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CONSTRUCTION OF IRREDUCIBLE REPRESENTATIONS OF

THE QUANTUM SUPER GROUP GLq(3|1)

NGUYEN THI PHUONG DUNG, PHUNG HO HAI, AND NGUYEN HUY HUNG

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. In this note, we construct all irreducible representations of the
quantum general linear super group GLq(3|1) using the double Koszul com-
plex.

1. Introduction

A quantum general linear super group is understood as a Hopf super algebra
determined in terms of a Hecke symmetry R on a super vector space V of finite
dimension. A representation of such a quantum group is nothing but a comodule
on the corresponding Hopf super algebra.

The main invariant of a Hecke symmetry is its birank. It is shown in [7] that
the category of representations of this quantum group is uniquely determined
up to braided monoidal equivalence by the birank of the Hecke symmetry R,
provided that the quantum parameter q is not a root of unity of order larger
than 1. Therefore, the quantum general linear super group associated to a Hecke
symmetry of birank (r, s) is denoted simply by GLq(r|s).

An explicit construction of irreducible representations, i.e. simple comodules
over the associated Hopf super algebra, is however not known. Actually, such a
construction is not known even in the classical situation of the Lie super algebras
gl(m|n). The difficulty lies in the so called atypical representations.

Some particular cases of lower biranks (1|1) and (2|1) are treated in [5, 1].
Recently, an explicit construction of irreducible representations of gl(3|1) was
obtained in [2] using the so called double Koszul complex. In this work, this
construction will be extended to the case of quantum general linear super group
GLq(3|1). To show that the representations obtained are indeed irreducible and
furnish all irreducible representations we use a result of [17] on the perfect par-
ing between GLq(r|s) and Uq(gl(r|s)) as well as the character formula for these
representations.
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2. The quantum general linear supergroup

Let V be a super vector space of finite dimension over k, an algebraically closed
field of characteristic zero. Fix a homogeneous basis x1, x2, . . . , xd of V . We shall
denote the parity of the basis element xi by î. An even operator R on V ⊗V can
be given by a matrix Rkl

ij :

R(xi ⊗ xj) = xk ⊗ xlR
kl
ij .

R is an even operator implies that the matrix elements Rij
kl are zero, except for

those with î + ĵ = k̂ + l̂. R is called Hecke symmetry if the following conditions
are satisfied:

i) R satisfies the Yang-Baxter equation R1R2R1 = R2R1R2, where R1 :=
R ⊗ I, R2 := I ⊗ R, I denotes the identity matrix of degree d.

ii) R satisfies the Hecke equation (R − q)(R + 1) = 0 for some q which will
be assumed not to be a root of unity of order larger than 1.

iii) There exists a matrix P kl
ij such that P im

jn Rnk
ml = δi

lδ
k
j .

Example. The following main example of Hecke symmetries was first considered
by Manin [13]. Assume that the variables xi, i ≤ r are even and the rest s = d−r
variables are odd. Define, for 1 ≤ i, j, k, l ≤ r + s,

R(r|s)kl

ij :=























q2 if i = j = k = l, î = 0

−1 if i = j = k = l, î = 1
q2 − 1 if k = i < j = l

(−1)îĵq if k = j 6= i = l
0 otherwise.

The Hecke equation for R(r|s) is (x − q2)(x + 1) = 0. When q = 1, R(r|s) reduces
to the super-permuting operator on V ⊗ V .

Let {zi
j , t

i
j|1 ≤ i, j ≤ d} be a set of variables, where the parities of xi

j and tij
are î + ĵ.

The super algebra ER is defined to be the quotient algebra of the free non-
commutative algebra on the generators {zi

j |1 ≤ i, j ≤ d}, by the relations

(−1)ŝ(̂i+p̂)Rkl
psz

p
i zs

j = (−1)l̂(q̂+k̂)zk
q zl

nRqn
ij , 1 ≤ i, j, k, l ≤ d.(1)

Here, we use the convention of summing up over the indices that appear in both
lower and upper places.

The super algebra HR is defined to be the quotient of the free non-commutative
algebra generated by {zi

j , t
i
j |1 ≤ i, j ≤ d}, by the relations

(−1)ŝ(̂i+p̂)Rkl
psz

p
i zS

j = (−1)l̂(q̂+k̂)zk
q zl

nRqn
ij , 1 ≤ i, j, k, l ≤ d,(2)

(−1)ĵ(ĵ+k̂)zi
jt

j
k = (−1)l̂(l̂+î)tilz

l
k = δi

k, 1 ≤ i, k ≤ d.(3)

The super algebra ER is a super bialgebra with the coproduct given by

∆(zi
j) = zi

k ⊗ zk
j , ∆(tij) = tkj ⊗ tik.
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The super algebra HR is a Hopf super algebra with the coproduct given by

∆(zi
j) = zi

k ⊗ zk
j , ∆(tij) = tkj ⊗ tik,

and the antipode given by

S(zi
j) = (−1)ĵ (̂i+ĵ)tij, S(tij) = (−1)î(̂i+ĵ)Ci

kz
k
l C−1l

j ,

where Ci
j := P il

jl . See [6] for details.

The super bialgebra ER is called the (function algebra on a) quantum matrix
super semigroup Mq(r|s). The Hopf super algebra HR is called the (function

algebra on a) quantum general linear group GLq(r|s). When R = R(r|s) the
associated Hopf super algebra is called the (function algebra on the) standard

quantum general linear super group GLq(r|s). Note that R(r|s) has birank (r, s).
The Hecke algebra of type A, Hn = Hn,q is generated by elements Ti, 1 ≤ i ≤

n − 1, subject to the relations

TiTj = TjTi, |i − j| ≥ 2;
TiTi+1Ti = Ti+1TiTi+1;
T 2

i = (q − 1)Ti + q.

To each element w of the symmetric group Sn, one can associate in a canonical
way an element Tw of Hn, in particular, T1 = 1, T(i,i+1) = Ti. The set {Tw|w ∈
Sn} forms a k basis for Hn.

The operator R induces an action of the Hecke algebra Hn on the tensor powers
V ⊗n of V , ρn(Ti) = Ri := idi−1

V ⊗R⊗ idn−i−1
V . We shall therefore use the notation

Rw := ρ(Tw). On the other hand, ER coacts on V by δ(xi) = xj ⊗ zj
i . Since

ER is a bialgebra, it coacts on V ⊗n by means of its multiplication. With the
assumption that q is not a root of unity of order larger than 1, Hn is semi-simple
and we have the double centralizer theorem asserting that the action and coaction
mentioned here are centralizers of each other in Endk(V ⊗n) [6]. It follows that
ER-comodules are semi-simple and each simple ER-comodule is the image of the
operator induced by a primitive idempotent of Hn and, conversely, each primitive
idempotent of Hn induces an ER-comodule which is either zero or simple. Since
irreducible representations of Hn are parameterized by partitions of n, primitive
idempotents of Hn, up to conjugation, are parameterized by partitions of n, too.

For example, using the notation

[n] :=
qn − 1

q − 1
; [n]! := [1][2] . . . [n],

we have the (central) primitive idempotents

xn :=
1

[n]!

∑

w

Tw and yn :=
1

[n]!
qn(n−1)/2

∑

w

(−q)−l(w)Tw,

which induce the symmetrizing and anti-symmetrizing operators Xn, resp. Yn,
on V ⊗n. Let Sn := ImXn and ∧n := ImYn. One can show that Sn (resp. ∧n)
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is isomorphic to the n-th homogeneous component of the quadratic algebra S(V )
(resp. ∧(V )) defined as follows:

S ∼= T (V )/(Im(R − q)), (resp. ∧ ∼= T (V )/(Im(R + 1))),

(T (V ) denotes the tensor super algebra on V ). These algebras are called the
symmetric and exterior tensor algebras on a quantum super space.

By definition, the Poincaré series P∧(t) of ∧ is
∑∞

n=0 dimk(∧n)tn. It is proved
that this series is a rational function having only real negative roots and real
positive poles [4]. Let r be the number of its roots and s be the number of its
poles. Then simple ER-comodules are parameterized by hook-partitions from
Γrs

n := {λ ` n|λr+1 ≤ s} [6].
Simple HR-comodules are much more complicated. The main difficulty lies in

the fact that HR-comodules are not semi-simple. In [7] it is shown that, as a
braided monoidal category, the category of HR-comodules depends only on the
quantum parameter q and the birank of R. Thus the problem reduces to the
case of the standard deformation R(r|s). In this case the problem was studied by
R.B. Zhang et al. [15, 17], using the duality between HR(r|s) and Uq(gl(r|s)). The
problem of constructing all its simple comodules is still open. The aim of this
work is to treat this problem in the particular case, when R has birank (3, 1).

3. The double Koszul complex

3.1. The Koszul complex K. The Koszul complex K associated to R can be
defined as a collection of complexes Ka. The terms of Ka are indexed by pairs
(k, l) with k − l = a. Denote by db : k → V ⊗ V ∗ the map 1 7→ xi ⊗ ξi, where
(ξi) is the basis of V ∗, dual to the basis (xi) of V . The term Kk,l is ∧k ⊗ Sl

∗ and
the differential dk,l : ∧k ⊗ Sl

∗ → ∧k+1 ⊗ Sl+1
∗ is given by:

dk,l : ∧k ⊗Sl
∗ −→ V ⊗k ⊗V ∗⊗l id⊗db⊗id

−→ V ⊗k+1⊗V ∗⊗l+1 Yk+1⊗Xl+1
∗

−→ ∧k+1⊗Sl+1
∗,

where Xl, Yk are the q-symmetrizing operators introduced in Section 2. The
reader is referred to [3] for the proof that d is a differential.

Define the maps ∂k,l as follows:

∂k,l : ∧k+1 ⊗ Sl+1
∗ → V ⊗k+1 ⊗ V ∗⊗l+1

id⊗(evRV,V ∗ )⊗id

−→ V ⊗k ⊗ V ∗⊗l Yk⊗Xl
∗

→ ∧k ⊗ Sl
∗,

where ev : V ∗ ⊗ V → k is the evaluation map and RV,V ∗ : V ⊗ V ∗ → V ∗ ⊗ V
is the symmetry induced from R. In terms of the dual bases (xi) and (ξj) it is

given by xi ⊗ ξj 7→ ξk ⊗ xlP
jl
ik , thus evRV,V ∗(xi ⊗ ξj) = Ci

j.

One can show [3, 7] that ∂ is also a differential and satisfies

(4) q[l][k]d∂ + [l + 1][k + 1]∂d = qk([l − k] − [r − s])id

on Kk,l, where (r, s) is the birank of R. Consequently, the complex Ka is exact
if a 6= s − r. Further, it is shown that, for a = s − r, the complex Ka is exact
everywhere, except at the term Kr,s, where it has the one dimensional homology
group.
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3.2. The Koszul Complex L. There is another Koszul complex associated to
V , which was first defined by Priddy as a free resolution of the symmetric tensor
algebra of V (see [12]). As in the case of the complex K, the complex L is a
collection of complexes La. The complex La has (p, r)-term, with p + r = a,
Lp,r := Sp ⊗ ∧r and the differential Pp,r : Lp,r −→ Lp−1,r+1 given by

Pp,r : Sp ⊗∧r
� � // V ⊗p ⊗ V ⊗r

Xp−1⊗Yr+1// Sp−1 ⊗∧r+1 .

The complexes (La, P ), a ≥ 1, are exact. This is shown by considering the map
Qp,r : Lp−1,r+1 −→ Lp,r, given by

Qp,r : Sp−1 ⊗ ∧r+1
� � // V ⊗p−1 ⊗ V ⊗r+1

Xp⊗Yr // Sp ⊗ ∧r .

One checks [3] that on Lp,r

(5) [r][p + 1]PQ + [p][r + 1]QP = [p + r]id.

Remark 3.1. The differentials of both complexes are morphisms of HR-comodules.

3.3. The double Koszul complex. The two Koszul complexes mentioned in
the previous section can be combined into a double complex called the double
Koszul complex. For simplicity we shall use the dot “·” to denote the tensored
product. Fix an integer a. We arrange the Koszul complexes K−a, K−a−1,
K−a−2,. . . as follows.

K−a : 0 // Sa
∗

d0,a// ∧1 · Sa+1
∗

d1,a+1// ∧2 · Sa+2
∗

d2,a+2// ∧3 · Sa+3
∗ // . . .

K−a−1 : 0 // Sa+1
∗

d0,a+1// ∧1 · Sa+2
∗

d1,a+2// ∧2 · Sa+3
∗ // . . .

K−a−2 : 0 // Sa+2
∗

d0,a+2// ∧1 · Sa+3
∗ // . . .

Here Si and ∧i are set to 0 if i < 0. To get the entries on a column into
a complex we tensor each complex Ki with S−a−i, i.e. the complex K−1−a is
tensored with S1, the complex K−2−a is tensored with S2... Then each column
can be interpreted as the complexes Lj tensored with Sa+j

∗. Thus we have the
following diagram with all rows being the Koszul complexes K• tensored with S•
and columns are the Koszul complexes L• tensored with S•

∗:

(6) 0 0 0 0

0
//
Sa

∗

OO

d //
∧1 · Sa+1

∗

OO

d //
∧2 · Sa+2

∗

OO

d //
∧3 · Sa+3

∗

OO

d // . . .

0
//

OO

S1 · Sa+1
∗

d //
P

OO

S1 ·∧1 · Sa+2
∗

d //
P

OO

S1 ·∧2 · Sa+3
∗

d //
P

OO

. . .

0
//

OO

S2 · Sa+2
∗

d //
P

OO

S2 ·∧1 · Sa+3
∗

d //
P

OO

. . .

0

OO

...

OO
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A general square in diagram (6) has the form

(7) Si · ∧k · Sl
∗ id⊗d // Si · ∧k+1 · Sl+1

∗

Si+1 · ∧k−1 · Sl
∗

id⊗d
//

P⊗id

OO

Si+1 · ∧k · Sl+1
∗

P⊗id

OO

with l = i+ k +a. For convenience, we denote d := id⊗ d, P := P ⊗ id. It is easy
to show that Pd = dP for all these squares. Thus (6) is a bicomplex.

We also have an exact double Koszul complex with d, P replaced by ∂,Q.

(8) 0

���
�

0

���
�

0

���
�

0

���
�

0 oo
∂

___ Sa
∗

Q
���
�

oo
∂

___ ∧1 · Sa+1
∗

Q
���
�

oo
∂

____ ∧2 · Sa+2
∗

Q���
�

oo
∂

____ ∧3 · Sa+3
∗ oo

∂

____

Q���
�

. . .

0 oo
∂

____ S1 · Sa+1
∗ oo

∂

___

Q
���
�

S1 ·∧1 · Sa+2
∗ oo

∂

___

Q
���
�

S1 ·∧2 · Sa+3
∗ oo

∂

___

Q���
�

. . .

0 oo
∂

______ S2 · Sa+2
∗

���

�

oo
∂

____ S2 ·∧1 · Sa+3
∗

���
�

oo
∂

___

. . .

0 ...

From now on, we assume that R has birank (3, 1).
We combine the two diagrams (6) and (8) into one:

(9)

Si−1 · Sa+i−1
∗

� �
d0,a+i−1//oooo
∂0,a+i−1

___ Si−1 ·∧1 · Sa+i
∗

Q

�����
�

�

d1,a+i//oo
∂1,a+i

___ Si−1 ·∧2 · Sa+i+1
∗

Q

���
�

�

d2,a+i+1//oo
∂2,a+i+1

___ Si−1 ·∧3 · Sa+i+2
∗ · · ·

Q

���
�

�

Si.Sa+i
∗

?�

P

OO

� �
d0,a+i //oooo
∂0,a+i

_____ Si.∧1.Sa+i+1
∗

P

OO

d1,a+i+1//oo
∂1,a+i+1

____

Q

�����
�

�

Si ·∧2 · Sa+i+2
∗ · · ·

Q

���
�

�

P

OO

Si+1.Sa+i+1
∗

?�

P

OO

� �
d0,a+i+1//oooo
∂0,a+i+1

____

P

OO

Si+1 ·∧1 · Sa+i+2
∗ · · ·

P

OO

Proposition 3.2. Assume that the Hecke symmetry R has birank (3, 1). Then the
composed map ∂PQd : Si · Sa+i

∗ −→ Si · Sa+i
∗ in diagram (9) is an isomorphism

for all a, i with i, a + i ≥ 0. Consequently, Si · Sa
∗ is isomorphic to a direct

summand of Si+1 · Sa+1
∗. Moreover, this isomorphism is an isomorphism of

HR-comodules.

Proof. We will use induction on i to prove that the endomorphism ∂PQd : Si ·
Sa+i

∗ −→ Si · Sa+i
∗ is diagonalizable with the set of eigenvalues being equal to

(10) Ai :=
{([a + 2i + 1 − j] − [−2])[j]

[i + 1][a + i + 1]
, j = 1, 2, . . . , i + 1

}
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For i = 0, the map PQ : Sa
∗ −→ Sa

∗ is equal to idSa
∗ . Hence

g = ∂PQd =
[a] − [−2]

[a + 1]
id.

Assume that the claim holds true for i − 1. We have

h := ∂PQd =∂[
[i + 1] − [2][i]QP

[i + 1]
]d = ∂d −

[2][i]

[i + 1]
∂QPd

=∂d −
[2][i]

[i + 1]
Q

[q([a + i − 1] − [−2]) − [a + i]d∂]

[2][a + i + 1]
P

=∂d −
q[i][([a + i − 1] − [−2])]

[i + 1][a + i + 1]
QP +

[i][a + i]

[i + 1][a + i + 1]
Qd∂P

=
[[a + i] − [−2]

[a + i + 1]
−

q[i]([a + i − 1] − [−2]))

[i + 1][a + i + 1]

]

id+
[i][a + i]

[i + 1][a + i + 1]
Qd∂P.

By assumption ∂PQd : Si−1 · Sa−1
∗ −→ Si−1 · Sa−1

∗ is diagonalizable with eigen-
values in Ai−1,, in particular it is invertible. Thus the minimal polynomial P (X)
of this operator has no multiple root. It follows that the minimal polynomial of
the operator Qd∂P : Si ·Sa+i

∗ −→ Si ·Sa+i
∗ is just XP (X). Consequently Qd∂P

is diagonalizable with eigenvalues in Ai−1∪{0}. Thus ∂PQd : Si ·Sa
∗ −→ Si ·Sa

∗

is diagonalizable with the set of eigenvalues in Ai. �

Consider the diagram in (6) as an exact sequence of horizontal complexes
(except for the first column) and split it into short exact sequences.
(11)

. . . KerPi,k · Si+k+a
∗

d′

k,i+k+a//

Q

���
�

�

KerPi,k+1 · Si+k+a+1
∗

Q

���
�

�

d′

k+1,i+k+a+1// KerPi,k+2 · Si+k+a+2
∗ . . .

Q

���
�

�

. . . Si+1 ·∧k−1 · Si+k+a
∗

Q

���
�

�

Pi+1,k−1

OOOO

dk−1,i+k+a//
Si+1 · ∧k · Si+k+a+1

∗

Q

���
�

�

Pi+1,k

OOOO

dk,i+k+a+1//
Si+1 · ∧k+1 · Si+k+a+2

∗ . . .

Pi+1,k+1

OOOO

Q

���
�

�

. . .KerPi+1,k−1 · Si+k+a
∗

d′

k−1,i+k+a//?�

i

OO

KerPi+1,k · Si+k+a+1
∗

d′

k,i+k+a+1//?�

i

OO

KerPi+1,k+1 · Si+k+a+2
∗ . . .

?�

i

OO

where d′k,i+k+a is the restriction of dk,i+k+a to KerPi,k · Si+k+a
∗. Notice that

KerPi,j = ImPi+1,j−1 for all i ≥ 0.
Consider the following part of (11) for i, k ≥ 1:

(12) Si ·∧k+1 · Sa+i+k+1
∗ //

���
�

�

·Si ·∧k+2 · Sa+i+k+2
∗

oo_ _ _

���
�

�

KerPi,k+1 · Sa+i+k+1
∗ //

?�

OO

Q

���
�

�

KerPi,k+2 · Sa+i+k+2
∗

?�

OO

���
�

�

oo_ _ _

Si+1 · ∧k · Sa+i+k+1
∗

d //

P

OOOO

Si+1 · ∧k+1 · Sa+i+k+2
∗

OOOO

∂
oo_ _ _
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Proposition 3.3. Assume that the Hecke symmetry R has birank (3, 1). Then
for i ≥ 0, k ≥ 1, a + i + k + 1 ≥ 0 the composed map

P∂dQ : KerPi,k+1 · Sa+i+k+1
∗ −→ KerPi,k+1 · Sa+i+k+1

∗

in diagram (12) is an isomorphism. Consequently KerPi,k+1 · Sa+i+k+1
∗ is iso-

morphic to a direct summand of Si+1 · Imdk,a+i+k+1. Moreover the isomorphism
is an isomorphism of HR-comodules.

Proof. We assume first that a ≥ 0, the case a < 0 is treated similarly but a bit
more tedious. We use induction to prove that

P∂dQ : KerPi,k+1 · Sa+i+k+1
∗ −→ KerPi,k+1 · Sa+i+k+1

∗

is diagonalizable with eigenvalues

Ai :=
{qk([a + k + 2i − j + 2] − [−2])[j]

[i + 1][k + 1]2[a + i + k + 2]
, j = 1, 2, . . . , i + 1, i + k + 1

}

.

For i = 0, consider the following part of (12):

∧k · Sa+k
∗

d
//

Q

���
�

�

∧k+1 · Sa+k+1
∗

∂oo_ _ _ _ _

d
//

Q

���
�

�

·∧k+2 · Sa+k+2
∗

Q

���
�

�

∂oo_ _ _ _

S1 ·∧k−1 · Sa+k
∗

d
//

P

OOOO

S1 · ∧k · Sa+k+1
∗

d
//

P

OOOO

∂oo_ _ _

S1 · ∧k+1 · Sa+k+2
∗

P

OOOO

∂oo_ _ _

and the composed map P∂dQ : ∧k+1 · Sa+k+1
∗ −→ ∧k+1 · Sa+k+1

∗. By means of
formulas (4) and (5) we have

P∂dQ = P
[qk([a + 1] − [−2]) − [k][a + k + 1]d∂]

[k + 1][a + k + 2]
Q

=
qk([a + 1] − [−2])

[k + 1][a + k + 2]
id −

[k][a + k + 1]

[k + 1][a + k + 2]
d∂.

Since d∂ is diagonalizable with eigenvalues 0 and [a]−[−2]
[k+1][a+k+1] , P∂dQ is diagonal-

izable with the set of eigenvalues

A0 :=
{qk[k + 1]([a + 1] − [−2])

[k + 1]2[a + k + 2]
,
qk([a + k + 1] − [−2])

[k + 1]2[a + k + 2]

}

.

For i = 1, consider diagram (12) with i = 1 and the map P∂dQ : KerP1,k+1 ·
Sa+k+2

∗ −→ KerP1,k+1 · Sa+k+2
∗, we have
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P∂dQ =P
[qk([a + 2] − [−2]) − q[k][a + k + 2]d∂]

[k + 1][a + k + 3]
Q

=
qk([a + 2] − [−2])

[k + 1][a + k + 3]
PQ −

q[k][a + k + 2]

[k + 1][a + k + 3]
dPQ∂

=
qk([a + 2] − [−2])[k + 2]

[2][k + 1]2[a + k + 3]
id −

q[k][a + k + 2]

[k + 1][a + k + 3]
d[

[k + 1] − [k + 1]QP

[2][k]
]∂

=
qk([a + 2] − [−2])[k + 2]

[2][k + 1]2[a + k + 3]
id −

q[a + k + 2]

[2][a + k + 3]
d∂ +

q[a + k + 2]

[2][a + k + 3]
dQP∂·

We have d∂ : S1 ·∧·Sa+k+2
∗ −→ S1 ·∧ ·Sa+k+2

∗ is diagonalizable with eigenvalues

qk+1([a + 1] − [−2])

q[k + 1][a + k + 2]
and 0.

On the other hand, we have d∂ · dQP∂ = dQP∂ · d∂ and if d∂(x) = 0, then
dQP∂(x) = 0. Therefore, the eigenvalues of P∂dQ : KerP1,k+1 · Sa+k+2

∗ −→
KerP1,k+1 · Sa+k+2

∗ are in the set

A1 :=
{qk([a + 2] − [−2])[k + 2]

[2][k + 1]2[a + k + 3]
,
qk([a + k + 3] − [−2])

[2][k + 1]2[a + k + 3]
,
qk[2]([a + k + 2 − [−2])

[2][k + 1]2[a + k + 3]

}

.

In general, consider the composed map

P∂dQ : KerPi,k+1 · Sa+i+k+1
∗ −→ KerPi,k+1 · Sa+i+k+1

∗

in diagram (12), we have

P∂dQ =P

[

qk([a + i + 1] − [−2]) − q[k][a + i + k + 1]d∂

[k + 1][a + i + k + 2]

]

Q

=
qk([a + i + 1] − [−2])PQ

[k + 1][a + i + k + 2]
−

q[k][a + i + k + 1]dPQ

[k + 1][a + i + k + 2]
∂

=
qk([a + i + 1] − [−2])[i + k + 1]id

[k + 1]2[i + 1][a + i + k + 2]

−
q[k][a + i + k + 1]d

[k + 1][a + i + k + 2]
·
([i + k] − [i][k + 1]QP )∂

[k][i + 1]

=
qk([a + i + 1] − [−2])[i + k + 1]id

[k + 1]2[i + 1][a + i + k + 2]
−

q[i + k][a + i + k + 1]d∂

[k + 1][i + 1][a + i + k + 2]

+
q[i][a + i + k + 1]dQP∂

[i + 1][a + i + k + 2]
.

One has d∂ is diagonalizable with the set of eigenvalues
{

qk([a + i] − [−2])

[k + 1][a + i + k + 1]
, 0

}

.
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We have d∂ ◦ dQP∂ = dQP∂ ◦ d∂ and if d∂(x) = 0, then dQP∂(x) = 0. By
induction assumption P∂dQ : KerPi−1,k+1 · Sa+i+k

∗ −→ KerPi−1,k+1 · Sa+i+k
∗ is

diagonalizable with eigenvalues in the set Ai−1. Thus the composed map

dQP∂ : KerPi,k+1 · Sa+i+k+1
∗ −→ KerPi,k+1 · Sa+i+k+1

∗

is diagonalizable with the set of eigenvalues is Ai. The proof is complete. �

4. Construction of irreducible representations of GLq(V ).

Let R : V ⊗ V → V ⊗ V be a Hecke symmetry with birank (3, 1). Using the
double Koszul complex, we will construct in this section for each (integrable)
dominant weight, i.e. a quadruple (m,n, p, t) of integers, with m ≥ n ≥ p, a
comodule I(m,n, p|t) of HR. The proof that these comodules are simple and
furnish all simple HR-comodules will be given in the next section.

Recall that the complex K2 is exact everywhere, except at the term K3,1, where
the homology is one dimensional. Denote this comodule by I(1, 1, 1|1).

For a dominant weight (m,n, p|t) set

I(m,n, p|t) := I(m − t, n − t, p − t|0) ⊗ I(1, 1, 1|1)⊗t.

Thus one is led to construct I(m,n, p|0).

First, recall from Section 2 that each partition λ ∈ Γ3|1 defines a simple HR-
comodules. Denote it by Mλ. Such a partition λ has the form (λ1, λ2, λ3, 1

λ4).
For a weight (m,n, p|0) with p ≥ 0 set

(13) I(m,n, p|0) := M(m,n,p).

Further, for such a dominant weight with p ≥ 1 we set

(14) I(−p − 2,−n − 2,−m − 2|0) := I(m,n, p|0)∗ ⊗ I(1, 1, 1|1)∗⊗3

and for a dominant weight of type (m,n, 0|0) we set

(15) I(−2,−n − 1,−m − 1|0) := I(m,n, 0|0)∗ ⊗ I(1, 1, 1|1)∗⊗2 .

Finally we set

(16) I(−1,−1,−m|0) := I(m, 0, 0|0)∗ ⊗ I(1, 1, 1|1)∗⊗1 .

The reason for the choice of the weight on the left hand side above will be ex-
plained in the next section when we compute the character.

4.1. Comodules constructed from complex K. Consider complexes Ka,
with a := k − l 6= 2.

Ka : . . . −→ ∧k−1 ⊗ Sl−1
∗ −→ ∧k ⊗ Sl

∗ −→ ∧k+1 ⊗ Sl+1
∗ −→ . . .

By using the exactness of the complex K we will construct a class of irreducible
representations of GLq(3|1). According to (4) we have

(17) ∧k.Sl
∗ ∼= Imdk−1,l−1 ⊕ Imdk,l.

For a dominant weight (m,m, p|0) with m ≥ 0 > p, set

(18) I(m,m, p|0) := Imdm+2,m−p ⊗ I(1, 1, 1|1)⊗m−1 ,
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and

(19) I(−2 − p,−m − 2,−m − 2|0) := I(m,m, p|0)∗ ⊗ I(1, 1, 1|1)∗⊗3 .

4.2. Comodules constructed from the double Koszul complex. From
Proposition 3.2, for any i, a with i, a + i ≥ 0, there exists Xi,a such that

Si+1.Sa+i+1
∗ = Si.Sa+i

∗ ⊕ Xi,a.

For any dominant weight (m,−1, p|0) with m ≥ 0 (and p ≤ −1), set

(20) I(m,−1, p|0) = Xm,−m−p−1 ⊗ I(1, 1, 1|1)∗ .

According to Proposition 3.3, there exists a comodule Yi,k,a such that, for i, k, a
with k ≥ 1, i, a + i + k + 1 ≥ 0,

KerPi,k+1 ⊗ Sa+i+k+1
∗ ⊕ Yi,k,a

∼= Si+1 ⊗ Imdk,a+i+k+1.

For a dominant weight (m,n, p|0) with m > n ≥ 0 > p, set

(21) I(m,n, p|0) = Ym−n−1,n+2,n−m−p−2 ⊗ I(1, 1, 1|1)∗⊗n−1 .

For a dominant weight (m,n, p|0) with m 6= −2, n ≤ −2, we set

(22) I(m,n, p|0) = I(−2 − p,−2 − n,−2 − m)∗I(1, 1, 1|1)∗⊗3 .

Thus for any integrable dominant weight (m,n, p|0) we have constructed a
comodule I(m,n, p|0). Here is the detailed check:

(1) m ≥ n ≥ 0: I(m,n, p|0) is given by (13).
(2) m ≥ n ≥ 0 > p:

(a) m = n: I(m,m, p|0) is given by (18);
(b) m > n: I(m,n, p|0) is given by (21);

(3) m ≥ 0 > n ≥ p:
(a) n = −1: I(m,−1, p|0) is given by (20);
(b) −2 ≥ n: I(m,n, p|0) is given by (22);

(4) 0 > m ≥ n ≥ p:
(a) m = n = −1: I(−1,−1, p|0) is given by (16);
(b) m = −1 > n: I(−1, n, p|0) is given by (22);
(c) m = −2: I(−2, n, p|0) is given by (15);
(d) −2 > m: I(m,n, p|0) is given by (22).

In the next section we shall exhibit the simplicity of these comodules by re-
ducing it to the case of the standard Hecke symmetry R(r|s) and using the formal
character.

5. Simplicity and completeness

In this section we shall prove the simplicity of the comodules constructed in the
previous section and that they furnish all simple comodules of HR. Our method
is to use the representation theory of the quantum universal enveloping algebra
Uq(gl(3|1)). According to [7, Thm 4.3] there is a monoidal equivalence between
the category of comodules over HR and the category of comodules over HR(3|1) .

Thus the problem is reduced to the case R = R(3|1). In this case, there is a duality
between HR(3|1) and Uq(gl(3|1)), [17, Thm 3.5], which shows that there is an
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equivalence between the category of comodules over HR(3|1) and finite dimensional
integrable representations of Uq(gl(3|1)). Notice that irreducible representations
of Uq(gl(n|1)) can be obtained by other methods, see e.g. [14, 10]. But these
methods are not compatible with the braided monoidal equivalence mentioned
here. This is the reason why we want to give a construction based merely on the
braiding (given by R) and the two maps ev and db.

For finite dimensional representations of Uq(gl(3|1)) the weight decomposition
is obtained in the same way as for the classical case of gl(3|1), whence the char-
acter is defined and does not depend on the parameter q (as long as q is not a
root of unity).

The character of HR(3|1)-comodules can be defined directly. Consider the quo-
tient Hopf super algebra of this algebra by setting zi

j = 0 for all i 6= j. This

quotient is just the algebra of Lorenz polynomials k[zi
i
±1]. Assume that M is

a comodule over HR(3|1) , consider it as a comodule over k[zi
i
±1] we obtain the

decomposition

M ∼=
⊕

λ

Mλ,

where λ runs over the set of Z-linear mappings from the free abelian group gener-
ated by zi

i to Z, i.e. the set of integrable weights. The character of Mλ is defined
to be

ch(Mλ) :=
∑

dimk(Mλ)eλ.

It follows immediately from the definition that the character is additive with
respect to short exact sequences and multiplicative with respect to the tensor
product. The fact that this definition agrees with the above definition follows
from the explicit duality between HR(3|1) and Uq(gl(3|1)).

Now to finish the proof that all comodules of HR constructed in the previous
section are simple and furnish all HR-comodules, it suffices to verify the following
lemma and to compute explicitly the character of these comodules.

Lemma 5.1. Let V be a representation of Uq(gl(3|1)) with the character equal
to the character of the simple highest weight representation V (λ). Then V is
isomorphic to V (λ).

Proof. Consider V and V (λ) as representations of the Hopf subalgebra Uq(gl(3)⊕
gl(1)). Since they have the same character, they are isomorphic. In particular,
as Uq(gl(3) ⊕ gl(1))-representations, V contains a direct summand with highest
weight λ, say S(λ).

According to [15],V (λ)is obtained fromS(λ)by induction. More precisely,V (λ)
is the quotient of the Kac representation V (λ) by its maximal sub-representation.
The representation V (λ) is defined as follows. One first extends (in a trivial way)
the action of Uq(gl(3) ⊕ gl(1)) to the action of an intermediate algebra and then
induces this action to the whole algebra Uq(gl(3|1)).

It follows by the adjoin property that there is a non-zero map

V (λ) → V.



IRREDUCIBLE REPRESENTATIONS OF GLq(3|1) 227

Hence V (λ) is a sub-quotient V . But they have the same character, in particular,
same (total) dimension, hence are isomorphic. �

Lemma 5.2. The character of the representation I(λ) constructed in the previous
section is equal to the character of the highest weight irreducible representation
V (λ) of Uq(gl(3|1)).

Proof. The character of V (λ) does not depend on q, hence can be computed by
the classical formula, for instance it is given explicitly in [2]. On the other hand,
the character of I(λ) can be computed directly from their construction and the
compatibility of the character with exact sequences and tensor product. First,
setting

x1 = e(1,0,0|0), x2 = e(0,1,0|0), x3 = e(0,0,1|0), y = e(0,0,0|1),

we have
ch(I(1, 0, 0|0)) = χ(V ) = x1 + x2 + x3 − y.

Using [11, Example I.3.22(4)] we have, for m ≥ n ≥ p ≥ 1,

ch(I(m,n, p|0)) = (x1x2x3)
p−1(x1 + y)(x2 + y)(x3 + y)S(m − p, n − p, 0)

where S(m,n, p) is the Schur function on the variables x1, x2, x3, associated to
partition (m,n, p). Further, we have

ch(I(m,n, 0|0) =
(x1 + y)(x2 + y)(x3 + y)

(x1 − x2)(x2 − x3)(x1 − x3)

×

(

xm+1
2 xn

3 − xn
2xm+1

3

x1 + y
+

xm+1
3 xn

1 − xn
3xm+1

1

x2 + y
+

xm+1
1 xn

2 − xn
1xm+1

2

x3 + y

)

,

ch(I(m, 0, 0|0) =
(x1 + y)(x2 + y)(x3 + y)

(x1 − x2)(x2 − x3)(x1 − x3)

×

(

xm+1
2 − xm+1

3

x1 + y
+

xm+1
3 − xm+1

1

x2 + y
+

xm+1
1 − xm+1

2

x3 + y

)

.

Since I(1, 1, 1|1) gives the quantum super determinant, we have

ch(I(1, 1, 1|1) = x1x2x3y
−1.

Using induction we obtain, for k − l 6= 2, k ≥ 2,

ch(Imdk,l) =
(x1 + y)(x2 + y)(x3 + y)yk−3

(x1x2x3)l
S(l, l, 0).

Hence we have, according to (18), for m ≥ 0 > p,

ch(I(m,m, p|0) = (x1 + y)(x2 + y)(x3 + y)(x1x2x3)
p−1S(m − p,m − p, 0).

Next, we have, for i, a ≥ 0,

ch(Xi,a) =
(x1 + y)(x2 + y)(x3 + y)

(x1 − x2)(x2 − x3)(x1 − x3)y

(

x1(x
−a−i−1
2 xi+2

3 − xi+2
2 x−a−i−1

3 )

x1 + y

+
x2(x

−a−i−1
3 xi+2

1 − xi+2
3 x−a−i−1

1 )

x2 + y
+

x3(x
−a−i−1
1 xi+2

2 − xi+2
1 x−a−i−1

2 )

x3 + y

)
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That is, Xi,a has the same character as the comodule V (i + 1, 0,−a − i|1).
Finally, we have, for i ≥ 0, k ≥ 2, a + i + k ≥ 0,

ch(Yi,k,a) =
(x1 + y)(x2 + y)(x3 + y)yk−3

(x1x2x3)a+i+k+1
S(a + 2i + k + 2, a + i + k + 1, 0).

That is Yi,k,a has the same character as V (i+2, 1,−a− i−k|3−k). This formula
for the case a + i + 3 6= 0 follows from the character formula for dk,l given above.

For the case a + i + 3 = 0, the comodule Imdk,k−2 is not simple, its character
can be computed by using the complex K2. Indeed, we have Imd2,0 = ∧2. Using
induction and the fact that the homology of K2 is concentrated at the term
(3, 1) and is I(1, 1, 1|1) one can show that Imdk,k−2 has a decomposition series
consisting of I(1, 1, 2 − k|2 − k) and I(1, 1, 3 − k|3 − k).

By the formulas given above one can easily check that for any dominant weight
(m,n, p|0)

I(m,n, p|0) ∼= V (m,n, p|0).

This finishes the proof. �

The following theorem is a direct consequence of the two lemmas above.

Theorem 5.3. The comodules I(λ) constructed in the previous section are simple
and furnish all simple comodules of the Hopf super algebra HR.

Remark 5.4. The first named author has constructed in [2] a full list of ir-
reducible representations of the super group GL(3|1). There is unfortunately
several misprints in that work that makes the list in fact incomplete. The de-
scription here fulfills this gap.
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