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ON SOME ASYMPTOTIC PROPERTIES OF FINITELY

GENERATED MODULES

NGUYEN TU CUONG AND PHAM HUU KHANH

Dedicated to Professor Tran Duc Van on the occasion of his sixtieth birthday

Abstract. Let I, J be a pair of ideals of a Noetherian local ring R. The pur-
pose of this paper is to study asymptotic properties such as the asymptotic sta-
bility of the depths in dimension > k, depthk(I, Mn) and depthk(I,Mn/Mn+1)
of an ideal I with respect to a J-filtration (Mn) of submodules of a finitely
generated module M ; or the asymptotic behaviour of sets of associated prime
ideals or of attached prime ideals of certain local cohomology modules deter-
mined by M and I, J .

1. Introduction

Let (R,m) be a Noetherian local ring, I, J two ideals of R, and M a finitely
generated R−module. In 1979, M. Brodmann [2] had proved that the sets
AssR(JnM/Jn+1M) and AssR(M/JnM) are stable for large n. Hence he showed
in [3] that the integers depth(I, JnM/Jn+1M) and depth(I,M/JnM) take con-
stant values for large n. Recently, in [5], M. Brodmann and L. T. Nhan in-
troduced the notion of M−sequence in dimension > k. They showed that if
dimM/IM > k, then each M -sequence in dimension > k in I can be extended
to a maximal one and all maximal M−sequences in dimension > k in I have
the same length. This common length is denoted by depthk(I,M). Then, in
[7] we proved that the integers depthk(I, JnM/Jn+1M) and depthk(I,M/JnM)
take constant values for large n. In 2005, J. Herzog and T. Hibi [9] denoted
the eventual values of depth(m, Jn), depth(m, Jn/Jn+1), and depth(m, R/Jn) by
lim

n→∞
depthJn, lim

n→∞
depthJn/Jn+1, and lim

n→∞
depth R/Jn, respectively, and they

showed that

lim
n→∞

depth R/Jn ≤ lim
n→∞

depth Jn/Jn+1 = lim
n→∞

depthJn − 1.

The first result of this paper is to generalize Herzog and Hibi’s theorem to the
depth in dimension > k in I with respect to a stable J−filtration (Mn). Next,
in 1990, C. Huneke [11, Problem 4] asked whether the set of associated primes of
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H i
I(M) is finite for all finitely generated modules M and all ideals I. Although,

M. Katzman [12] had given an example of finitely generated modules having some
local cohomology with infinite associated prime ideals, the problem is still true in
many situations. Hence the question of when the set AssR(H i

I(M)) is finite has
been studied by many authors (see [4], [7], [10], [17],...). It is well known that,
in general, local cohomology modules H i

I(M) are not finitely generated. The
least integer i for which H i

I(M) is not finitely generated is called the finiteness
dimension of M with respect to I, and is denoted by fI(M). Then, M. Brodmann
and L. Faghani had proved in [4] that AssR(H i

I(M)) is finite for all i ≤ fI(M).
Therefore, the sets AssR(H1

I (JnM/Jn+1M)) and AssR(H1
I (M/JnM)) are finite

for all pairs of ideals I, J . Then, our next results are concerning with the following
questions:
Question 1: Are these sets stable for enough large n?
In fact, we will show that the set AssR(H1

I (JnM/Jn+1M)) is stable for enough
large n, but AssR(H1

I (M/JnM)) is not. It is somehow strange to us, because
many asymptotic properties, which hold true on JnM/Jn+1M , are also true on
M/JnM .

It is well-known that the modules H i
m(M) are Artinian for all i. Therefore the

set AttR(H i
m(M)) of attached prime ideals of H i

m(M) is a finite set. Now, if we
use Nn to denote one of the three following R−modules InM , InM/In+1M and
M/InM , it is clear that AttR(H0

m(Nn)) is stable for enough large n. Moreover,
by I. G. Macdonald and R. Y. Sharp [14, Theorem 2.2], the set AttR(Hd

m(Nn)) is
stable for enough large n, where d = dim Nn. So, it is natural to ask the following
question:
Question 2: Is the set AttR(H i

m(Nn)) for all i stable for enough large n?
Unfortunately, we will see in this paper that the answer for this question is not
affirmative in general.

Our paper is divided into 3 sections. In the next section, we prove a general-
ization of Herzog and Hibi’s theorem. Section 3 is devoted to give answers for
the two questions above.

2. The generalized depth of a filtration

Throughout this paper, let (R,m) be a Noetherian local ring, I, J two ideals
of R, and M a finitely generated R−module. First of all, we recall the definition
of a generalization of regular sequence which was first given by Brodmann and
Nhan.

Definition 2.1. ([5, Definition 2.1]) Let k ≥ −1 be an integer and x1, ..., xr ∈ R
a sequence. We say that x1, ..., xr is an M−sequence in dimension > k if xi 6∈ p,
for all p ∈ AssR(M/(x1, ..., xi−1)M), dim(R/p) > k and for all i = 1, ..., r.

It is easy to see that x1, ..., xr is an M−sequence in dimension > −1 if and
only if it is a regular sequence of M ; x1, ..., xr is an M−sequence in dimension
> 0 if and only if it is a filter regular sequence of M introduced by N. T. Cuong,
P. Schenzel, and N. V. Trung in [8]; and x1, ..., xr is an M−sequence in dimension
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> 1 if and only if it is a generalized regular sequence of M introduced by Nhan
in [17].

If dim(M/IM) > k, then any M−sequence in dimension > k in I can be
extended to a maximal one, and all maximal M− sequences in dimension > k in I
have same length. Then, in [7], we denoted this common length by depthk(I,M).
If dim(M/IM) ≤ k, for every positive integer r we can choose an M−sequence
in dimension > k in I of length r, in this case we set depthk(I,M) = +∞.

We use the convention that inf(∅) = +∞ and sup(∅) = −∞. Then we have
the following lemma.

Lemma 2.2. ([7, Lemma 2.3]) Let k ≥ −1 be an integer. Then

depthk(I,M) = inf{i|dim(ExtiR(R/I,M)) > k}.

Let x = x1, ..., xt be a system of generators of the ideal I and Hi(x;M) the i-th
Koszul homology module of the Koszul complex K•(x;M) of M with respect to x.
It should be noted that depth−1(I,M) is the usual depth of M in I, depth(I,M),
and it is determined by

depth(I,M) = t − sup{i|Hi(x;M) 6= 0}.

To prove the main result in this section, we need to extend the above formula to
depthk(I,M) as follows.

Proposition 2.3. Suppose that I is generated by x = x1, ..., xt. Then

depthk(I,M) = t − sup{i|dim(Hi(x;M)) > k}.

Proof. If dim(M/IM) ≤ k, then depthk(I,M) = +∞. On the other hand, it
follows by IHi(x;M) = 0 that dim(Hi(x;M)) ≤ dim(M/IM) ≤ k for all i. Hence
t−sup{i|dim(Hi(x;M)) > k} = t−sup(∅) = +∞. Therefore, the equality is true
in this case. If dim(M/IM) > k, then r = depthk(I,M) < +∞. By the same
argument in the proof for the usual depth (k = −1), we can show by induction
on r that the equality is also true in this case. �

Lemma 2.4. Let M,N,P be R−modules and f : M → N , g : N → P homomor-
phisms. Assume that dim(Ker f) ≤ k and dim(Ker g) ≤ k, then dim(Ker(g ◦ f))
≤ k.

Proof. Set K = Ker(g ◦ f). Then we have the following exact sequence

0 → Ker f → K → f(K) → 0.

It follows by the assumption that dim(Ker f) ≤ k and dim(f(K)) ≤ dim(Ker g) ≤
k. Hence dim(K) ≤ k, as required. �

Let R = ⊕n≥0Rn be a finitely generated standard graded algebra over R0 = R,
and M = ⊕n≥0Mn a finitely generated graded R−module. Then, we have the
following result.

Lemma 2.5. ([7, Theorem 1.1]) Let k ≥ −1 be an integer. Then, depthk(I,Mn)
takes a constant value for large n.
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We denote the constant value of depthk(I,Mn) by lim
n→∞

depthk(I,Mn).

Recall that a chain M = M0 ⊇ M1 ⊇ ... ⊇ Mn ⊇ ..., where Mn are submodules
of M , is called a filtration of M , and denoted by (Mn). It is called an J−filtration
of M if JMn ⊆ Mn+1 for all n, and a stable J−filtration of M if there exists n0

such that JMn = Mn+1 for all n ≥ n0.

By Artin-Rees Lemma we can prove the following lemma.

Lemma 2.6. Let (Mn) be a stable J−filtration of M and J ⊆ I. Assume that
JMn = Mn+1 for all n ≥ n0 and I is generated by x = x1, ..., xt. Then, for all i,
the natural homomorphism Hi(x;Mn) → Hi(x;Mn0

) is zero for enough large n.

Proof. Consider the following commutative diagram with exact rows and exact
columns

0 0 0




y





y





y

... −−−−−→ Ki+1(x) ⊗ Mn+n0

di+1
−−−−−→ Ki(x) ⊗ Mn+n0

di

−−−−−→ Ki−1(x) ⊗ Mn+n0
−−−−−→ ...





y





y





y

... −−−−−→ Ki+1(x) ⊗ Mn0

δi+1
−−−−−→ Ki(x) ⊗ Mn0

δi

−−−−−→ Ki−1(x) ⊗ Mn0
−−−−−→ ....

We have

Ker di = Ker δi ∩ (Ki(x) ⊗ Mn+n0
) = Ker δi ∩ Jn(Ki(x) ⊗ Mn0

).

By Artin-Rees Lemma there exists an integer k such that

Ker di = Jn−k(Ker δi ∩ Jn−1(Ki(x) ⊗ Mn0
)) ⊆ Jn−k Ker δi

for all n ≥ k. Since J ⊆ I, JHi(x;Mn0
) = 0. Hence Jn−k Ker δi ⊆ Im δi+1.

Therefore, the natural homomorphism Hi(x;Mn+n0
) → Hi(x;Mn0

) is zero for all
n ≥ k. �

The following theorem is the main result of this section.

Theorem 2.7. Let (R,m) be a Noetherian local ring, I, J ⊂ R two ideals, M a
finitely generated R−module, and (Mn) a stable J−filtration of M . Then for all
k ≥ −1

(i) There exist the limits

lim
n→∞

depthk(I,Mn), lim
n→∞

depthk(I,Mn/Mn+1), and lim
n→∞

depthk(I,M/Mn).

(ii) We always have the inequalities

lim
n→∞

depthk(I,M/Mn) ≤ lim
n→∞

depthk(I,Mn/Mn+1)

and

lim
n→∞

depthk(I,Mn) − 1 ≤ lim
n→∞

depthk(I,Mn/Mn+1).

(iii) If J ⊆ I, then

lim
n→∞

depthk(I,Mn/Mn+1) = lim
n→∞

depthk(I,Mn) − 1.
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Proof. (i) We set R(J)=⊕n≥0J
n, R(M)=⊕n≥0Mn, and G(M)=⊕n≥0Mn/Mn+1.

Since (Mn) is a stable J−filtration and by [1, Lemma 10.8],R(M) and G(M) are
finitely generated graded R(J)−modules. By Lemma 2.5we get that depthk(I,Mn)
and depthk(I,Mn/Mn+1) are stable for large n. Assume that r = depthk(I,Mn)
and s = depthk(I,Mn/Mn+1) for all n ≥ a. We will prove the stability of
depthk(I,M/Mn). For each n ≥ a, we set f(n) = depthk(I,M/Mn). By the
short exact sequence

0 → Mn/Mn+1 → M/Mn+1 → M/Mn → 0,

we get the long exact

... → Exti−1
R (R/I,M/Mn) → Exti

R(R/I,Mn/Mn+1) → ExtiR(R/I,M/Mn+1)

→ ExtiR(R/I,M/Mn) → ...

Therefore, we obtain by Lemma 2.2 that dim(Exti
R(R/I,Mn/Mn+1)) ≤ k for

all i < s, and dim(Exti
R(R/I,M/Mn)) ≤ k for all i < f(n). It follows that

dim(Exti
R(R/I,M/Mn+1)) ≤ k for all i < min{s, f(n)}. Hence f(n + 1) ≥

min{s, f(n)} for all n ≥ a. By a similar argument, we can also show that s ≥
min{f(n + 1), f(n) + 1}. Consider two cases: Firstly, there exists n0 ≥ a such
that f(n0) > s then f(n0 + 1) = s. Hence f(n) = s for all n ≥ n0 + 1. Secondly,
f(n) ≤ s for all n ≥ a. In this case, f(n + 1) ≥ f(n) for all n ≥ a. It follows
for all cases that f(n) is an increasing function and bounded by s. Hence f(n) is
stable for enough large n.

(ii) By the proof above, it also implies that

lim
n→∞

depthk(I,M/Mn) ≤ s = lim
n→∞

depthk(I,Mn/Mn+1).

On the other hand, by the short exact sequence 0 → Mn+1 → Mn → Mn/Mn+1 →
0 we get the long exact

... → ExtiR(R/I,Mn) → Exti
R(R/I,Mn/Mn+1) → Exti+1

R (R/I,Mn+1) → ....

From this exact sequence and by Lemma 2.2, we have

lim
n→∞

depthk(I,Mn) − 1 ≤ lim
n→∞

depthk(I,Mn/Mn+1)

as required.

(iii) Let r = lim
n→∞

depthk(I,Mn) and s = lim
n→∞

depthk(I,Mn/Mn+1). We need

only to show that s ≤ r − 1 when J ⊆ I. In fact, suppose that s > r −
1. We can choose n0 such that JMn = Mn+1, r = depthk(I,Mn), and s =
depthk(I,Mn/Mn+1) for all n ≥ n0. Assume that I is generated by x = x1, ..., xt.
Then by Proposition 2.3,

t − r = sup{i|dim(Hi(x;Mn)) > k},

and

t − s = sup{i|dim(Hi(x;Mn/Mn+1)) > k}.
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By our assumption, t−r ≥ t−s. Therefore, for all i > t−r we get the inequalities
dim(Hi(x;Mn)) ≤ k and dim(Hi(x;Mn/Mn+1)) ≤ k. By using again the short
exact 0 → Mn+1 → Mn → Mn/Mn+1 → 0, we get the long exact

... → Ht−r+1(x;Mn/Mn+1) → Ht−r(x;Mn+1)
gn

→ Ht−r(x;Mn) → ....

Since dim(Ht−r+1(x;Mn/Mn+1)) ≤ k, we have dim(Ker gn) ≤ k. Therefore, by
Lemma 2.4, we get

dim(Ker(gn0
◦ gn0+1 ◦ . . . ◦ gn0+l)) ≤ k

for all l > 0. By Lemma 2.6, the homomorphism Ht−r(x;Mn0+l) → Ht−r(x;Mn0
)

is zero for enough large l. Hence dim(Ht−r(x;Mn)) ≤ k for enough large n, which
is a contradiction with the choice of r. Thus s = r − 1, and the proof of the
theorem is complete. �

3. Associated and attached primes of local cohomology modules

Before giving answers to the questions mentioned in the introduction, we need
some preliminary results. A sequence x1, . . . , xr ∈ I is called an I−filter regular
sequence of M if xi 6∈ p for all p ∈ AssR(M/(x1, . . . , xi−1)M) \ V(I) and all
i = 1, . . . , r. It should be mentioned that the notion of I− filter regular sequence
of M is a generalization of the concept of filter regular sequence of M defined by
N. T. Cuong, P. Schenzel, and N. V. Trung in [8].

Lemma 3.1. ([16, 3.4]) If x1, . . . , xr is an I−filter regular sequence of M, then
we have

Hj
I (M) =







Hj

(x1,...,xr)
(M) if j < r,

Hj−r
I (Hr

(x1,...,xr)(M)) if j ≥ r.

Below, we recall a counter-example of M. Katzman which plays an important
role in the rest of this paper.

Lemma 3.2. ([12, Corollary 1.3]) Let S = k[x, y, s, t, u, v] be the polynomial ring
of six variables over a field k and f = sx2v2 − (s + t)xyuv + ty2u2. Denote by
T the localization of S/fS at the irrelevant maximal ideal m = (x, y, s, t, u, v).
Then, the set AssT (H2

(u,v)T (T )) is infinite.

The following result is a complete answer for Question 1.

Theorem 3.3. The following statements are true.

(i) If M is a finitely generated R-module and I, J are ideals of R, then the
set AssR(H1

I (JnM/Jn+1M)) is stable for enough large n.
(ii) There exist a finitely generated R−module M and ideals I, J of R such

that AssR(H1
I (M/JnM)) is not stable for large n.

Proof. The statement (i) is a special case of the following result.

Proposition 3.4. Let R =
⊕

n≥0 Rn be a finitely generated standard graded

algebra over R0 with R0 = R and M =
⊕

n≥0 Mn a finitely generated graded

R−module. Let I ⊆ R be an ideal. Then, AssR(H1
I (Mn)) is stable for large n.
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Proof. We know that
⊕

n≥0 Mn/ΓI(Mn) is a finitely generated graded R−module

and H i
I(Mn/ΓI(Mn)) ∼= H i

I(Mn) for all i > 0 and for all n. Hence we can replace
Mn by Mn/ΓI(Mn). So we can assume that depth(I,Mn) > 0 for all n. Let r be
the eventual value of depth(I,Mn). Then r ≥ 1. It follows by [7, Theorem 3.2]
that AssR(H i

I(Mn)) is stable for large n for all i ≤ r. �

Proof of (ii) of Theorem 3.3. We consider the local ring T and the elements u and
v as in Lemma 3.2. Then AssT (H2

(u,v)(T )) is infinite. Let a, b be an (u, v)T -filter

regular sequence of T . Then we prove that the set AssR(H1
I (M/JnM)) is not

asymptotically stable, where M = T , I = (b) and J = (a). To do this, we need
only to show that the set

⋃

n

AssT (H1
(b)(T/anT )) is an infinite set. Indeed, since

H2
(u,v)(T ) = H0

(u,v)(H
2
(a,b)(T )) = H0

(u,v)(H
1
(a,b)(H

1
(a)(T ))),

AssT (H1
(a,b)(H

1
(a)(T ))) is an infinite set. On the other hand, since

H1
(a,b)(H

1
(a)(T )) = H1

(b)(H
1
(a)(T )) = H1

(b)(lim→
n

(T/anT )) = lim
→
n

H1
(b)(T/anT ),

AssT (H1
(a,b)(H

1
(a)(T ))) = AssT (lim

→
n

H1
(b)(T/anT )) ⊆

⋃

n

AssT (H1
(b)(T/anT )).

Therefore,
⋃

n

AssT (H1
(b)(T/anT )) is an infinite set. �

In [13], I. G. Macdonald introduced the theory of secondary representation of
a module, which is in some sense dual to the theory of primary decomposition.
Following [13], any Artinian R−module A has a minimal secondary representation
A = A1 + ... + Ar, where Ai is pi−secondary. The set {p1, ..., pr} is independent
of the choice of a minimal secondary representation of A, and it is denoted by
AttR(A).
We use Nn to denote one of the three following R−modules InM, InM/In+1M
and M/InM . It is well known that H i

m(Nn) is an Artinian R−module for all
i. Hence the set AttR(H i

m(Nn)) is finite. Moreover, for i = 0 or i = d, where
d = dim(Nn), the set H i

m(Nn) is stable for large n. However, for i being an
arbitrary integer, this property is not true in general. We have the following
theorem which is a negative answer for Question 2.

Theorem 3.5. The following statements are true.

(i) Let (T,m) be the local ring as in Lemma 3.2 and I = (u, v)T . Then the
sets AttT (H3

m(T/In)) and AttT (H4
m(In)) are not stable for enough large

n.
(ii) There exist a finitely generated module M over a local ring (R,m) and

an ideal J of R such that AttR(H i
m(JnM/Jn+1M)) is not asymptotically

stable for some i.

Before proving Theorem 3.5, we recall some properties of Matlis duality. We
denote by E = E(R/m) the injective envelope of R/m. For each R−module N ,
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the Matlis dual D(N) of N is defined by D(N) = HomR(N,E). Suppose that N
is a Noetherian R−module, it follows by Matlis duality that D(N) is an Artinian
R−module, and AttR(D(N)) = AssR(N). Moreover, if R is a Gorenstein local
ring of dimension n and N is a finitely generated R−module, by Local Duality
Theorem we have Hn−i

m (N) ∼= D(ExtiR(N,R)) for all i ∈ Z.
The following result is well-known and will be used in sequel.

Lemma 3.6. ([15, Proposition 4.1]) Let f : R → R′ be a homomorphism of rings
and A an Artinian R′−module. Then we have

AttR(A) = {p ∩ R|p ∈ AttR′(A)}.

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. (i). We consider the local ring (T,m), and I = (u, v)T as
in Lemma 3.2. Since (T,m) is a local Gorenstein ring of dimension 5, it follows
from Local Duality Theorem that

H3
m(T/In) ∼= HomT (Ext2T (T/In, T ), E).

Therefore,
AttT (H3

m(T/In)) = AssT (Ext2T (T/In, T )).

Hence
⋃

n≥0

AttT (H3
m(T/In)) =

⋃

n≥0

AssT (Ext2T (T/In, T ))

⊇ AssT (lim
→
n

Ext2T (T/In, T ))

= AssT (H2
I (T )).

Since AssT (H2
I (T )) is an infinite set by Lemma 3.2, the set

⋃

n≥0 AttT (H3
m(T/In))

is infinite, and the first conclusion of (i) follows.

Now, from the short exact sequence

0 → In → T → T/In → 0

we get that Ext1T (In, T ) ∼= Ext2T (T/In, T ). Therefore, the set
⋃

n≥0

AttT (H4
m(In)) =

⋃

n≥0

AssT (Ext1T (In, T ))

=
⋃

n≥0

AssT (Ext2T (T/In, T ))

is infinite, and so the set AttT (H4
m(In)) cannot be stable for enough large n.

(ii). With (T,m), and I = (u, v)T as in the proof of (i), we consider the Rees
ring R = ⊕n≥0I

n. Set R+ = ⊕n>0I
n the irrelevant ideal and M = mR + R+

the maximal homogeneous ideal of R. We consider the local ring R = RM,
J = (R+)R and the finitely generated R-module M = R. For convenience, we
also denote by M the maximal ideal and by R+ the ideal (R+)R of R. Then we
prove that the set AttR(H4

M
(JnM/Jn+1M)) is not asymptotically stable. Since
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Rn
+/Rn+1

+ is annihilated by R+, the Independence Theorem of local cohomology
implies the following R-isomorphisms

H4
M(Rn

+/Rn+1
+ ) = H4

mR+R+
(Rn

+/Rn+1
+ )

∼= H4
mR(Rn

+/Rn+1
+ )

∼= H4
m(In).

It follows by Lemma 3.6 that

AttT (H4
m(In)) = AttT (H4

mR(Rn
+/Rn+1

+ ))

= {P ∩ T |P ∈ AttR(H4
M(Rn

+/Rn+1
+ ))}.

Therefore,
⋃

n≥0

AttT (H4
m(In)) = {P ∩ T |P ∈

⋃

n≥0

AttR(H4
M(Rn

+/Rn+1
+ ))}.

Since
⋃

n≥0 AttT (H4
m(In)) is an infinite set by the proof of (i), the set

⋃

n≥0 AttR(H4
M

(Rn
+/Rn+1

+ )) is infinite, and so the statement (iii) follows.
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