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SOME PROPERTIES OF ORLICZ-LORENTZ SPACES

HA HUY BANG, NGUYEN VAN HOANG AND VU NHAT HUY

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. In this paper we study some fundamental properties of Orlicz-
Lorentz spaces defined on R such as finding their dual spaces, giving best
constants for the inequalities between the Orlicz norm and the Luxemburg
norm on Orlicz-Lorentz spaces and establishing the Kolmogorov inequality in
these spaces.

1. Orlicz-Lorentz spaces

Orlicz-Lorentz spaces as a generalization of Orlicz spaces Lϕ and Lorentz spaces
Λω have been studied by many authors (we refer to [9, 10, 11, 12, 14, 18, 19] for
basic properties of Orlicz- Lorentz spaces as well to the references therein). In this
paper we study some fundamental properties of Orlicz-Lorentz spaces defined on
the real line ΛR

ϕ,ω. We first find the dual spaces of ΛR
ϕ,ω. Note that the dual spaces

of Orlicz-Lorentz spaces defined on (0,+∞) or (0, 1) were studied in [11]. Next
we introduce the Orlicz norm on ΛR

ϕ,ω which defined by using the MR
ϕ∗,ω space

and then we give a simple formula to calculate the Orlicz norm directly by ϕ,ω.
On Orlicz spaces, it is known that the Orlicz norm and the Luxemburg norm are
equivalent, and it will be shown that the corresponding norms on Orlicz-Lorentz
spaces are also equivalent. Moreover, we investigate best constants C1, C2 for the
inequalities between the Orlicz norm and the Luxemburg norm on Orlicz-Lorentz
spaces and we notice that these results for the special case when ΛR

ϕ,ω becomes
Orlicz spaces will be published in [2]. The dual equality between the Orlicz norm
on Orlicz-Lorentz spaces and the norm on MR

ϕ∗,ω is also given. Finally, we prove
the Kolmogorov inequality in the Orlicz-Lorentz spaces.

Let us first recall some notations of Orlicz- Lorentz spaces:
Let (Ω, µ) := (Ω,Σ, µ) be a measure space with the complete and σ-finite measure
µ, L0(µ) be a space of all µ-equivalent classes of Σ-measurable functions on Ω
with topology of the convergence in measure on µ-finite sets.
A Banach space (E, ‖.‖E) is called the Banach function space on (Ω, µ) if it is
a subspace of L0(µ), and there exists a function h ∈ E such that h > 0 a.e. on

Received May 9, 2011.
2000 Mathematics Subject Classification. 46E30.
Key words and phrases. Orlicz- Lorentz spaces.
This work was supported by the Vietnam National Foundation for Science and Technology

Development (Project N0 101.01.50.09).



146 HA HUY BANG, NGUYEN VAN HOANG AND VU NHAT HUY

Ω and if f ∈ L0(µ), g ∈ E and |f | ≤ |g| a.e. on Ω then f ∈ E and we have
‖f‖E ≤ ‖g‖E . Moreover, if the unit ball BE = {f ∈ E : ‖f‖E ≤ 1} is closed on
L0(µ), then we say that E has the Fatou property. A Banach function space E
is said to be symmetric if for every f ∈ L0(µ) and g ∈ E such that µf = µg, then
f ∈ E and ‖f‖E = ‖g‖E , where for any h ∈ L0(µ), µh denotes the distribution
of h, defined by

µh(t) = µ({x ∈ Ω : |h(x)| > t}), t ≥ 0.

Let E be a Banach function space on (Ω, µ). Then the Köthe dual space E
′

of E is a Banach function space, which can be identified with the space of all
functionals possessing an integral representation, that is,

E
′
= {g ∈ L0(µ) : ‖g‖E′ = sup

‖f‖E≤1

∫

Ω

|fg|dµ <∞}.

Given ϕ : [0,∞) → [0,∞) an Orlicz function (i.e., it is a convex function, takes
value zero only at zero) and ω : (0,∞) → (0,∞) a weight function (i.e., it is

a non-increasing function and locally integrable and
∞
∫

0

ωdx = ∞). The Orlicz -

Lorentz space ΛΩ
ϕ,ω on (Ω, µ) is the set of all functions f(x) ∈ L0(µ) such that

∞
∫

0

ϕ(λf∗(x))ω(x)dx <∞

for some λ > 0, where f∗ is the non-increasing rearrangement of f defined by

f∗(x) = inf{λ > 0 : µf (λ) ≤ x},

with x > 0 (by convention, inf ∅ = ∞).
It is easy to check that ΛΩ

ϕ,ω is a symmetric Banach function space, with the
Fatou property, equipped with the Luxemburg norm

‖f‖ΛΩ
ϕ,ω

= inf{λ > 0 :

∞
∫

0

ϕ(
f∗(x)

λ
)ω(x)dx ≤ 1}.

Note that: If ω ≡ 1 then ΛΩ
ϕ,ω is the Orlicz function space LΩ

ϕ ; if ϕ(t) = t then

ΛΩ
ϕ,ω is the Lorentz function space ΛΩ

ω .
Recall that ϕ is an N-function if lim

t→0
ϕ(t)/t = 0 and lim

t→+∞
ϕ(t)/t = +∞; the

Orlicz function ϕ satisfies ∆2-condition (we write, ϕ ∈ ∆2) if there exists C > 0
such that ϕ(2t) ≤ Cϕ(t) ∀t > 0; the Orlicz function ϕ : [0,+∞) 7−→ [0,+∞)
satisfies the ∇2-condition (we write, ϕ ∈ ∇2) if there exists a number l > 1 such
that ϕ(x) ≤ 1

2lϕ(lx) ∀x ≥ 0. We easily have the following remarks:

Remark 1.1.

(i) If f(x) ∈ E
′
and 0 ≤ fn ↑ |f | then lim

n→+∞
‖fn‖E

′ = ‖f‖E
′ ;

(ii) If f(x), fn(x), n = 1, 2, ... are measurable functions satisfying |fn| ↑ |f | then
f∗n ↑ f∗;



SOME PROPERTIES OF ORLICZ-LORENTZ SPACES 147

(iii) If f(x), g(x) are measurable functions then

∫

Ω

|f(x)g(x)|dµ ≤

+∞
∫

0

f∗(x)g∗(x)dx.

Remark 1.2. Let ϕ be an N-function. Then the three following conditions are
equivalent:
(i) ϕ ∈ ∇2;
(ii) There exists β > 1 such that xψ(x) > βϕ(x) ∀x > 0, where ψ(x) is the left
derivative of ϕ;
(iii) There are the numbers l > 1 and δl > 0 such that ϕ(lx) ≥ (l+δl)ϕ(x)∀x > 0.

Denote by ϕ∗ the Young conjugate function of ϕ, that is

ϕ∗(t) = sup{st− ϕ(s)|s ≥ 0}, t ≥ 0.

Then we have the following result
Young’s inequality. Let ϕ be an N-function. Then

xy ≤ ϕ(x) + ϕ∗(y) ∀x, y ≥ 0

and it becomes the equality if and only if y ∈ [ψ(x), η(x)], where ψ, η are the left
and the right derivatives of ϕ.
We define

I(f) =

∞
∫

0

ϕ∗(
f∗(x)

ω(x)
)ω(x)dx

for any f(x) ∈ L0(µ) and

MΩ
ϕ∗,ω = {f(x) ∈ L0(µ) : I(

f

λ
) <∞ with some λ > 0}.

In the space MΩ
ϕ∗,ω we define a monotone and homogeneous functional

‖f‖MΩ
ϕ∗,ω

= inf{λ > 0 : I(
f

λ
) ≤ 1}.

Put

S(t) =

t
∫

0

ω(s)ds, t > 0,

we call the weight function ω regular if there is a constant K > 1 such that
S(2t) ≥ KS(t) for any t > 0. It is easy to prove that ω is regular if and only if
there exists C > 0 such that tω(t) ≤ S(t) ≤ Ctω(t) for any t > 0.
Let f(x), g(x) be two positive functions, we write f � g if there exist C1, C2 > 0
such that C1f(x) ≤ g(x) ≤ C2f(x). Put I = (0,+∞).
It was proved in [11] that
Theorem A. Let ω be a weight function and ϕ(t) = t or ϕ be an N-function.
Then the following assertions are true:

(i) If ω is regular, then (ΛI
ϕ,ω)

′
= M I

ϕ∗,ω and ‖.‖(ΛI
ϕ,ω)′�‖.‖MI

ϕ∗,ω
;
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(ii) If ϕ ∈ ∆2 and (ΛI
ϕ,ω)

′
= M I

ϕ∗,ω, then ω is regular.

Theorem A shows the relation between Orlicz-Lorentz spaces and M I
ϕ∗,ω, that

is, the Köthe dual space of Orlicz-Lorentz space (ΛI
ϕ,ω) is the M I

ϕ∗,ω with some
conditions of ϕ,ω.

2. Main results

We state the following theorem as an extension of Theorem A

Theorem 2.1. Let ω be a weight function and ϕ(t) = t or ϕ be an N-function.
Then the following assertions are true

(i) If ω is regular, then (ΛR
ϕ,ω)

′
= MR

ϕ∗,ω and ‖.‖(ΛR
ϕ,ω)′�‖.‖MR

ϕ∗,ω
;

(ii) If ϕ ∈ ∆2 and (ΛR
ϕ,ω)

′
= MR

ϕ∗,ω, then ω is regular.

To prove Theorem 2.1, we need the following lemmas.

Lemma 2.2. Let Ω = R or I and f(x) be a measurable function. Then the
following are true

(i) f ∈ ΛΩ
ϕ,ω if and only if f∗ ∈ ΛI

ϕ,ω, and we have ‖f‖ΛΩ
ϕ,ω

= ‖f∗‖ΛI
ϕ,ω

;

(ii) f ∈MΩ
ϕ∗,ω if and only if f∗ ∈M I

ϕ∗,ω, and we have ‖f‖MΩ
ϕ∗,ω

= ‖f∗‖MI
ϕ∗,ω

;

(iii) f ∈ (ΛΩ
ϕ,ω)

′
if and only if f∗ ∈ (ΛI

ϕ,ω)
′
, and we have ‖f‖(ΛΩ

ϕ,ω)′ = ‖f∗‖(ΛI
ϕ,ω)′ .

Proof. (i) and (ii) is evident from their definitions. Let us prove (iii). Using (i)

and Remark 1.1, we have if f∗(x) ∈ (ΛI
ϕ,ω)

′
, then f(x) ∈ (ΛΩ

ϕ,ω)
′
and

‖f‖(ΛΩ
ϕ,ω)′ ≤ ‖f∗‖(ΛI

ϕ,ω)′ .

Conversely, suppose that f(x) ∈ (ΛΩ
ϕ,ω)

′
, we have to prove f∗(x) ∈ (ΛI

ϕ,ω)
′

and
‖f∗‖(ΛI

ϕ,ω)′ ≤ ‖f‖(ΛΩ
ϕ,ω)′ . By Remark 1.1, we only prove for f(x) being a non-

negative, simple function on Ω. So f∗(x) is a nonnegative simple function on I,
too. For any simple function g(x) ∈ ΛI

ϕ,ω satisfying ‖g‖ΛI
ϕ,ω

≤ 1, there is a simple

function h(x) on Ω such that h∗(x) = g∗(x) and
∫

Ω

|f(x)h(x)|dµ =

∫

I

f∗(x)g∗(x)dx.

Hence, h(x) ∈ ΛΩ
ϕ,ω and ‖h‖ΛΩ

ϕ,ω
≤ 1, and then

∫

I

|f∗(x)g(x)|dx ≤

∫

I

f∗(x)g∗(x)dx =

∫

Ω

|f(x)h(x)|dx ≤ ‖f‖(ΛΩ
ϕ,ω)′ .

If g(x) is an arbitrary function in ΛI
ϕ,ω such that ‖g‖ΛI

ϕ,ω
≤ 1, there is a sequence

{gn(x)} of nonnegative simple functions on I such that gn(x) ↑ |g(x)|. So gn(x) ∈
ΛI

ϕ,ω and ‖gn‖ΛI
ϕ,ω

≤ 1. By the monotone convergence theorem, we have
∫

I

|f∗(x)g(x)|dx = lim
n→∞

∫

I

|f∗(x)gn(x)|dx ≤ ‖f‖(ΛΩ
ϕ,ω)

′ .
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Hence, f∗(x) ∈ (ΛI
ϕ,ω)

′
and ‖f∗‖(ΛI

ϕ,ω)′ ≤ ‖f‖(ΛΩ
ϕ,ω)′ . The proof is complete. �

Lemma 2.3. Let ϕ be an Orlicz function, ω be a weight function and suppose
that (ΛR

ϕ,ω)
′
= MR

ϕ∗,ω. Then there is a constant K > 0 satisfying

‖g‖MR
ϕ∗ ,ω

≤ K‖g‖(ΛR
ϕ,ω)′ ∀g(x) ∈ (ΛR

ϕ,ω)
′
.

Proof. This lemma is proved similarly as in the proof of Lemma 2 in [11]. �

Proof of Theorem 2.1. (i). By the regularity of ω, we have (ΛI
ϕ,ω)

′
= M I

ϕ∗,ω and

2−1‖f‖(ΛI
ϕ,ω)′ ≤ ‖f‖MI

ϕ∗,ω
≤ 4C‖f‖(ΛI

ϕ,ω)′

where C is a constant (see Theorem 2 (i) [11]). It follows from Lemma 2.2

that f(x) ∈ (ΛR
ϕ,ω)

′
⇐⇒ f∗ ∈ (ΛI

ϕ,ω)
′

= M I
ϕ∗,ω ⇐⇒ f(x) ∈ MR

ϕ∗,ω. Therefore,

(ΛR
ϕ,ω)

′
= MR

ϕ∗,ω, and

‖f‖(ΛR
ϕ,ω)′ = ‖f∗‖(ΛI

ϕ,ω)′ ≤ 2‖f∗‖MI
ϕ∗,ω

= 2‖f‖MR
ϕ∗,ω

,

‖f‖MR
ϕ∗,ω

= ‖f∗‖MI
ϕ∗,ω

≤ 4C‖f∗‖(ΛI
ϕ,ω)′ = 4C‖f‖(ΛR

ϕ,ω)′ .

i.e., ‖.‖(ΛR
ϕ,ω)′�‖.‖MR

ϕ∗,ω
.

By Theorem 2(ii) [11], we will prove that (ΛI
ϕ,ω)

′
= M I

ϕ∗,ω. From Young’s in-

equality we have M I
ϕ∗,ω ⊂ (ΛI

ϕ,ω)
′
, so we only have to prove (ΛI

ϕ,ω)
′
⊂M I

ϕ∗,ω.

Given f ∈ (ΛI
ϕ,ω)

′
, there is a sequence {fn} of nonnegative simple functions on I

such that fn ↑ |f |. Hence, fn ∈ (ΛI
ϕ,ω)

′
for all n ∈ N and ‖fn‖(ΛI

ϕ,ω)
′ ↑ ‖f‖(ΛI

ϕ,ω)
′ .

We choose a sequence {hn} of simple functions on R such that h∗n = f∗n for

all n ∈ N. Thus hn ∈ (ΛR
ϕ,ω)

′
and ‖hn‖(ΛR

ϕ,ω)′ = ‖fn‖(ΛI
ϕ,ω)′ . By assumption

(ΛR
ϕ,ω)

′
= MR

ϕ∗,ω, we obtain hn ∈ MR
ϕ∗,ω. Lemma 2.2(ii) yields f∗n = h∗n ∈ M I

ϕ∗,ω

and ‖f∗n‖MI
ϕ∗,ω

= ‖h∗n‖MI
ϕ∗,ω

= ‖hn‖MR
ϕ∗,ω

. From Lemma 2.3, there is a constant

K > 0 such that

‖g‖MR
ϕ∗ ,ω

≤ K‖g‖(ΛR
ϕ,ω)′ ∀g ∈ (ΛR

ϕ,ω)
′
.

Hence

‖f∗n‖MI
ϕ∗,ω

= ‖hn‖MR
ϕ∗,ω

≤ K‖hn‖(ΛR
ϕ,ω)′ = K‖fn‖(ΛI

ϕ,ω)′ ≤ K‖f‖(ΛI
ϕ,ω)′ .

So sup
n≥1

‖f∗n‖MI
ϕ∗,ω

<∞. Then it follows from f∗n ↑ f∗ that f∗ ∈M I
ϕ∗,ω. Therefore,

f ∈M I
ϕ∗,ω. That is (ΛI

ϕ,ω)
′
⊂M I

ϕ∗,ω. The proof is complete. �

Next, we study the norms on Orlicz-Lorentz spaces. We know that ΛΩ
ϕ,ω is the

Banach space with the Luxemburg norm defined by

‖f‖ΛΩ
ϕ,ω

= inf{λ > 0 :

∫

I

ϕ(
f∗(x)

λ
)ω(x)dx ≤ 1}.
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On this space we define another norm called the Orlicz norm as follows

‖f‖1
ΛΩ

ϕ,ω
= sup{

∫

Ω

|f(x)g(x)|dµ : ‖g‖MΩ
ϕ∗ ,ω

≤ 1}.(1)

Note that if ω ≡ 1 then ΛΩ
ϕ,ω is the usual Orlicz function space LΩ

ϕ and the

Luxemburg norm, the Orlicz norm on ΛΩ
ϕ,ω become respectively the Luxemburg

norm, the Orlicz norm on LΩ
ϕ which can be seen in [19].

From the definition of the Orlicz norm, we have
∫

Ω

|f(x)g(x)|dµ ≤ ‖f‖1
ΛΩ

ϕ,ω
‖g‖MΩ

ϕ∗ ,ω
∀f(x) ∈ ΛΩ

ϕ,ω, g(x) ∈MΩ
ϕ∗,ω.

In the following theorem, we give a formula to compute the Orlicz norm.

Theorem 2.4. Let ϕ be an N-function and f(x) ∈ ΛR
ϕ,ω. Then

‖f‖1
ΛR

ϕ,ω
= inf{

1

k
(1 +

∫

I

ϕ(kf∗(x))ω(x)dx) : k > 0}.(2)

To obtain Theorem 2.4, the following result is important.

Lemma 2.5. Let ϕ be an Orlicz function, ψ be the left derivative of ϕ and the
function f(x) ∈ ΛR

ϕ,ω satisfy

∫

I

ϕ∗(ψ(k0f
∗(x))ω(x)dx = 1(3)

for some k0. Then we have

‖f‖1
ΛR

ϕ,ω
=

∫

I

f∗(x)ψ(k0f
∗(x))ω(x)dx =

1

k0
(1 +

∫

I

ϕ(k0f
∗(x))ω(x)dx).

Proof. From (1) and (3), we have

‖f‖1
ΛR

ϕ,ω
= sup{

∫

R

|f(x)g(x)|dx : ‖g‖MR
ϕ∗ ,ω

≤ 1}(4)

≤
1

k0
(1 +

∫

I

ϕ(k0f
∗(x))ω(x)dx)

=
1

k0
(

∫

I

ϕ∗(ψ(k0f
∗(x))ω(x)dx +

∫

I

ϕ(k0f
∗(x))ω(x)dx)

=

∫

I

f∗(x)ψ(k0f
∗(x))ω(x)dx.
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We define g(x) = ω(x)ψ(k0f
∗(x)), x > 0. Then ‖g‖MI

ϕ∗ ,ω
≤ 1. Therefore, it

follows from the definition of the Orlicz norm that

‖f‖1
ΛR

ϕ,ω
= ‖f∗‖1

ΛI
ϕ,ω

≥

∫

I

f∗(x)g(x)dx =

∫

I

f∗(x)ψ(k0f
∗(x))ω(x)dx.(5)

From (4) and (5), the proof is complete. �

Proof of Theorem 2.4. For k > 0 and g(x) ∈ MR
ϕ∗,ω satisfying ‖g‖MR

ϕ∗,ω
≤ 1, we

have
∫

I

ϕ∗(
g∗(x)

ω(x)
)ω(x)dx ≤ 1.

Thus
∫

R

|f(x)g(x)|dx ≤

∫

I

f∗(x)g∗(x)dx =
1

k

∫

I

(
g∗(x)

ω(x)
)(kf∗(x))ω(x)dx

≤
1

k
(

∫

I

ϕ∗(
g∗(x)

ω(x)
)ω(x)dx+

∫

I

ϕ(kf∗(x))ω(x)dx)

≤
1

k
(1 +

∫

I

ϕ(kf∗(x))ω(x)dx).

This inequality implies that

‖f‖1
ΛR

ϕ,ω
≤ inf{

1

k
(1 +

∫

I

ϕ(kf∗(x))ω(x)dx) : k > 0}.(6)

Next, we will prove the opposite inequality: Let us first suppose that ψ is a
continuous function. There exists a sequence {fn(x)} of nonnegative, simple
functions such that fn(x) ↑ |f(x)| a.e. Hence, ‖fn‖

1
Λϕ,ω

↑ ‖f‖1
Λϕ,ω

, and f∗n(x) ↑

f∗(x). We have m({x ∈ R : fn(x) 6= 0}) <∞ for all n ∈ N and ϕ∗ is a continuous
function. So there is a sequence {kn} of positive numbers such that

∫

I

ϕ∗(ψ(knf
∗
n(x)))ω(x)dx = 1 ∀n ∈ N.

Therefore, it follows from Lemma 2.5 that

kn‖fn‖
1
ΛR

ϕ,ω
=

∫

I

ϕ(knf
∗(x))ω(x)dx + 1 ∀n ∈ N.(7)

Because {f∗n(x)} is an increasing sequence of functions and {kn} is a decreasing
sequence, there exists the limit lim

n→∞
kn = k∗, and then from (7), we have

k∗‖f‖
1
ΛR

ϕ,ω
= lim inf

n→∞

∫

I

ϕ(knf
∗(x))ω(x)dx + 1 ≥

∫

I

ϕ(k∗f
∗(x))ω(x)dx + 1.
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Therefore, k∗ > 0 and

‖f‖1
ΛR

ϕ,ω
≥

1

k∗
(

∫

I

ϕ(k∗f
∗(x))ω(x)dx + 1)

≥ inf{
1

k
(1 +

∫

I

ϕ(kf∗(x))ω(x)dx) : k > 0}.

From this and (6), we get

‖f‖1
ΛR

ϕ,ω
= inf{

1

k
(1 +

∫

I

ϕ(kf∗(x))ω(x)dx) : k > 0}.

If ψ is not a continuous function, it is known that ψ is left continuous. For all
ε ∈ (0, 1), we approximate ψ by a nondecreasing, continuous ψ1 such that

ϕ((1 − ε)x) ≤ ϕ1(x) ≤ ϕ(x) ∀x > 0,

where ϕ1 is a convex function having ψ1 as the left derivative. It is easy to prove
that ϕ1 is an N-function, ΛR

ϕ,ω = ΛR
ϕ1,ω and

(1 − ε)‖f‖1
ΛR

ϕ,ω
≤ ‖f‖1

ΛR
ϕ1,ω

≤ ‖f‖1
ΛR

ϕ,ω
.

Hence, due to the result proved for continuous functions , we have

‖f‖1
ΛR

ϕ,ω
≥ ‖f‖1

ΛR
ϕ1,ω

= inf{
1

k
(1 +

∫

I

ϕ1(kf
∗(x))ω(x)dx : k > 0}

≥ inf{
1

k
(1 +

∫

I

ϕ((1 − ε)kf∗(x))ω(x)dx : k > 0}

= (1 − ε) inf{
1

k
(1 +

∫

I

ϕ(kf∗(x))ω(x)dx : k > 0}.

Letting ε→ 0, we get

‖f‖1
ΛR

ϕ,ω
≥ inf{

1

k
(1 +

∫

I

ϕ(kf∗(x))ω(x)dx : k > 0}.

Combining this equation with (6) we obtain

‖f‖1
ΛR

ϕ,ω
= inf{

1

k
(1 +

∫

I

ϕ(kf∗(x))ω(x)dx : k > 0}.

The proof is complete. �

We will show, in particular, that on Orlicz-Lorentz spaces the Orlicz norm and
the Luxemburg norm are equivalent , and satisfy the following inequalities

‖f‖ΛR
ϕ,ω

≤ ‖f‖1
ΛR

ϕ,ω
≤ 2‖f‖ΛR

ϕ,ω
∀f ∈ ΛR

ϕ,ω.
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Moreover, we find the best constants for the inequalities between these norms.
Suppose that C1 is the largest number and C2 is the smallest number such that

C1‖f‖ΛR
ϕ,ω

≤ ‖f‖1

Λ
|R
ϕ,ω

≤ C2‖f‖ΛR
ϕ,ω

∀f ∈ ΛR

ϕ,ω.(8)

It is well known that the Orlicz norm has the Fatou property, that is, if 0 ≤ fn ≤
f ∈ ΛR

ϕ,ω, then ‖fn‖ΛR
ϕ,ω

→ ‖f‖ΛR
ϕ,ω

whenever fn → f a.e. Hence, condition (8)

is equivalent to the following

C1‖f‖ΛR
ϕ,ω

≤ ‖f‖1
ΛR

ϕ,ω
≤ C2‖f‖ΛR

ϕ,ω
(9)

for all functions f(x) ∈ ΛR
ϕ,ω which are nonnegative, simple and satisfying

‖f‖ΛR
ϕ,ω

= 1. From the above definition, we have 1 ≤ C1 ≤ C2 ≤ 2. Put

H(k) = sup
t>0

ϕ(kt)

ϕ(t)
, D(k) = inf

t>0

ϕ(kt)

ϕ(t)
.

Clearly, the functions D(k),H(k) are increasing, D(k) ≤ H(k) ≤ k for any
0 ≤ k ≤ 1 and k ≤ D(k) ≤ H(k) for any k > 1. From now on, we denote by f−1

the inverse function of f .

Theorem 2.6. Let ϕ be an Orlicz function. Then
(i) If ϕ is an N-function, we have

C1 = inf
c>0

1

c
ϕ−1
∗ (c)ϕ−1(c) = inf

k>0

1 +D(k)

k
;(10)

(ii) We always have

C2 ≤ inf
k>0

1 +H(k)

k
,(11)

and if ϕ is an N-function then

sup
c>0

1

c
ϕ−1
∗ (c)ϕ−1(c) ≤ C2.(12)

Proof. (i) We have

inf
k>0

1

k
(1 +D(k)) = inf

k>0

1

k

(

1 + inf
x>0

ϕ(kx)

ϕ(x)

)

= inf
k>0

1

k
(1 + inf

c>0

ϕ(kϕ−1(c))

c
)(13)

= inf
c>0

1

c
inf
k>0

ϕ∗(ϕ
−1
∗ (c) + ϕ(kϕ−1(c))

kc
= inf

c>0

1

c
ϕ−1(c)ϕ−1

∗ (c).

If f(x) ∈ ΛR
ϕ,ω is a simple function such that ‖f‖ΛR

ϕ,ω
= 1, then

∫

I

ϕ(f∗(x))ω(x)dx = 1.
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Therefore, it follows from Theorem 2.4 that

‖f‖1
ΛR

ϕ,ω
= inf

{1

k

(

1 +

∫

I

ϕ(kf∗(x))ω(x) dx
)

: k > 0
}

≥ inf
{1

k

(

1 +D(k)

∫

I

ϕ(f∗(x))ω(x) dx
)

: k > 0
}

≥ inf
k>0

1 +D(k)

k
.

Therefore, due to (9), we have

C1 ≥ inf
k>0

1 +D(k)

k
.(14)

For any c > 0, we choose t > 0 such that
t
∫

0

ω(x)dx = 1/c. We put f(x) = χ(0,t)(x).

By an immediate computation, we have

‖f‖ΛR
ϕ,ω

=
1

ϕ−1(c)
and ‖f‖1

ΛR
ϕ,ω

= inf
k>0

1

k
(1 + ϕ(k)c) =

1

c
ϕ−1
∗ (c).

Hence

C1 ≤
‖f‖1

ΛR
ϕ,ω

‖f‖ΛR
ϕ,ω

=
1

c
ϕ−1
∗ (c)ϕ−1(c) ∀c > 0.

This implies

C1 ≤ inf
c>0

1

c
ϕ−1(c)ϕ−1

∗ (c).(15)

Combining (13), (14) and (15), we obtain (10).
(ii) Let f ∈ ΛR

ϕ,ω and ‖f‖1
ΛR

ϕ,ω
≤ 1. Then it follows from Theorem 2.4 that

‖f‖1
ΛR

ϕ,ω
≤

1

k
(1 +

∫

I

ϕ(kf∗(x))ω(x)dx)

≤
1

k
(1 +H(k)

∫

I

ϕ(f∗(x))ω(x)dx) ≤
1 +H(k)

k
∀k > 0,

which gives C2 ≤ inf
k>0

1+H(k)
k .

Similarly as above for C1, we get

C2 ≥ sup
c>0

1

c
ϕ−1(c)ϕ−1

∗ (c),

if ϕ is an N-function. The proof is complete. �

Now we find the conditions so that C1 = 1.

Theorem 2.7. Let ϕ be an N-function. Then C1 > 1 if and only if ϕ ∈ ∆2∩∇2.
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Proof. Necessity. Assume C1 > 1. We have to prove that ϕ ∈ ∆2 ∩∇2. Indeed,
assume the contrary that ϕ /∈ ∆2 ∩∇2. Then ϕ /∈ ∆2 or ϕ /∈ ∇2. From Theorem
2.6, we have

C1 = inf
t>0

1 +D(t)

t
.

If ϕ /∈ ∆2, there exists a sequence of positive numbers {xn} such that ϕ(xn) ≥
nϕ(xn/2) ∀n ∈ N. Fix t ∈ (0, 1) and choose n0 ∈ N such that 1/2 ≥ tn0. Then
for all n > n0 we have ϕ(xn) ≥ nϕ(xn/2) ≥ nϕ(tn0xn). So, it follows from
ϕ(tn0xn) ≥ (D(t))n0ϕ(xn) that 1 ≥ n(D(t))n0 ∀n > n0, and then D(t) = 0 for
all t ∈ (0, 1). Hence

C1 ≤ inf
t∈(0,1)

1 +D(t)

t
= inf

t∈(0,1)

1

t
= 1.

Therefore, by C1 ≥ 1 we have C1 = 1.
If ϕ /∈ ∇2, it follows from Remark 1.2 that for any t > 1, for all δ > 0 there exists
x > 0 such that

ϕ(tx) < (t+ δ)ϕ(x).

Therefore,

D(t) = inf
x>0

ϕ(tx)

ϕ(x)
≤ t+ δ.

Letting δ → 0, we obtain D(t) = t ∀t > 1. So we have

C1 ≤ inf
t>1

1 +D(t)

t
= inf

t>1

1 + t

t
= 1.

From this inequality and by C1 ≥ 1, we get C1 = 1, which contradicts C1 > 1.
So, ϕ ∈ ∆2 ∩∇2 has been proved.
Sufficiency. Assume ϕ ∈ ∆2 ∩ ∇2, we have to show C1 > 1. Indeed, since
ϕ ∈ ∆2, D(1/2) > 0. Since ϕ ∈ ∇2, there exists β > 1 such that

xψ(x)

ϕ(x)
> β ∀x > 0,

where ψ is the left derivative of ϕ (see (ii) in Remark 1.2). Therefore, for all t > 1
we have

ln
ϕ(tx)

ϕ(x)
=

tx
∫

x

ψ(y)

ϕ(y)
dy ≥

tx
∫

x

β

y
dy = β ln t ∀x > 0.

This implies D(t) ≥ tβ. Hence

inf
t≥1

1 +D(t)

t
≥ inf

t>1

1 + tβ

t
> 1.

Then it follows from

inf
1>t≥1/2

1 +D(t)

t
≥ inf

1>t≥1/2
(1 +D(t)) ≥ 1 +D(1/2) > 1
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and

inf
1/2≥t>0

1 +D(t)

t
≥ 2,

that

C1 = inf
t>0

1 +D(t)

t
> 1.

The proof is complete. �

We have the following result:

Lemma 2.8. Let ϕ be an Orlicz function with continuous left derivative ψ. Put

H(k) = sup
x>0

ϕ(kx)

ϕ(x)
, a = sup

x>0

xψ(x)

ϕ(x)
, b = inf

x>0

xψ(x)

ϕ(x)
.

Then H has the left derivative and the right derivative at 1 and H
′

+(1) = a,

H
′

−(1) = b.

Proof. For k > 1, x > 0 we have

ln
ϕ(kx)

ϕ(x)
=

kx
∫

x

ψ(t)

ϕ(t)
dt ≤

kx
∫

x

a

t
dt = a ln k.

Thus H(k) ≤ ka. Hence

lim sup
k→1+

H(k) −H(1)

k − 1
≤ lim

k→1+

ka − 1

k − 1
= a.(16)

Otherwise, let c ∈ (0, a). There exist x0 > 0, δ > 0 such that

xψ(x)

ϕ(x)
> c ∀x ∈ (x0, x0 + δ).

For k ∈ (1, 1 + δ
x0

), we have (x0, kx0) ⊂ (x0, x0 + δ), and then

ln
ϕ(kx0)

ϕ(x0)
=

kx0
∫

x0

ψ(t)

ϕ(t)
dt ≥

kx0
∫

x0

c

t
dt = c ln k.

This implies that

H(k) ≥
ϕ(kx0)

ϕ(x0)
≥ kc.

Hence

lim inf
k→1+

H(k) − 1

k − 1
≥ lim

k→1+

kc − 1

k − 1
= c.

Letting c → a and using (16), we see that H has the right derivative at 1 and

H
′

+(1) = a. Next, we prove that H
′

−(1) = b. Indeed, for k < 1 we have

ln
ϕ(x)

ϕ(kx)
=

x
∫

kx

ψ(t)

ϕ(t)
dt ≥

x
∫

kx

b

t
dt = −b ln k = − ln kb ∀x > 0,
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which gives H(k) ≤ kb. Hence

lim inf
k→1−

1 −H(k)

1 − k
≥ lim

k→1−

1 − kb

1 − k
= b.(17)

On the other hand, for d > b, there exists x0 > 0 satisfying

x0ψ(x0)

ϕ(x0)
< d,

and then there exists δ > 0 such that

xψ(x)

ϕ(x)
< d ∀x ∈ (x0 − δ, x0).

For 1 − δ
x0
< k < 1 we get (kx0, x0) ⊂ (x0 − δ, x0), and then

ln
ϕ(x0)

ϕ(kx0)
=

x0
∫

kx0

ψ(t)

ϕ(t)
dt ≤

x0
∫

kx0

d

t
dt = − ln kd.

It follows that

H(k) ≥
ϕ(kx0)

ϕ(x0)
≥ kd ∀k ∈ (1 −

δ

x0
, 1).

Therefore,

lim sup
k→1−

1 −H(k)

1 − k
≤ lim

k→1+

1 − kd

1 − k
= d ∀d > b.(18)

Combining (17) and (18), we obtain that H has the left derivative at 1 and

H
′

−(1) = b. The proof is complete. �

Theorem 2.9. Let ϕ be an Orlicz function and its left derivative ψ be continuous.
Then C2 = 2 if and only if

inf
x>0

xψ(x)

ϕ(x)
≤ 2 ≤ sup

x>0

xψ(x)

ϕ(x)
.(19)

Proof. Necessary. Assume that C2 = 2, we have to show (19) . Indeed, put g(k) =
(1 + H(k))/k. Then g(1) = 2 and due to Theorem 2.6, we get C2 ≤ inf{g(k) :
k > 0}. So, g(1)= min{g(k) : k > 0}. Since H has the left derivative and the
right derivative at 1, g also has these derivatives at 1. Moreover, it follows from
g(t) ≥ g(1) ∀t > 0 that g

′

+(1) ≥ 0 ≥ g
′

−(1). Thus

H
′

+(1) ≥ 2 ≥ H
′

−(1).

From this and using Lemma 2.8, we have (19).
Sufficiency. Assume that (19) is true, we need to prove C2 = 2. Indeed, for all
ε ∈ (0, 1), by the continuity of ψ, there exists x0 > 0 such that

x0ψ(x0)

ϕ(x0)
∈ (2 − ε, 2 + ε).

Put
f(x) = x0χ(0,t)(x), g(x) = ψ(x0)ω(x)χ(0,t)(x),
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where t is chosen such that ϕ(x0)
t
∫

0

ω(x)dx = 1 − ε. Hence

∫

R

ϕ(|f(x)|)ω(x)dx = 1 − ε

and

∫

R

f(x)g(x)dx =

t
∫

0

x0ψ(x0)ω(x)dx

=
x0ψ(x0)

ϕ(x0)

t
∫

0

ϕ(x0)ω(x)dx ∈ ((2 − ε)(1 − ε), (2 + ε)(1 − ε)).

Thus

2 − 3ε <

∫

R

f(x)g(x)dx < 2 − ε.

Using Young’s equality, we get
∫

R

f(x)g(x)dx =

∫

I

ϕ(f∗(x))ω(x)dx +

∫

I

ϕ∗(
g∗(x)

ω(x)
)ω(x)dx.

Then it follows from
∫

I ϕ(|f∗(x)|)ω(x)dx = 1 − ε that
∫

I

ϕ∗(
g∗(x)

ω(x)
)ω(x)dx ≤ 1.

So, we obtain

‖f‖ΛR
ϕ,ω

≤ 1, ‖g‖MR
ϕ∗ ,ω

≤ 1 and

∫

R

f(x)g(x)dx > 2 − 3ε.

Hence

C2 ≥
‖f‖1

ΛR
ϕ,ω

‖f‖ΛR
ϕ,ω

≥

∫

R

f(x)g(x)dx > 2 − 3ε.

Letting ε→ 0 we get C2 ≥ 2. So, C2 = 2. The proof is complete. �

Theorem 2.10. Let ϕ be an Orlicz function. For each g(x) ∈MR
ϕ∗,ω, we define

‖g‖1
MR

ϕ∗ ,ω
= sup{

∫

R

|f(x)g(x)|dx : ‖f‖ΛR
ϕ,ω

≤ 1}.(20)

Then we have the following dual equality

‖f‖ΛR
ϕ,ω

= sup{

∫

R

|f(x)g(x)|dx : ‖g‖1
MR

ϕ∗ ,ω
≤ 1}.(21)
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Proof. From (20), we obtain the following inequality

∫

R

|f(x)g(x)|dx ≤ ‖f‖ΛR
ϕ,ω

‖g‖1
MR

ϕ∗,ω
.

Therefore,

‖f‖ΛR
ϕ,ω

≥ sup{

∫

R

|f(x)g(x)|dx : ‖g‖1
MR

ϕ∗ ,ω
≤ 1}.(22)

Next, we prove the inverse inequality

‖f‖ΛR
ϕ,ω

≤ sup{

∫

R

|f(x)g(x)|dx : ‖g‖1
MR

ϕ∗ ,ω
≤ 1}.(23)

We can assume that ‖f‖ΛR
ϕ,ω

= 1.

If f(x) is a simple function, then for any ε > 0 we have

∫

I

ϕ((1 + ε)f∗(x))ω(x)dx > 1.

Put

g(x) =
ψ((1 + ε)f∗(x))ω(x)

1 +
∫

I

ϕ∗(ψ((1 + ε)f∗(x))ω(x)dx
χ(0,∞)

(g(x) is well-defined because ψ(f∗(x)) is a simple function too, so we have
∫

I

ϕ∗(ψ((1 + ε)f∗(x))ω(x)dx <∞). Using Young’s inequality, we have

‖g‖1
MR

ϕ∗,ω
= sup{

∫

R

|h(x)g(x)|dx : ‖h‖ΛR
ϕ,ω

≤ 1}

≤

∫

I

ψ((1 + ε)f∗(x))h∗(x)ω(x)dx

1 +
∫

I

ϕ∗(ψ((1 + ε)f∗(x))ω(x)dx

≤

∫

I

ψ((1 + ε)f∗(x))h∗(x)ω(x)dx

∫

I

ϕ(h∗(x))ω(x)dx +
∫

I

ϕ∗(ψ((1 + ε)f∗(x)))ω(x)dx
≤ 1.
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Thus we get

sup{

∫

R

|f(x)h(x)|dx : ‖h‖1
MR

ϕ∗,ω
≤ 1}

≥

∫

I

f∗(x)g∗(x)dx =

∫

I

ψ((1 + ε)f∗(x))f∗(x)ω(x)dx

1 +
∫

I

ϕ∗(ψ((1 + ε)f∗(x))ω(x)dx

=
1

1 + ε

∫

I

ϕ((1 + ε)f∗(x))ω(x)dx +
∫

I

ϕ∗(ψ((1 + ε)f∗(x)))ω(x)dx

1 +
∫

I

ϕ∗(ψ((1 + ε)f∗(x))ω(x)dx

≥
1

1 + ε
∀ε > 0.

Hence

sup{

∫

R

|f(x)h(x)|dx : ‖h‖1
MR

ϕ∗,ω
≤ 1} ≥ 1 = ‖f‖ΛR

ϕ,ω
.

Therefore, (23) is true for simple functions f(x) .
If f(x) is an arbitrary function, then approximating f(x) by a sequence of simple
functions we get (23). Combining (22) with (23), we have (21). The proof is
complete. �

3. The Kolmogorov inequality in Orlicz-Lorentz space

The Landau-Kolmogorov inequality

‖f (k)‖n
∞ ≤ K(k, n)‖f‖n−k

∞ ‖f (n)‖k
∞,(24)

where 0 < k < n, is well known and has many interesting applications and gener-
alizations (see [1, 3, 4, 5, 6, 7, 20, 21, 22, 23]). Its study was initiated by Landau
[17] and Hadamard [8] (the case n = 2). For functions on the whole real line R,
Kolmogorov [15] succeeded in finding in explicit form the best possible constants
K(k, n) = Ck,n in (24), and Stein proved in [22] that inequality (24) still holds
for Lp-norm, 1 ≤ p < ∞, with these constants (the same situation also happens
for an arbitrary Orlicz norm [1]). In this section will prove that the Kolmogorov
inequality still holds for the Orlicz norm and the Luxemburg norm in Orlicz-
Lorentz spaces. For simplicity of notations, we we denote ΛR

ϕ,ω by Λϕ,ω, ‖.‖ΛR
ϕ,ω

by ‖.‖Λϕ,ω , ‖.‖1
ΛR

ϕ,ω
by ‖.‖ϕ,ω, MR

ϕ∗,ω by Mϕ∗,ω and ‖.‖MR
ϕ∗,ω

by ‖.‖Mϕ∗,ω . Note

that if ω is regular (that is
∫ t
0 ω(s)ds � tω(t)), then Mϕ∗,ω is a linear space, and

‖ · ‖Mϕ∗,ω is a quasi-norm. Especially, Λϕ,ω ⊂ S
′
(R) is the space of all tempered

generalized functions this follow from the fact that
∫ t
0 ω(s)ds � tω(t).

We have the following lemmas:

Lemma 3.1. Let f ∈ Λϕ,ω and g ∈ L1(R). Then f ∗ g ∈ Λϕ,ω and

‖f ∗ g‖ϕ,ω ≤ ‖f‖ϕ,ω‖g‖1
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and

‖f ∗ g‖Λϕ,ω ≤ ‖f‖Λϕ,ω‖g‖1.

Lemma 3.2. Let n ≥ 1. If f ∈ L1,loc(R) and its generalized nth derivative

g ∈ L1,loc(R), then f can be redefined on a set of measure zero so that f (n−1) is

absolutely continuous and f (n) = g a.e. on R.

Now, we state our theorem.

Theorem 3.3. Let ϕ be an arbitrary Orlicz function, ω be a weight function, f
and its generalized derivative f (n) be in Λϕ,ω. Then f (k) ∈ Λϕ,ω for all 0 < k < n
and

‖f (k)‖n
ϕ,ω ≤ Ck,n‖f‖

n−k
ϕ,ω ‖f (n)‖k

ϕ,ω ,(25)

where Ck,n are the best constants defined in the Kolmogorov inequality (for the
case p = ∞).

Proof. We begin to prove (25) with the assumption that f (k) ∈ Λϕ,ω, with k =
0, 1, ..., n. Indeed, fix 0 < k < n and let ε > 0 be given. We choose a function
vε ∈Mϕ∗,ω, ‖vε‖Mϕ∗,ω ≤ 1 such that

∣

∣

∫

R

f (k)(x)vε(x)dx
∣

∣ ≥ ‖f (k)‖ϕ,ω − ε.(26)

Put

Fε(x) =

∫

R

f(x+ y)vε(y)dy.

Then Fε(x) ∈ L∞(R) by the definition of the Orlicz norm, and

F (r)
ε (x) =

∫

R

f (r)(x+ y)vε(y)dy, 0 ≤ r ≤ n(27)
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in the distribution sense. Actually, for every function ψ(x) ∈ C∞
0 (R) it follows

from the assumption and the definition of the Orlicz norm that

〈F (r)
ε (x), ψ(x)〉 = (−1)r〈Fε(x), ψ

(r)(x)〉

= (−1)r
∫

R





∫

R

f(x+ y)vε(y)dy



ψ(r)(x)dx

= (−1)r
∫

R

vε(y)





∫

R

f(x+ y)ψ(r)(x)dx



 dy

=

∫

R

vε(y)





∫

R

f (r)(x+ y)ψ(x)dx



 dy

=

∫

R





∫

R

f (r)(x+ y)vε(y)dy



ψ(x)dx

= 〈

∫

R

f (r)(x+ y)vε(y)dy , ψ(x)〉.

So we have proved (27).
Since ‖vε‖Mϕ∗,ω ≤ 1, clearly, for all x ∈ R,

|F (r)
ε (x)| ≤ ‖f (r)(x+ ·)‖ϕ,ω‖vε‖Mϕ∗,ω ≤ ‖f (r)‖ϕ,ω.

Now, we prove the continuity of F
(r)
ε on R. Indeed, put h(x) = f (r)(x), ht(x) =

f (r)(x + t), g(x) = vε(x). So, to prove the continuity of F
(r)
ε on R we only have

to show that

lim
t→0

∫

R

(ht(x) − h(x))g(x)dx = 0.(28)

To do this, it is sufficient to prove for real nonnegative value functions h(x). Since

h ∈ Λϕ,ω and g ∈ (Λϕ,ω)
′
, we have

∞
∫

0

h∗(x)g∗(x)dx <∞.(29)

We first prove (28) whenever h(x) = χA(x) is the characteristic function of the
measurable set A, there are two cases, that is
Case 1: m(A) < +∞. We denote A− t := {x − t : x ∈ A}, Ct := A∆(A− t).
Then it follows from m(A) < ∞ that lim

t→0
m(Ct) = lim

t→0
m(A∆(A − t)) = 0. We
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have h∗(x) = χ(0,m(A))(x). From this and (29) we get

m(A)
∫

0

g∗(x)dx < +∞.

Hence, for any ε > 0, there exists δ > 0 such that
δ
∫

0

g∗(x)dx < ε, and then there

is t0 > 0 such that m(A∆(A− t)) < δ for all |t| < t0. Therefore, for |t| < t0 :
∣

∣

∣

∫

R

(χA(x+ t) − χA(x))g(x)dx
∣

∣

∣ ≤

∫

R

∣

∣

∣(χA(x+ t) − χA(x))g(x)
∣

∣

∣dx

=

∫

Ct

∣

∣

∣χCt(x)
∣

∣

∣.
∣

∣

∣g(x)
∣

∣

∣dx ≤

m(Ct)
∫

0

g∗(x)dx < ε.

That is

lim
t→0

∫

R

(χA(x+ t) − χA(x))g(x)dx = 0.

Case 2: m(A) = +∞. Then h∗(x) ≡ 1 on I. Therefore, from (29), we see that
g∗(x) is integrable on I. Thus, g(x) ∈ L1(R), and then lim

t→0
‖g − g−t‖L1(R) = 0.

Therefore, it follows from
∫

R

(χA(x+ t) − χA(x))g(x)dx =

∫

R

χA(x)g(x − t)dx−

∫

R

χA(x)g(x)dx

=

∫

R

χA(x)(g(x − t) − g(x))dx

≤

∫

R

|(g(x − t) − g(x))|dx = ‖g−t − g‖L1(R)

that

lim
t→0

∫

R

(χA(x+ t) − χA(x))g(x)dx = 0,

i.e., (28) is true for h(x) = χA(x) being the characteristic function of the mea-
surable set A.
By the linearity of integral, (28) is true for all simple functions h(x) satisfying
the condition of the theorem.
If h(x) is a nonnegative, measurable function, we consider the sequence of func-
tions {hn(x)}∞n=1 as follows

hn(x) =

n2n−1
∑

k=0

k

2n
χAn,k

(x) + nχAn(x),
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where An,k = {x : k
2n ≤ h(x) < k+1

2n } and An = {x : h(x) ≥ n}. Then it is
easy to check that hn(x) ↑ h(x) a.e., and lim

n→∞
m(An) = 0. Given ε > 0 and

δ > 0. We choose n0 such that 1/2n < ε and m(An) < δ for all n ≥ n0, then
{x : h(x) − hn(x) ≥ ε} ⊂ An. Hence

m({x : |h(x) − hn(x)| ≥ ε}) ≤ m(An) < δ.

That is hn
m
→ f . So (hn − h)∗(x) → 0. By Lebesgue’s dominated convergence

theorem, we obtain

lim
n→∞

∫

I

(hn − h)∗(x)g∗(x)dx = 0.

Then it follows from
∣

∣

∣

∫

R

(h(x+ t)−h(x))g(x)dx
∣

∣

∣ =
∣

∣

∣

∫

R

(h(x+ t) − hn(x+ t))g(x)dx

+

∫

R

(hn(x+ t) − hn(x))g(x)dx +

∫

R

(hn(x) − h(x))g(x)dx
∣

∣

∣

≤ 2

∫

I

(hn − h)∗(x)g∗(x)dx+
∣

∣

∣

∫

R

(hn(x+ t) − hn(x))g(x)dx
∣

∣

∣

that

lim sup
t→0

∣

∣

∣

∫

R

(h(x + t) − h(x))g(x)dx
∣

∣

∣
≤ 2

∞
∫

0

(hn − h)∗(x)g∗(x)dx ∀n ∈ N.

Hence

lim sup
t→0

∣

∣

∣

∫

R

(h(x+ t) − h(x))g(x)dx
∣

∣

∣ ≤ 2 lim
n→∞

∞
∫

0

(hn − h)∗(x)g∗(x)dx = 0.

This gives

lim
t→0

∫

R

(h(x+ t) − h(x))g(x)dx = 0.

So, (28) has been proved.

The functions F
(r)
ε are continuous and bounded on R, therefore it follows from

the Landau-Kolmogorov inequality and (26)-(27) that
(

‖f (k)‖ϕ,ω − ε
)n

≤ |F (k)
ε (0)|n ≤ ‖F (k)

ε ‖n
∞ ≤ Ck,n‖Fε‖

n−k
∞ ‖F (n)

ε ‖k
∞.

On the other hand,

‖Fε‖∞ ≤ ‖f(x+ ·)‖ϕ,ω‖vε(·)‖Mϕ∗ ,ω ≤ ‖f‖ϕ,ω ,

‖F (n)
ε ‖∞ ≤ ‖f (n)(x+ ·)‖ϕ,ω‖vε(·)‖Mϕ∗ ,ω ≤ ‖f (n)‖ϕ,ω .

Hence
(

‖f (k)‖ϕ,ω − ε
)n

≤ Ck,n‖f‖
n−k
ϕ,ω ‖f (n)‖k

ϕ,ω.
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By letting ε→ 0, we have (25).

To complete the proof, it remains to show that f (k) ∈ Λϕ,ω, with 1 ≤ k ≤ n−1

if f, f (n) ∈ Λϕ,ω. Indeed, by Lemma 3.2 we can assume that f, f ′, . . . , f (n−1) are

continuous on R and f (n−1) is absolutely continuous on R, because f, f (n) ∈ Λϕ,ω.
Let ψ ∈ C∞

0 (R), ψ ≥ 0, ψ(x) = 0 for |x| ≥ 1 and
∫

R

ψ(x)dx = 1. We put

ψλ(x) = 1/λψ(x/λ), λ > 0 and fλ = f ∗ ψλ. Then fλ ∈ C∞(R) and f
(k)
λ =

f ∗ψ
(k)
λ = f (k) ∗ψλ, k ≥ 0. It follows from Lemma 3.1 that f

(k)
λ ∈ Λϕ,ω. Then by

the fact proved above, we obtain

‖f
(k)
λ ‖n

ϕ,ω ≤ Ck,n‖fλ‖
n−k
ϕ,ω ‖f

(n)
λ ‖k

ϕ,ω, 0 < k < n.

It follows from the following inequalities

‖fλ‖ϕ,ω ≤ ‖f‖ϕ,ω‖ψλ‖1 = ‖f‖ϕ,ω,

‖f
(n)
λ ‖ϕ,ω ≤ ‖f (n)‖ϕ,ω‖ψλ‖1 = ‖f (n)‖ϕ,ω

that the set {f
(k)
λ }λ∈R+

is bounded in Λϕ,ω and, by the continuity of f
(k)
λ , lim

λ→0
f

(k)
λ (x)

= lim
λ→0

f (k) ∗ ψλ = f (k)(x)∀x ∈ R. Indeed, for all x ∈ R, we have

|f
(k)
λ (x) − f (k)(x)| =

∣

∣

∣

∣

∫

R

(

f (k)(x− y) − f (k)(y)
)

ψλ(y)dy

∣

∣

∣

∣

≤

∫

|λ|≤ε

∣

∣f (k)(x− y) − f (k)(y)
∣

∣ψλ(y)dy

≤ sup
|y|≤λ

∣

∣f (k)(x− y) − f (k)(y)
∣

∣ → 0 as λ→ 0+.

Put gλ(x) = inf
0<µ≤λ

|f
(k)
µ (x)|. Then gλ ∈ Λϕ,ω for all λ ∈ R+, the set {gλ}λ∈R+

is bounded in Λϕ,ω and gλ ↑ |f (k)| as λ → 0+. Therefore, g∗λ ↑ f (k)∗ as λ → 0+.
Choose M > 0 such that ‖gλ‖ < M for all λ ∈ R+. So,

∞
∫

0

ϕ(
g∗λ(t)

M
)ω(t)dt ≤ 1 ∀λ ∈ R+.

Letting λ→ 0+, by the monotone convergence theorem, we get

∞
∫

0

ϕ(
f (k)∗(t)

M
)ω(t)dt ≤ 1.

Hence f (k) ∈ Λϕ,ω for 1 ≤ k ≤ n− 1. The proof is complete. �

From the proof of (28) we have the following result.
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Proposition 3.4. Let f, g be measurable functions satisfying the following con-
dition

∞
∫

0

f∗(x)g∗(x)dx < +∞.

Then

lim
t→0

∫

R

(f(x+ t) − f(x))g(x)dx = 0.

From Proposition 3.4 , we have the following:

Corollary 3.5. Let f ∈ ΛR
ϕ,ω, g ∈MR

ϕ∗,ω. Then

lim
t→0

∫

R

(f(x+ t) − f(x))g(x)dx = 0.

For the Luxemburg norm ‖ · ‖Λϕ,ω , the Kolmogorov inequality also holds:

Theorem 3.6. Let ϕ be an arbitrary Orlicz function, ω be a weight function, f
and its generalized derivative f (n) be in Λϕ,ω. Then f (k) ∈ Λϕ,ω for all 0 < k < n
and

‖f (k)‖n
Λϕ,ω

≤ Ck,n‖f‖
n−k
Λϕ,ω

‖f (n)‖k
Λϕ,ω

.
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