
ACTA MATHEMATICA VIETNAMICA 267
Volume 37, Number 2, 2012, pp. 267–280

ON THE PERMANENCE OF PREDATOR-PREY MODEL
WITH THE BEDDINGTON-DEANGELIS FUNCTIONAL

RESPONSE IN PERIODIC ENVIRONMENT

TRINH TUAN ANH, NGUYEN HUU DU, AND TONG THANH TRUNG

Abstract. This paper studies a predator-prey population system described
by a differential equation with the Beddington-DeAngelis functional response
in the periodic case. We establish a sufficient criterion for the permanence of
the system and for the existence of a positive periodic solution.

1. Introduction

The permanence theory has developed into a mathematically fascinating area
for its significance in mathematical models for population dynamics. It formalizes
the concepts of non-extinction (uniform persistence) and non-explosion (dissipa-
tivity) for the considered species (see [8] and the references therein).

We consider a predator-prey population model described by the following non-
autonomous ordinary differential equation

(1.1)
ẋ = x

[
g1(t, x)− h1(t, y)

k1(t, x, y)

]
,

ẏ = y

[
g2(t, y) +

h2(t, x)
k2(t, x, y)

]
,

where gi, hi : R × [0,+∞) → R (i = 1, 2) are continuous, T−periodic in the
first variable (T > 0) and continuously differentiable in the second variable;
ki : R× [0,+∞)× [0,+∞)→ R (i = 1, 2) are continuous, T−periodic in the first
variable and continuously differentiable in the second and the third variables; x
and y stand for the quantity (or density) of the prey and the predator respectively.

The system (1.1) is a generalization of predator-prey population models with
Beddington-DeAngelis functional response considered in [2, 10, 4]. In [2], it is
concerned with the case where g1 = 1 − x, g2 = −D, h1 = Ay, h2 = Ex, and
k1 = k2 = 1 + Bx + Cy; A, B, C, D, E are positive constants. In [10, 4], the
authors deal with g1 = a1 − b1x, g2 = −a2 − b2y, h1 = c1y, h2 = c2x, and
k1 = k2 = p+qx+y, where ai, bi, ci (i = 1, 2), p and q are positive constants. For
the ecological significance of the system (1.1), the reader can refer to [2, 10, 4].

Received March 10, 2011; in revised form September 19, 2011.
2000 Mathematics Subject Classification. 34C11, 34C25, 34D40, 92B05, 92D25.
Key words and phrases. Beddington-DeAngelis functional response, persistence, permanence,

positive periodic solution.



268 TRINH TUAN ANH, NGUYEN HUU DU, AND TONG THANH TRUNG

Our main purpose is to improve the conditions in [2, 4] to study the perma-
nence and the existence of a positive periodic solution of the system (1.1) in the
case where its coefficients periodically vary on time t. To do that, the following
hypotheses are imposed for the system (1.1):

(H1) g1(t, x) is strictly decreasing in the second variable; there exists a positive

number K such that g1(t,K) < 0 for all t ∈ [0, T ]; and
T∫
0

g1(t, 0)dt > 0,

(H2) g2(t, y) is non-increasing in the second variable and
T∫
0

g2(t, 0)dt < 0,

(H3) for each t ∈ R, the function hi(t, ·) is non-decreasing and hi(t, 0) = 0 for
all t ∈ [0, T ] (i = 1, 2),

(H4) ki(t, 0, 0) > 0 for all t ∈ [0, T ] and ki(t, x, y) is non-decreasing in each x
and y variable (i = 1, 2).

(H5) lim
y→+∞

{ inf
t∈[0,T ]

k2(t, 0, y)} = +∞ or lim
y→+∞

{ sup
t∈[0,T ]

g2(t, y)} = −∞.

The paper is organized as follows: In Section 2, we discuss an equivalence of the
persistence between periodic differential equations and discrete semi-dynamical
systems corresponding to them and recall some well-known results on the persis-
tence of discrete semi-dynamical systems. In the last section, we prove a sufficient
criterion for the permanence and study the existence of a positive periodic so-
lution of the system (1.1), then we consider some special forms of the system
(1.1) and finally a numerical example illustrating the obtained result in non-
autonomous cases is given.

2. Preliminaries

2.1. Persistence in periodic differential equations
We consider the following system:

(2.1) v̇ = f(t, v),

where f : R × Rm
+ → Rm (m ≥ 1, Rm

+ := {(v1, ..., vm) : vi ≥ 0, i = 1, 2, ...,m})
is continuous and T−periodic (T > 0) in t−variable. We assume that:
(F) The Cauchy problem for (2.1) with the initial condition v(t0) = v0 ∈ Rm

+

(t0 ∈ R) has a solution which is unique and continuable for all t ≥ t0.
By (F), we may introduce the Cauchy operator G(t, t0) (t ≥ t0):

G(t, t0) : Rm
+ → Rm

+ , v0 7→ v(t),

where v(t) is the solution of the system (2.1) at time t with v(t0) = v0. Note that
the assumption of uniqueness implies that the (general) solution v = G(t, t0)v0
of the system (2.1) is continuous with respect to (t, t0, v0) (Theorem 2.1 in [6,
p. 96]). Straightforward properties of G are: G is continuous with respect to
(t, t0, v0) and t−differentiable for t ≥ t0; G(t, s)G(s, t0) = G(t, t0) for t ≥ s ≥ t0;
G(t+T, t0 +T ) = G(t, t0) for t ≥ t0; G(t, t0)Rm

+ ⊂ Rm
+ for t ≥ t0; and G(t0, t0) =

Id (the identity operator).
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Let H(τ) = G(T + τ, τ) (τ ∈ R). We have the discrete semi-dynamical system:

(2.2) N× Rm
+ 3 (n, v) 7→ Hn(τ)v ∈ Rm

+ .

Definition 2.1. System (2.1) is said to be persistent (with respect to ∂Rm
+ -the

boundary of Rm
+ ) if lim inf

t→+∞
d
(
v(t), ∂Rm

+

)
> 0 for any solution v(t) of the system

(2.1) with initial condition v(t0) ∈ int Rm
+ , where d(v(t), ∂Rm

+ ) is the Euclid dis-
tance from the point v(t) to ∂Rm

+ and int Rm
+ is the interior of Rm

+ . It is uniformly
persistent if there exists a positive number δ such that lim inf

t→+∞
d
(
v(t), ∂Rm

+

)
≥ δ

and δ does not depend on initial condition v(t0) = (v01, v02, . . . , v0m) in int Rm
+ .

Definition 2.2. System (2.1) is said to be dissipative if there exists a positive
number M such that lim sup

t→+∞
‖v(t)‖ ≤M for any solution v(t) of the system (2.1).

Definition 2.3. System (2.1) is said to be permanent if it is uniformly persistent
and dissipative.

Definition 2.4. H(τ) (or (2.2)) is said to be persistent (with respect to ∂Rm
+ ) if

lim inf
n→+∞

d
(
Hn(τ)v, ∂Rm

+

)
> 0 for all v ∈ int Rm

+ .

It is uniformly persistent if there exists a positive number δ such that

lim inf
n→+∞

d
(
Hn(τ)v, ∂Rm

+

)
≥ δ for all v ∈ int Rm

+ .

Theorem 2.5. (see [1]) Let (F) hold. If the system (2.1) is dissipative, then
(i) System (2.1) is persistent if and only if, for each τ ∈ [0, T ], H(τ) is

persistent,
(ii) System (2.1) is uniformly persistent if and only if, for each τ ∈ [0, T ], H(τ)

is uniformly persistent.

2.2. Persistence for maps
We now recall some definitions and well-known results on persistence for maps.

Let V be a metric space with a metric d and let W be a closed subset of V .
Let F : V → V be continuous such that F (W ) ⊂ W and F (V \W ) ⊂ V \W .
Denote by F |W the restriction of F on W . Let us denote by Z (and Z+) the
set of integers (and the set of non-negative integers, respectively). Recall that
a sequence {un}n∈Z+ ({u−n}n∈Z+ , respectively) of points in V is said to be a
positive (negative) orbits through u ∈ V if u0 = u and Fun = un+1 (Fu−n−1 =
u−n) for all n ∈ Z+; a sequence {un}n∈Z with u0 = u and Fun = un+1 for all
n ∈ Z is an orbit through u. A positive (respectively, negative) orbit is said to
be compact if the sequence, when considered as a subset of V , is precompact.
Denote by ∧+({un}n∈Z+) or ∧+(u) (respectively, ∧−({u−n}n∈Z+)) the omega
limit set (the alpha limit set) of positive (negative) orbits through u (see [5]).
The map F is said to be dissipative if the set Ω(F ) = ∪{∧+(u) : u ∈ V } is
precompact.

The subset M of V is called positively invariant (respectively, invariant) (under
F ) if F (M) ⊂M (respectively, F (M) = M).
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A non-empty closed invariant subset M is an isolated invariant set if it is the
maximal (under the order of inclusion) invariant set in some neighborhood of
itself.

Let M be an isolated invariant set. A compact positive orbit {un}n∈Z+ is
said to be in the stable set of M (under F ) (in notation {un}n∈Z+ ∈ W+(M))
if ∧+{un}n∈Z+ ⊂ M ; a compact negative orbit {u−n}n∈Z+ is said to be in the
unstable set of M (in notation {u−n}n∈Z+ ∈W−(M)) if ∧−({u−n}n∈Z+) ⊂M .

For two isolated sets M1 and M2 we say that M1 is chained to M2, in notation
M1 → M2, if there exists an orbit {un}n∈Z with uk /∈ M1 ∪M2 for some k ∈ Z
such that {u−n}n∈Z+ ∈ ∧−(M1) and {un}n∈Z+ ∈ ∧+(M2). A finite sequence
M1, . . . ,Mk of isolated invariant sets will be called a chain if M1 →M2 → · · · →
Mk (M1 → M1 if k = 1). The chain is a cycle if Mk = M1. A covering Π =
{M1, . . . ,Mk} of Ω̄(F |W ) (the closure of Ω(F |W )) is called an isolated covering of
F |W if M1, . . . ,Mk are pairwise disjoint, compact and isolated invariant (under
F ); the isolated covering Π is called an acyclic covering if no subsets of Π form a
cycle for F |W in W .

Theorem 2.6. (see [7]) Suppose that
(i) F is dissipative,

(ii) F |W has an acyclic covering Π = {M1, . . . ,Mk}.
Then F is uniformly persistent with respect to W (i.e. there exists a positive
number ε such that lim inf

n→+∞
d(Fnu,W ) ≥ ε for all u ∈ V \W ) if and only if the

following condition holds:
(H) There is no positive orbit {un}n∈Z+

in V \W such that {un}n∈Z+
∈W+(Mi)

for some i ∈ 1, 2, . . . , k.

Theorem 2.7. (see [9]) Suppose V = Rm
+ , W = ∂Rm

+ and F is uniformly per-
sistent and dissipative. Then F has a fixed point in int (Rm

+ ).

3. Permanence for the system (1.1)

In this part, we study the permanence and the existence of positive periodic
solutions of the system (1.1).

It is easy to see that the axes Ox, Oy and intR2
+ are invariant with respect to

the system (1.1). The origin O(0, 0) is an equilibrium point of the system (1.1).
On the y−axis, the following equation presents the growth rate of predator

population in the absence of the prey:

(3.1) ẏ = yg2(t, y).

Lemma 3.1. Let (H2) hold. Then for any solution Y (t) of Equation (3.1) with
the initial condition Y (t0) > 0 we have lim

t→+∞
Y (t) = 0.

Proof. By (H2), we have Ẏ ≤ Y g2(t, 0). This implies that

Y (t) ≤ Y (t0) exp

t∫
t0

g2(s, 0)ds
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for all t ≥ t0. Since g2(t, 0) is T−periodic in t and
T∫
t0

g2(s, 0)ds < 0, it follows

that lim
t→+∞

Y (t) = 0. �

On the x−axis, the following equation presents the growth rate of prey popu-
lation in the absence of the predator:

(3.2) ẋ = xg1(t, x).

Lemma 3.2. (see [11]) Let (H1) hold. Then Equation (3.2) has a unique positive
T−periodic solution X0(t). Furthermore, this solution is asymptotically globally
stable on (0,+∞).

Lemma 3.3. Let (H1), (H2), (H3) and (H4) hold. Then for each (t0, x0, y0) ∈
R × R2

+, the system (1.1) has a unique solution (x(t), y(t)) defined on [t0,+∞),
satisfying x(t0) = x0, y(t0) = y0.

Proof. Since the coefficients are continuously differentiable, the system (1.1) is
locally and uniquely solvable. Moreover, x(t) > 0 and y(t) > 0 if x(t0) > 0 and
y(t0) > 0 by virtue of invariant property of intR2

+. On the other hand, we have
ẋ(t) ≤ x(t)g1(t, x(t)) for all t > t0. Therefore, by the comparison theorem we have
x(t) ≤ X(t) for all t ∈ [t0, ω), where X(t) is the solution of the equation (3.2) with
X(t0) = x(t0) and ω is the right maximal interval of the existence of the solution
(x(t), y(t)). This inequality and the boundedness of X(t) on [t0,+∞) (by Lemma

3.2) imply that x(t) is bounded from above. Therefore,
h2(t, x(t))

k2(t, x(t), y(t))
is bounded

from above by a constant M . Hence, ẏ(t) = y(t)
(
g2(t, y(t)) +

h2(t, x(t))
k2(t, x(t), y(t))

)
≤

y(t)(g(t, 0) + M). This relation says that y(t) is not exploded. Therefore, any
solution of the system (1.1) with x(t0) = x0 > 0, y(t0) = y0 > 0 is defined on
[t0,∞). �

Lemma 3.4. Let (H1), (H2), (H3) and (H4) hold. Then the characteristic mul-
tipliers of the linear variational system corresponding to the trivial solution of the
system (1.1) have moduli different from 1.

Proof. The linear variational system at O(0, 0) of the system (1.1) is

(3.3)
ż1 = g1(t, 0)z1,

ż2 = g2(t, 0)z2.

Let Z(t) be the matrix solution of the system (3.3) with Z(0) = I− the identity
matrix. Then

Z(t) = diag
(

exp {
∫ t

0
g1(s, 0)ds}, exp {

∫ t

0
g2(s, 0)ds}

)
.
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Thus, two eigenvalues of Z(T ) are

λ1 = exp {
∫ T

0
g1(s, 0)ds} > 1 (by (H1)),

λ2 = exp {
∫ T

0
g2(s, 0)ds} < 1 (by (H2)).

�

Lemma 3.5. Let (H1), (H2), (H3) and (H4) hold. If

(3.4)

T∫
0

[
g2(t, 0) +

h2(t,X0(t))
k2(t,X0(t), 0)

]
dt 6= 0,

where X0(t) is the unique positive T−periodic solution of the equation (3.2), then
the characteristic multipliers of the linear variational system corresponding to the
T−periodic solution (X0(t), 0) of the system (1.1) have moduli different from 1.

Proof. The linear variational system corresponding to the T−periodic solution
(X0(t), 0) of the system (1.1) is

(3.5)
ż1 = [g1(t,X0(t)) + g

′
1x(t,X0(t))X0(t)]z1 −

h′1y(t, 0)X0(t)
k1(t,X0(t), 0)

z2,

ż2 = [g2(t, 0) +
h2(t,X0(t))
k2(t,X0(t), 0)

]z2.

Let Z(t) be the matrix solution of the system (3.5) with Z(0) = I. Some entries
of Z(t) are

z11 = exp {
t∫

0

[
g1(s,X0(s)) + g′1x(s,X0(s))X0(s)

]
ds},

z21 = 0, z22 = exp {
t∫

0

[
g2(s, 0) +

h2(s,X0(s))
k2(s,X0(s), 0)

]
ds}.

Hence, two eigenvalues of Z(T ) are

λ1 = exp {
T∫

0

[
g1(s,X0(s)) + g′1x(s,X0(s))X0(s)

]
ds},

λ2 = exp {
T∫

0

[
g2(s, 0) +

h2(s,X0(s))
k2(s,X0(s), 0)

]
ds}.

According to (3.4), we have |λ2| 6= 1. Since X0(t) is a T−periodic solution of the

equation (3.2),
T∫
0

g1(t,X0(t))dt = 0. Thus, since g1(t, x) is strictly decreasing in

x, λ1 = exp {
T∫
0

[
g′1x(s,X0(s))X0(s)

]
ds} < 1. �
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Theorem 3.6. Let (H1), (H2), (H3), (H4) and (H5) hold. Then the system (1.1)
is dissipative.

Proof. Let (x(t), y(t)) be a solution of the system (1.1) with initial condition
(x(t0), y(t0)) ∈ R2

+. Let 4 be a positive number such that 4 > max
0≤t≤T

X0(t),

where X0(t) is the unique positive T−periodic solution of the equation (3.2).
Clearly that ẋ(t) ≤ x(t)g1(t, x(t)) for t ≥ t0. By the comparison theorem, we
can conclude that x(t) ≤ X(t) for all t ≥ t0, where X(t) is the solution of the
equation (3.2) with X(t0) = x(t0). By Lemma 3.2, there exists t1 > t0 such that
x(t) < 4 for all t ≥ t1. By (H5), we now consider the following two cases:
Case 1: lim

y→+∞
{ sup
t∈[0,T ]

g2(t, y)} = −∞.

Then

ẏ(t) ≤ y(t)
[
g2(t, y(t)) +

h2(t,4)
k2(t, 0, 0)

]
for t ≥ t1.

There exist positive numbers M and α such that g2(t,M) +
h2(t,4)
k2(t, 0, 0)

< −α for

all t ∈ [0, T ]. Thus, ẏ(t) ≤ −αy(t) for all t ≥ t1 whenever y(t) ≥ M . Hence,
lim sup
t→+∞

y(t) ≤M .

Case 2: lim
y→+∞

{ inf
t∈[0,T ]

k2(t, 0, y)} = +∞.

Let ḡ2 = 1
T

T∫
0

g2(s, 0)ds. Then −ḡ2t +
t∫
0

g2(s, 0)ds is T−periodic. By the change

of variables y(t) = u(t) exp{−ḡ2t+
t∫
0

g2(s, 0)ds}, from the system (1.1), we obtain

u̇ = u[ḡ2 − g2(t, 0) + g̃2(t, u) +
h2(t, x)
k̃2(t, x, u)

],

where

g̃2(t, u) = g2(t, u exp{−ḡ2t+

t∫
0

g2(s, 0)ds})

and

k̃2(t, x, u) = k2(t, x, u exp{−ḡ2t+

t∫
0

g2(s, 0)ds}).

This implies that

u̇(t) ≤ u(t)[ḡ2 +
h2(t,4)
k̃2(t, 0, u)

] for t ≥ t1.

Since lim
u→+∞

{ inf
t∈[0,T ]

k̃2(t, 0, u)} = +∞ and ḡ2 < 0, there exist positive numbers M

and γ such that ḡ2 +
h2(t,4)
k̃2(t, 0,M)

< −γ for all t ∈ [0, T ]. Thus, u̇(t) ≤ −γu for all
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t ≥ t1 whenever u ≥M . This implies lim sup
t→+∞

u(t) ≤M . Hence

lim sup
t→+∞

y(t) ≤ M̄ := max
t∈[0,T ]

M exp{−ḡ2t+

t∫
0

g2(s, 0)ds}.

The lemma is proved. �

Theorem 3.7. Let (H1), (H2), (H3), (H4) and (H5) hold. If

(3.6)

T∫
0

[
g2(t, 0) +

h2(t,X0(t)
k2(t,X0(t), 0)

]
dt > 0,

where X0(t) is the unique positive T−periodic solution of the equation (3.2),
then the system (1.1) is permanent. Moreover, the system (1.1) has at least one
positive T−periodic solution, whose components are strictly positive.

Proof. By Theorem 3.6, the system (1.1) is dissipative. We need to show that
the system (1.1) is uniformly persistent. By Lemma 3.3, the system (1.1) satisfies
hypothesis (F). By Theorem 2.5, it is enough to show that for each τ ∈ [0, T ],
H(τ) is uniformly persistent. Let Qτ = (X0(τ), 0). It is easy to see that
H(τ)(∂R2

+) ⊂ ∂R2
+ and H(τ)(int R2

+) ⊂ int R2
+. On the other hand, H(τ) is

dissipative (by Theorem 3.6), thus H(τ) satisfies hypothesis (i) in Theorem 2.6.
Furthermore, by Lemmas 3.1 and 3.2, Ω(H(τ)|∂R2

+
) = {0, Qτ}. It follows from

Lemmas 3.4 and 3.5 that {0} and {Qτ} are isolated invariant sets under H(τ).
Thus Π = {{0}, {Qτ}} is an isolated covering of H(τ)|∂R2

+
. By Lemma 3.2, Π is

acyclic. Thus, H(τ) satisfies hypothesis (ii) in Theorem 2.6. We shall prove that
H(τ) satisfies hypothesis (H) of Theorem 2.6.

Suppose in the contrary that it is false. Then at least one of the following two
cases is met:

(a) There exists {Hn(τ)u}+∞n=0 ⊂ int(R2
+) such that lim

n→+∞
‖Hn(τ)u‖ = 0;

(b) There exists {Hn(τ)u}+∞n=0 ⊂ int(R2
+) such that lim

n→+∞
‖Hn(τ)u−Qτ‖ = 0.

If (a) holds, then by Arzela-Ascoli theorem, the sequence of continuous functions
{x(t+τ+nT ), y(t+τ+nT )}+∞n=0 on [0, T ] converges uniformly to (0, 0) as n→ +∞,
where (x(t), y(t)) is the solution of the system (1.1) with (x(τ), y(τ)) = u. This
implies that lim

t→+∞
(x(t), y(t)) = (0, 0). By (H1), (H3) and (H4), there exists a

positive number ε such that
T∫

0

[
g1(t, ε)− h1(t, ε)

k1(t, 0, 0)

]
dt > 0.

Let t1 be a number (t1 ≥ τ) such that x(t) < ε, y(t) < ε for all t > t1. Then

ẋ(t) ≥ x(t)
[
g1(t, ε)− h1(t, ε)

k1(t, 0, 0)

]
for t > t1.
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This implies that

x(t) ≥ x(t1) exp

t∫
t1

[
g1(s, ε)− h1(s, ε)

k1(s, 0, 0)

]
ds for t > t1.

Hence, lim
t→+∞

x(t) = +∞. This contradicts the fact that lim
t→+∞

x(t) = 0. Thus,

(a) cannot happen.
If (b) holds, then by the same argument as given above, we can conclude that

lim
t→+∞

|x(t) −X0(t)| = 0 and lim
t→+∞

y(t) = 0, where (x(t), y(t)) is the solution of

the system (1.1) with (x(τ), y(τ)) = u. By (3.6), there exists a positive number
ε such that

T∫
0

[
g2(t, ε) +

h2(t,X0(t)− ε)
k2(t,X0(t) + ε, ε)

]
dt > 0.

Let t1 be a number (t1 ≥ τ) such that X0(t)− ε < x(t) < X0(t) + ε and y(t) < ε
for all t ≥ t1. Then

ẏ(t) ≥ y(t)
[
g2(t, ε) +

h2(t,X0(t)− ε)
k2(t,X0(t) + ε, ε)

]
for t ≥ t1.

Thus,

y(t) ≥ y(t1) exp

t∫
t1

[
g2(s, ε) +

h2(s,X0(s)− ε)
k2(s,X0(s) + ε, ε)

]
ds for t ≥ t1.

This implies lim
t→+∞

y(t) = +∞, which contradicts lim
t→+∞

y(t) = 0. Thus, case (b)

does not happen. Hence, for each τ ∈ [0, T ], H(τ) is uniformly persistent. By
Theorem 2.5, the system (1.1) is uniformly persistent. Thus, the system (1.1) is
permanent.

SinceH(0) is permanent, it follows from Theorem 2.7 thatH(0) has at least one
equilibrium (x∗0, y

∗
0) in int R2

+. It is easy to see that (x0(t), y0(t)) = G(t, 0)(x∗0, y
∗
0)

is a T -periodic solution of the system (1.1). Since the system (1.1) is uniformly
persistent, it follows that (x0(t), y0(t)) ∈ int Rm

+ for all t ∈ R. The theorem is
proved. �

The following two theorems are extinction results for the predator.

Theorem 3.8. Let (H1), (H2), (H3) and (H4) hold. If

(3.7)

T∫
0

[
g2(t, 0) +

h2(t,X0(t))
k2(t, 0, 0)

]
dt < 0,

then lim
t→+∞

y(t) = 0 for any solution (x(t), y(t)) of the system (1.1) with x(t0) > 0

and y(t0) > 0.
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Proof. By (3.7), there exists a positive number ε such that

T∫
0

[
g2(t, 0) +

h2(t,X0(t) + ε)
k2(t, 0, 0)

]
dt < 0.

Let (x(t), y(t)) be a solution of the system (1.1) with x(t0) > 0, y(t0) > 0. We
have ẋ(t) ≤ x(t)g1(t, x(t)) for all t ≥ t0. By the comparison theorem, it follows
that x(t) ≤ X(t) for all t ≥ t0, where X(t) is the solution of the equation (3.2)
with X(t0) = x(t0). By Lemma 3.2, there exists t1 > t0 such that x(t0) <
X0(t) + ε for all t ≥ t1. Therefore,

ẏ(t) ≤ y(t)
[
g2(t, 0) +

h2(t,X0(t) + ε)
k2(t, 0, 0)

]
for t ≥ t1.

This implies that

y(t) ≤ y(t1) exp

t∫
t1

[
g2(s, 0) +

h2(s,X0(s) + ε)
k2(s, 0, 0)

]
ds for t ≥ t1.

Thus, lim
t→+∞

y(t) = 0. �

Theorem 3.9. Let (H1), (H2), (H3) and (H4) hold. If

(3.8)

T∫
0

[
g2(t, 0) +

h2(t,X0(t))
k2(t,X0(t), 0)

]
dt < 0

and

(3.9)
h2(t, x)
k2(t, x, 0)

is non-decreasing in x,

then lim
t→+∞

y(t) = 0 for any solution (x(t), y(t)) of the system (1.1) with x(t0) > 0

and y(t0) > 0.

Proof. By (3.8) and (3.9), there exists a positive number ε such that

T∫
0

[
g2(t, 0) +

h2(t,X0(t) + ε)
k2(t,X0(t) + ε, 0)

]
dt < 0.

By the same argument as given in the proof of Theorem 3.8, we can conclude
that lim

t→+∞
y(t) = 0. �

Remark 3.10. Hypothesis (3.9) is adapted to the real life of populations, since
the quantity of prey population x is increasing then it makes itself useful about
the development of predator y.
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Consider a special case of the system (1.1), where the right hand side does not
depend on t, i.e., g1(t, x) = g∗1(x), g2(t, y) = g∗(y), h1(t, y) = h∗1(y), h2(t, x) =
h∗2(x), k1(t, x, y) = k∗1(x, y) and k2(t, x, y) = k∗2(x, y):

(3.10)
ẋ = x

[
g∗1(x)− h∗1(y)

k∗1(x, y)

]
,

ẏ = y

[
g∗2(y) +

h∗2(x)
k∗2(x, y)

]
.

Corollary 3.11. Suppose that
(H1*) g∗1(x) is strictly decreasing; there exists a positive numbers K such that

g∗1(K) < 0 and g∗1(0) > 0,
(H2*) g∗2(y) is non-increasing and g∗2(0) < 0,
(H3*) h∗i is non-decreasing and h∗i (0) = 0 (i = 1, 2),
(H4*) k∗i (0, 0) > 0 and k∗i (x, y) is non-decreasing in each x and y variable (i =

1, 2),
(H5*) lim

y→+∞
[k∗2(0, y)− g∗2(y)] = +∞.

If

(3.11) g∗2(0) +
h∗2(X0)
k∗2(X0, 0)

> 0,

where X0 is a unique positive solution of the equation g∗1(X) = 0, then the sys-
tem (3.10) is permanent. Moreover, the system (3.10) has at least one positive
equilibrium.

Proof. By Theorem 3.7, (3.10) is permanent. Thus, the system (3.10) has at
least one positive equilibrium (the permanence implies the existence of a positive
equilibrium; see [9]). �

Consider the following system, which is a special case of the system (1.1):

(3.12)
ẋ = x

[
a1(t)− b1(t)x− c1(t)y

p1(t) + q1(t)x+ r1(t)y

]
,

ẏ = y

[
−a2(t)− b2(t)y − c2(t)x

p2(t) + q2(t)x+ r2(t)y

]
,

where ai, bi, ci, pi, qi, ri : R → R (i = 1, 2) are continuous and T−periodic.
By Theorem 3.7, one can easily reach the following corollary:

Corollary 3.12. Suppose that

(H1**) b1(t) > 0 for all t ∈ [0, T ] and
T∫
0

a1(t)dt > 0,

(H2**) b2(t) ≥ 0 for all t ∈ [0, T ] and
T∫
0

a2(t)dt > 0,

(H3**) ci(t) ≥ 0 (i = 1, 2) for all t ∈ [0, T ],
(H4**) pi(t) > 0, qi(t) ≥ 0, ri(t) ≥ 0 (i = 1, 2) for all t ∈ [0, T ] and
(H5**) r2(t) > 0 for all t ∈ [0, T ] or b2(t) > 0 for all t ∈ [0, T ].
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If

(3.13)

T∫
0

(
−a2(t) +

c2(t)X0(t)
p2(t) + q2(t)X0(t)

)
dt > 0,

where X0(t) is the unique positive T−periodic solution of ẋ = x[a1(t) − b1(t)x],
then the system (3.12) is permanent. Moreover, the system (3.12) has at least
one positive T−periodic solution, whose components are strictly positive.

Remark 3.13. In [2], the authors considered the system (3.10) with g∗1 = 1 −
x, g∗2 = −D, h∗1 = Ay, h∗2 = Ex, and k∗1 = k∗2 = 1 +Bx+ Cy, i.e., the following
system

(3.14)
ẋ = x

[
1− x− Ay

1 +Bx+ Cy

]
,

ẏ = y

[
−D +

Ex

1 +Bx+ Cy

]
,

where A, B, C and D are positive constants. It is easy to see that hypotheses
(H1*)-(H5*) are satisfied. Furthermore, condition (3.11) becomes the inequality
E > (B + 1)D. Thus, from Corollary 3.11, we obtain the sufficient condition for
the permanence of the system (3.14) which was given in [2].

In [4], the system (3.10) was considered with g∗1 = a1 − b1x, g
∗
2 = −a2 −

b2y, h
∗
1 = c1y, h

∗
2 = c2x and k∗1 = k∗2 = p+qx+y, where ai, bi, ci (i = 1, 2), p and q

are positive constants. It is easy to see that Hypotheses (H1*)-(H5*) are satisfied
and X0 =

a1

b1
. Hence, condition (3.11) becomes the inequality −a2 +

a1c2
b1p+ a1q

>

0. This inequality is the sufficient condition for the permanence of the system
(3.10) which was given in [4].

Finally, we present an example to illustrate our result in non-autonomous cases.
Example. Consider the system

(3.15)
ẋ = x

[
1− (

3
2

+ cos t)x− (1 + cos2 t)y
1 + x+ (2 + sin t)y

]
,

ẏ = y

[
−1

2
+ cos t− y cos2 t+

(2 + cos2 t)x
2[1 + x+ (2 + sin t)y]

]
.

It is easy to see that the system (3.15) satisfies Hypotheses (H1**)-(H5**). More-

over, X0(t) =
2

3 + cos t+ sin t
is the unique positive T−periodic solution of the

equation ẋ = x

[
1− (

3
2

+ cos t)x
]
. Condition (3.13) is satisfied, since

2π∫
0

(
−1

2
+ cos t+

2 + cos2 t

5 + cos t+ sin t

)
dt = −π +

5
23

√
23π > 0.

By Corollary 3.12, the system (3.15) is permanent and it has at least one T−periodic
solution, whose components are strictly positive.
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We illustrate the behavior of numerical solutions of the system (3.15) by Fig.1
The behavior of the solutions of the system (3.15) for two initial values:

the dash line shows the trajectory of the solution (x1(t), y1(t)) with (x1(0) =
1, y1(0) = 0.3), the solid line corresponds to the solution (x2(t), y2(t)) with
(x2(0) = 0.4, y2(0) = 0.05).

Figure 1. The behavior of solutions of the system (3.15) for two
initial values.
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