p+α−3)/2

∫

M

Tr(Ψ(x)kT (x, x))dV (x)dT.

For 0 < T < T0, using the relation kT (x, x) = (4πT )−n/2
I + O(T−(n/2)+1), n =

dimM, we can write

T0
∫

0

T (p+α−3)/2

∫

M

Tr(Ψ(x)kT (x, x))dV (x)dT

= (4π)−n/2

T0
∫

0

T (p−n+α−3)/2

∫

M

Tr(Ψ(x)kT (x, x))dV (x) + O(T (p−n)/2)dT

= (4π)−n/2 2

p− n + α− 1
T

(p−n+α−1)/2
0

∫

M

Tr(Ψ(x)kT (x, x))dV (x) + O(1).

Making use of the fractional version of the Connes’ Trace Theorem which states
that the Dixmier trace is a residue and in particular for

Ψ = f · I ∈ C∞(M)(End (E))

and f = 1, i.e.

Tr(Ψ ◦ |D|1−α−n) =
1

n + α− 1
lim

p→n−α+1
(p− n + α− 1)Tr(Ψ ◦ |D|−p),
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we obtain

Trω(|D|α−n−1) =
cos(((n + α− 3)/2)[2m + 1]π)

Γ((n + 3α − 3)/2)
(4π)−n/2 2rk(E)

(n + α− 1)
Vol (M)

+ j
sin(((n + α− 3)/2)[2m + 1]π)

Γ((n + 3α− 3)/2)
(4π)−n/2 2rk(E)

(n + α− 1)
Vol (M)

=
ej((n+α−3)/2)[2m+1]π

Γ((n + 3α− 3)/2)
(4π)−n/2 2rk(E)

(n + α− 1)
Vol (M).

�

Remark 1. It is noticeable that for α = 1, we find

Trω(|D|−n) = ej((n−2)/2)[2m+1]π(4π)−n/2 2rk(E)

nΓ(n/2)
Vol (M)(5)

=















(4π)−n/2 2rk(E)

nΓ(n/2)
Vol (M), n = even

j(4π)−n/2 2rk(E)

nΓ(n/2)
Vol (M), n = odd,

while for α = 3 + n, we obtain

(6) Trω(|D|2) ≡ 1

Γ(3 + 2n)
(4π)−n/2rk(E) ·Vol (M).

The case where α = 1 is remarkable because it shows that the operator theoretic
volume element depends on the nature of the dimension ofM with n < n+1−α ≤
n + 1, which may take in our arguments, complex values.

In this fractional-theoretic framework, the Connes’ Trace Theorem allows to re-
construct from the spectral triple (A,H,D) data, and given the Riemann-measure
dmg overM on the Riemann spin manifold (M, g), the Riemann fractional mea-
sure of M [24]:

(7)

∫

M

Tdmg = C(n + 1− α)Trω(T |D|−(n+1−α)),

where C(n + 1 − α) is a constant which depends on n + 1 − α. All the above
discussions are limited to n 6= α.

Remark 2. If we consider a compact F totally disconnected subset of R without
isolated points, then within our arguments, F may represents a Minkowski mea-
surable subset with box fractional dimension 0 < α ≤ 1 where |D|−α ∈ L1,∞(H)
and

(8) Trω(|D|−α) = 2α(1− α)Mα(F),

which follows from Lapidus and Pomerance [28]. See also [5, 17, 18, 21-23].

Remark 3. It has been recently argued that the temporal Riemann-Liouville
fractional integral with “complex” fractional exponent has a physical significance.
In reality, for true regular discrete fractals, the imaginary part of the fractional
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integral could be realized and in turn can be observed in disordered material sci-
ences. Recent numerical advances showed that the imaginary part of the complex
fractional exponent can be estimated by finite grouping of the primary sine/cosine
log-periodical functions with period ln ξ, ξ is a scaling parameter. The consequent
Fourier components give a couple of complex conjugated exponents defining the
imaginary part of the complex fractional integral. For random fractals, where
invariant scaling properties are recognized merely in the statistical sense the
imaginary part of the complex exponent is averaged and the result is reduced
to the conventional Riemann-Liouville integral [30].

Motivated by these results, we may replace the real fractional exponent α by its
complexified counterpart, i.e. α→ α−jε. The Dirac operator |D|−dim M,dimM
= n is now fractionalized as follows
(9)

|D|−dim M,dimM = n→ |D|−(n+1−α+jε), n < dimM = n + 1− α + jε ≤ n + 1.

Accordingly, the following theorem holds:

Theorem 3. Given the spectral triples (A,H,D). Let E →M be a Riemannian

or Hermitian vector bundle overM and Ψ = f ·I ∈ C∞(M)(End (E)) and f = 1,
then

Trω(|D|α−jε−n−1) =
ej((n+α−jε−3)/2)[2m+1]π

Γ((n + 3α− 3jε− 3)/2)
(4π)−n/2(10)

× 2rk(E)

(n + α− jε− 1)
Vol (M).

The proof is direct.
Notice that for n = 0 and α = 1/2, then dimM = n + 1− α + jε = 1/2 + jε

coincides with the critical zeros the Riemann zeta function. More surprisingly, if
we replace the complex fractional exponent α−jε→ φp−jε, [p ∈ N, ε = J(φp−jε)]
where φ = 1/(1 + φ) = (

√
5− 1)/2 ≈ 0.618 . . . is the Golden mean, then

Trω(|D|φp−jε−n−1) =
ej((n+φp−jε−3)/2)[2m+1]π

Γ((n + 3φp − 3jε − 3)/2)
(4π)−n/2(11)

× 2rk(E)

(n + φp − jε− 1)
Vol (M),

and hence, for n = 1, we have

(12) Trω(|D|φp−jε−2) =
ej((φp−jε−2)/2)[2m+1]π

Γ((3φp − 3jε − 2)/2)
(4π)−1/2 2rk(E)

(φp − jε)
Vol (M).

It would be interesting to examine in the future the behavior of the fractional
Dixmier trace at (φ+jε), (φ2 +jε), . . . and its connection to fractal strings [3, 18].
For p = 1 and p = 2, we obtain respectively
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Trω(|D|φ−jε−2) =
ej((φ−jε−2)/2)[2m+1]π

Γ((3φ − 3jε− 2)/2)
(4π)−1/2 2rk(E)

φ− jε
Vol (M)

=
ej((φ−2)/2)[2m+1]πeε[2m+1]π/2

Γ((3φ − 3jε − 2)/2)
(4π)−1/2 2rk(E)

(φ− jε)
Vol (M),(13)

Trω(|D|φ2−jε−2) = Trω(|D|−φ−jε−1)

(14)

=
ej((−φ−jε−1)/2)[2m+1]π

Γ((1− 3φ− 3jε)/2)
(4π)−1/2 2rk(E)

1− φ− jε
Vol (M)

=
e−j((φ+1)/2)[2m+1]πeε[2m+1]π/2

Γ((1− 3φ− 3jε)/2)
(4π)−n/2 2rk(E)

(1− φ− jε)
Vol (M).

This suggests that the complex fractional exponents could have a geometrical
meaning.

Remark 4. We may replace as well α−jε→ α+1−jε so that dimM = n−α+jε
and hence for n = 1 and α = 1/2, then dimM = 1/2 + jε as well. In this way,
we avoid the special value dimM = 0 discussed in the previous case.

The results obtained here turn out to be useful to explore many new novel
properties and to build bridges between fractal/fractional calculus and noncom-
mutative geometry. However, our main goal in the future is to enlarge the class
of discussions with applications to the standard model of particle physics. The
fractional formalism we use is extremely recent, and it is still in its infancy. In-
deed, all the available inquiries together with the subsequent work are theoretial.
Our contribution is, however, only theoretical and, in that sense, more modest.
We anticipate that many new interesting features will arise and that will have
significant outcomes in quantum field theory and gravity theory. Various other
constructions of fractional Dixmier traces on fractals and aperiodic structures [2]
are under progress.
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