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RANDOM MATRICES: LOCALIZATION OF THE
EIGENVALUES AND THE NECESSITY OF FOUR MOMENTS

TERENCE TAO AND VAN VU

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. Consider the eigenvalues λi(Mn) (in increasing order) of a random
Hermitian matrix Mn whose upper-triangular entries are independent with
mean zero and variance one, and are exponentially decaying. By Wigner’s
semicircular law, one expects that λi(Mn) concentrates around γi

√
n, where∫ γi

−∞ ρsc(x)dx = i
n

and ρsc is the semicircular function.

In this paper, we show that if the entries have vanishing third moment,
then for all 1 ≤ i ≤ n

E|λi(Mn)−
√
nγi|2 = O(min(n−c min(i, n+ 1− i)−2/3n2/3, n1/3+ε)),

for some absolute constant c > 0 and any absolute constant ε > 0. In partic-
ular, for the eigenvalues in the bulk (min{i, n− i} = Θ(n)),

E|λi(Mn)−
√
nγi|2 = O(n−c).

A similar result is achieved for the rate of convergence.
As a corollary, we show that the four moment condition in the Four Moment

Theorem is necessary, in the sense that if one allows the fourth moment to
change (while keeping the first three moments fixed), then the mean of λi(Mn)

changes by an amount comparable to n−1/2 on the average. We make a precise
conjecture about how the expectation of the eigenvalues vary with the fourth
moment.

1. Introduction

This note is concerned with the local eigenvalue statistics of the following
random matrix model.

Definition 1.1 (Wigner matrices). A Wigner matrix is a random hermitian
matrix Mn = (ζij)1≤i,j≤n such that

• The ζij for 1 ≤ i ≤ j ≤ n are independent with mean zero and variance
one, and ζji = ζij ;
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• For 1 ≤ i < j ≤ n, ζij are identically distributed, with the real and
imaginary parts of ζij being independent and identically distributed with
distribution η;
• For 1 ≤ i ≤ n, the ζii are identically distributed with distribution η̃;
• (Uniform exponential decay) There exist constants C,C ′ > 0 such that

(1) P(|ζij | ≥ tC) ≤ exp(−t)
for all t ≥ C ′ and 1 ≤ i, j ≤ n.

We refer to η, η̃ as the atom distributions of Mn.

A classical example of a Wigner matrix is the Gaussian unitary ensemble
(GUE), in which η and η̃ are the normal distributions with mean zero and vari-
ances 1/2, 1 respectively.

Remark 1.2. Wigner’s matrices are not the most general random matrix model
for which the results here are applicable, but we restrict to this case for simplicity.
The results, for example, hold for real matrices, in particular Bernoulli matrices.

A Wigner matrix Mn has n real eigenvalues

λ1(Mn) ≤ . . . ≤ λn(Mn).

The global distribution of these eigenvalues has been known since the 1950s,
and is described by the famous Wigner semicircular law, which asserts that the
empirical spectral measure

1
n

n∑
i=1

δ 1√
n
λi(Mn)

converges almost surely (in the vague topology) to the semicircular distribution
ρsc(x) dx, where

ρsc(x) :=
1
π

(4− x2)1/2+ .

It is of interest to understand the distribution of individual eigenvalues λi(Mn).
If for each 1 ≤ i ≤ n we define the classical location γi of the normalised ith

eigenvalue by the formula

(2)
∫ γi

−∞
ρsc(x)dx =

i

n
,

then the Wigner semicircular law (combined with an almost sure bound of (2 +
o(1))

√
n for the operator norm of Mn, due to Bai and Yin[4]) is equivalent to the

assertion that one has

(3) λi(Mn) = γi
√
n+ o(

√
n)

uniformly for 1 ≤ i ≤ n, almost surely as n → ∞. If we ignore the o(
√
n) error

in (3), we are thus led to the heuristic

(4) λi+1(Mn)− λi(Mn) ≈ min(i, n− i)−1/3n−1/6

for the ith eigenvalue spacing. In particular, this spacing should be comparable
to n−1/2 in the bulk region δn ≤ i ≤ (1 − δ)n (for any fixed δ > 0), and as
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large as n−1/6 at the edge of the spectrum. Note though that this derivation is
non-rigorous as the o(

√
n) error could be much larger than the expected gap size

(4).
In the last few years, there has been much progress in formalising the above

heuristics and obtaining more precise control on the distribution of the eigenvalues
and their spacings: see e.g. [16], [5], [17], [6], [18], [14]. A recent survey of these
topics can be found in [10].

It is natural to ask whether the o(
√
n) error in (3) can be improved. In [1], the

Talagrand concentration inequality was used to establish (among other things1)
that

(5) λi(Mn) = Mλi(Mn) +O(nε min(i, n+ 1− i))

with probability at least 1−OA,ε(n−A) (say) for any A, ε > 0, where Mλi(Mn) is
the median of λi(Mn); see also [11] for closely related results. This was improved
in [15] to

(6) λi(Mn) = Mλi(Mn) +O(nε min(i, n+ 1− i)1/2)

with the same probability of 1−OA,ε(n−A). In the bulk region δn < i < (1−δ)n,
the concentration of measure arguments in [11] gives the bound

(7) λi(Mn) =
√
nγi +O(n1/2+ε min(i, n+ 1− i)−1/3n−1/6)

with probability 1−OA,ε,δ(n−A) whenever min(i, n+ 1− i) > n1/2+ε (see Section
2 for further discussion of this bound).

In all the above estimates, the error term is larger than 1. In the recent paper
[8, Theorem 7.1], the bound

(8)
n∑
i=1

E|λi(Mn)− γi
√
n|2 = O(n1−c)

was established for some absolute constant c > 0. (See also the earlier result in [7,
Theorem 6.3], which established (8) under an additional log-Sobolev hypothesis
on the distribution.) In the bulk region δn < i < (1−δ)n, a significantly stronger
localisation was obtained in [8] (see the equation preceding (7.8) in that paper),
namely that λi(Mn) = γi

√
n + O(n−1/2+ε) with probability Oε,A,δ(n−A) for any

ε,A, with variants of this result also being obtained closer to the edge. This result
was established via a strong bound on the convergence of the Stieltjes transform,
which in turn was obtained by a lengthy moment method computation.

Our first main result gives an alternate method to establish eigenvalue localisa-
tion, based on the three moment theorem rather than on combining the Stieltjes

1Strictly speaking, the results in [1], [15] only establish the bounds (5), (6) implicitly, and
require in addition that the matrix entries are uniformly bounded, rather than exponentially
decaying. However, the arguments in these papers can be easily extended to the exponentially
decaying case, after a standard truncation argument to reduce to the case when the entries are
bounded in magnitude by nε/2 (say), and replacing the median with a slightly shifted variant.
We omit the details.
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transform method with the moment method, and which gives a non-averaged
version (8) (in the case when the third moment vanishes):

Theorem 1.3 (Localisation). There is an absolute constant c > 0 such that the
following holds for any constant ε > 0. Let Mn be a Wigner matrix whose atom
distribution η has vanishing third moment Eη3 = 0. Then for all 1 ≤ i ≤ n,

(9) E|λi(Mn)−
√
nγi|2 = O(min(n−c min(i, n+ 1− i)−2/3n2/3, n1/3+ε)).

One can set c to be 1/1000 (say) and we make no attempt to optimize this
constant. By summing over i, one obtains (8). Furthermore, in the bulk region
δn ≤ i ≤ (1− δ)n, the theorem implies

E|λi(Mn)−
√
nγi|2 = Oδ(n−c).

This is not as strong as the recent localisation result obtained in [8], but the
proof is shorter (assuming the three moment theorem) and will suffice for our
applications. In view of (4), the optimal bound on the right-hand side of (9)
should be O(min(i, n− i)−2/3n−1/3+ε).

Let NI be the number of eigenvalues (of 1√
n
Mn) in I, and define Fn(x) =

1
nEN[−2,x]. The quantity ∆ := supx |Fn(x)−

∫ x
−∞ ρsc(t)dt| is of interest and has

been investigated by many researchers (see [3, Chapter 8], [9] and the references
therein). In these papers, it has been shown that ∆ = O(n−1/2) under various
assumptions (the most general one seems to be in [9] which only requires bounded
fourth moment).

The arguments in the proof of Theorem 1.3 can be used to break the n−1/2

barrier, under the extra third moment condition:

Theorem 1.4. There is an absolute constant c > 0 such that the following holds.
Let Mn be a Wigner matrix whose atom distribution η has vanishing third moment
Eη3 = 0. Then ∆ = O(n−1/2−c).

We prove this theorem in Section 2.1. The bound n−1/2−c can be improved
to n−1+ε if we use median instead of expectation in the definition of Fn (see
Remark 2.6). A related result was proven (using different methods) recently in
[8, Theorem 6.3], namely that

1
n
N[−2,x] =

∫ x

−∞
ρsc(t) dt+O(n−1/2−c/|x− 2|)

with probability 1−O(n−A) for any fixed A, without a third moment hypothesis.
Next, we give an application of Theorem 1.3 to demonstrate the sharpness (in

some sense) of the four moment theorem, introduced by the authors in [17, 18]
in order to study the distribution of eigenvalues of random matrices. We state a
special case of this theorem here:

Theorem 1.5 (Four Moment Theorem). For all sufficiently small c0 > 0 the
following holds. Let Mn, M ′n be two Wigner random matrices whose atom dis-
tributions η, η′ have matching moments to fourth order, thus Eηj = E(η′)j for
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j = 3, 4. Let G : R→ R be a smooth function obeying the derivative bounds

(10) |G(j)(x)| ≤ nc0

for all 0 ≤ j ≤ 5 and x ∈ R. We abbreviate λi := λi(Mn) and λ′i := λi(M ′n).
Then for n sufficiently large (depending on c0 and the constants C,C ′ in (1))

and all 1 ≤ i ≤ n one has

(11) |EG(
√
nλi)−EG(

√
nλ′i)| ≤ n−c0 .

If the atom distributions η, η′ have matching moments only to order 3 rather than
4 (i.e. Eη3 = E(η′)3), then (11) still holds provided that one strengthens (10) to

(12) |G(j)(x)| ≤ n−Cjc0

for all 0 ≤ j ≤ 5 and x ∈ R, and some absolute constant C.

Proof. See [17, Theorem 15] (which handled the bulk case when δn < i < (1−δ)n)
and [18, Theorem 1.13] (which handled the edge case). These theorems can also
handle the joint distribution of several eigenvalues at once, as well as somewhat
more general ensembles than those in Definition 1.1, but we will not discuss these
generalisations here. �

We will refer to the second part of Theorem 1.5 as the three moment theorem.
Roughly speaking, Theorem 1.5 asserts that the distributions of λi(Mn) and

λi(M ′n) differ by O(n−1/2−c) for some c > 0 if the atom distributions have match-
ing moments to order 4, and byOc(n−1/2+c) for any c > 0 if the atom distributions
only have matching moments to order 3. For instance, for sufficiently large n one
has

P(λi ≤ a) ≤ P(λ′i ≤ a+ n−1/2−c) + n−c

for some c > 0 if one has matching moments to order 4, and

P(λi ≤ a) ≤ P(λ′i ≤ a+ n−1/2+c) + n−c

for all c > 0 (with n sufficiently large depending on c) if one has matching
moments to order 3. Morally speaking, this means that the medians Mλi,Mλ′i
of λi, λ′i differ by O(n−1/2−c) when there are four matching moments and by
Oc(n−1/2+c) when there are three matching moments, although this is not quite
rigorous due to the presence of the n−c error in the above bounds. (For some
rigorous bounds on the median of λi, see Section 2.)

The matching moment conditions are essential to the method of proof of Theo-
rem 1.5, which uses a Taylor expansion argument. But it is natural to ask if these
conditions are in fact necessary. Indeed, if one is not interested in the distribution
of individual eigenvalues λi(Mn), but instead in the k-point correlation functions
of these eigenvalues, then in the asymptotic limit n→∞ (and with appropriate
normalisations), these correlation functions have a universal distribution regard-
less of how many matching moments there are; see [17, 6] (with earlier partial
results in this direction in [13], [5]). It is not hard to see that the universality for
the limiting distributions (or joint distributions) of individual eigenvalues imply
the universality of the k-point correlation function.
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Our second main result below is evidence that the four moment hypothesis is
indeed necessary if one wishes to control individual eigenvalues at the scale of the
eigenvalue spacing (4).

Theorem 1.6 (Necessity of fourth moment hypothesis). Let Mn,M
′
n be Wigner

matrices whose atom variables η, η′ satisfy Eη3 = E(η′)3 = 0 but their fourth
moments are different Eη4 6= E(η′)4. As before, write λi := λi(Mn) and λ′i :=
λi(M ′n). Then for all sufficiently large n, one has

n∑
i=1

|Eλi −Eλ′i| ≥ κn1/2

for some κ depending only on the atom distributions. In particular (by the pi-
geonhole principle), there exists 1 ≤ i ≤ n such that

|Eλi −Eλ′i| ≥ κ′min(i, n+ 1− i)−1/3n−1/6,

where κ′ > 0 depends only on the atom distributions.

Theorem 1.6 is not exactly comparable to the four moment theorem, as it
pertains to the mean of the eigenvalues λi, whereas the four moment theorem
instead controls quantities such as the median. However, it is expected that
the mean and median of λi should be quite close (in particular, closer than the
expected eigenvalue spacing (4)), but the best known concentration results for
λi (such as Theorem 1.3) are not strong enough to establish this yet. If one
assumes that the mean and median are sufficiently close, then Theorem 1.6 is
strong evidence that the four moment theorem breaks down if one only assumes
three matching moments.

The three moment theorem implies (roughly speaking) that the medians of
λi, λ

′
i should only differ by O(n−1/2+c0), for arbitrarily small c0 > 0. In view of

this, one expects the index i provided by Theorem 1.6 to lie in the bulk region
δn < i < (1− δ)n, and indeed the conclusion of Theorem 1.6 should in fact hold
for most i in this bulk region. However, we were unable to demonstrate this.
Nevertheless, concentration bounds such as those given earlier in this section
should be able to establish some non-trivial lower bound on min(i, n+ 1− i).

The question that how each particular eigenvalue reacts to a change in the
forth moment looks very interesting. By utilising higher moments and making
some heuristic arguments (see the last section of the paper) we are led to the
following precise conjecture.

Conjecture 1.7 (Conjectured asymptotic). For δn ≤ i ≤ (1 − δ)n with δ > 0
fixed, one has

Eλi = n1/2γi + n−1/2Ci,n +
1

4
√
n

(γ3
i − 2γi)Eη4 +Oδ(n−1/2−c)

for some absolute constant c > 0, where Ci,n is some bounded quantity depending
only on i, n (and is in particular independent of η). The same statement should
also be true for the median Mλi.



NECESSITY OF FOUR MOMENTS 437

We ran a numerical test to check the conjecture. We generated two random
matrices models whose entry’s distributions are Gaussian N(0, 1) and Laplace
(0, 1/

√
2), and investigated the behaviour of the difference Eλi−Eλ′i as a function

of i.

Figure 1: Comparison between 2 curves f1 = 4
√
n

Eλi−Eλ′i
Eη4−Eη′4 and f2 = γ3

i − 2γi.
(n = 500)

This conjecture would imply that if one increases the forth moment, then
(in expectation) those λi with γi ≤ −

√
2 or 0 ≤ γi ≤

√
2 are shift to the left

(decreasing), while those λi with γi ≥
√

2 or 0 ≥ γi ≥ −
√

2 are shifted to the
right (increasing). In other words, the eigenvalues in the middle move toward the
center of the spectrum, while those closer to the edge move outward.

We prove Theorem 1.6 in Section 3. Apart from Theorem 1.3, the main ingre-
dient is a standard moment computation (Lemma 3.1) that compares

∑n
i=1 λ

4
i

with
∑n

i=1(λ′i)
4.

Notation. We use the usual asymptotic notation as n → ∞, thus O(f(n))
denotes a quantity g(n) bounded in magnitude by Cf(n), and o(f(n)) denotes a
quantity g(n) bounded in magnitude by c(n)f(n), where c(n)→ 0 as n→∞. If
we need, c, C to depend on additional parameters, we indicate this by subscripts,
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e.g. ok(f(n)) is a quantity bounded in magnitude by ck(n)f(n), where ck(n)→ 0
as n→∞ for each fixed k.

2. Proofs of Theorems 1.3 and 1.4

We now prove Theorem 1.3. We may assume without loss of generality that
ε > 0 is small; all implied constants can depend on ε, and we assume that n is
sufficiently large depending on ε.

We first observe that the claim is true in the edge cases i = 1, n. Indeed, in
those cases the estimate (6) (or (5)) gives

λi(Mn) = Mλi(Mn) +O(nε)

with probability 1 − O(n−100). On the other hand, the Tracy-Widom law for
Wigner matrices (see [18]) gives

Mλi(Mn) = γi
√
n+O(n−1/6)

at the edge, and the claim follows (with plenty of room to spare).
We may now reduce to the bulk case min(i, n − i) ≥ n1/2+ε. Indeed, one can

deduce the edge case 1 < i < n1/2+ε from the bulk case by setting i0 to be the
least integer greater than n1/2+ε, and using the crude pointwise bound

|λi(Mn)−
√
nγi| ≤ |λ1(Mn)−

√
nγ1|+ |λi0(Mn)−

√
nγi0 |+ |

√
nγ1 −

√
nγi0 |

and observing that
√
nγ1−

√
nγi0 = O(n1/6+ε/3). Similarly to deal with the case

n− n(1+ε)/2 < i < n.
Henceforth, we fix i with min(i, n− i) ≥ n1/2+ε. The next step is to verify the

theorem in the model case that Mn is the GUE random matrix ensemble. In this
case, much sharper concentration results are known. Indeed, we have

Lemma 2.1 (Concentration for GUE). Let Mn be a GUE matrix, and let I ⊂ R
be an interval. Let NI be the counting function NI := {1 ≤ i ≤ n : 1√

n
λi(Mn) ∈

I}. Then one has

P(|NI − n
∫
I
ρsc(x) dx| ≥ nε) ≤ n−100

(say) uniformly in I, if n is sufficiently large depending on ε.

Proof. This follows from the fact that the number of eigenvalues of GUE in I
can be expressed2 as the sum of independent random variables (see [2, Corollary
4.2.24]), with variance of logarithmic size (see [12, Lemma 2.3]) and thus strongly
concentrated. For details, see [2]. In the bulk region I ⊂ [−2 + δ, 2− δ], this type
of result (for more general Wigner ensembles) was established in [8, Theorem
6.3]. �

2In fact, in the GUE case NI has a binomial distribution, though we will not need this fact
here.
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From this lemma and a standard computation, we conclude that in the GUE
case one has

(13) λi(Mn) =
√
nγi +O(nε min(i, n+ 1− i)−1/3n−1/6)

with probability 1−O(n−100). From this bound (and using very crude estimates
to control the tail event of probability O(n−100), e.g. controlling λi(Mn) by the
Frobenius norm of Mn), we have

E|λi(Mn)−
√
nγi|2 = O(nε min(i, n+ 1− i)−1/3n−1/6)2 +O(n−10)

(say), which easily implies (9) (with some room to spare).

Remark 2.2. In the bulk case δn < i < (1 − δ)n, a result of Gustavsson [12]
shows the related statement that λi(Mn) for GUE is asymptotically normally
distributed around

√
nγi with variance 2 logn

(4−γ2
i )n

, which is consistent with the above
concentration results. Using the four moment theorem, the result of Gustavsson
was extended to other Wigner matrices in [17]. In particular, this gives a bound

Mλi(Mn) =
√
nγi + o(

√
log n√
n

)

for the median uniformly in the bulk region δn ≤ i ≤ (1 − δ)n for fixed δ >
0, whenever the atom distribution of Mn has vanishing third moment. As a
consequence of the recent results in [8], a similar result (with nε instead of

√
log n)

holds without the vanishing third moment hypothesis.

Now we pass from the GUE case to more general Wigner matrices with vanish-
ing third moment. The main tool here is the three moment theorem (the second
part of Theorem 1.5). We will also need a weak version of Lemma 2.1 in the
non-GUE case:

Lemma 2.3 (Weak concentration for Wigner). Let Mn be a Wigner matrix, and
let I ⊂ R be an interval. Let NI be the counting function NI := {1 ≤ i ≤ n :
1√
n
λi(Mn) ∈ I}. Then for any fixed ε > 0, one has

P(|NI − n
∫
I
ρsc(x) dx| ≥ n1/2+ε) ≤ n−100

(say) uniformly in I, if n is sufficiently large depending on ε.

Proof. This follows from the concentration of measure approach first developed
in [11], and then modified in [19, Appendix F] to deal with exponentially decay-
ing entries and with the discontinuous nature of the indicator function 1I . As
mentioned earlier, in the bulk case I ⊂ [−2 + δ, 2 − δ], stronger results of this
type have also recently been obtained in [8, Theorem 6.3]. �

As a consequence of this lemma and our hypothesis min(i, n− i) > n1/2+ε, one
has the bound (7) with probability 1− O(n−100). In other words, we can find a
quantity R comparable to n1/2+ε min(i, n+ 1− i)−1/3n−1/6 such that

(14) P(|λi(Mn)−
√
nγi| ≥ R) ≤ n−100.
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We now introduce the function

G(x) := ψ(
x− nγi√

nR
)

where ψ : R→ [0, 1] is a smooth cutoff function supported on [−2, 2] that equals
ψ(x) := 1

10x
2 on [−1, 1]. Note that

√
nR ≥

√
n. As such, for sufficiently small

c0 > 0 (independent of ε), one easily verifies that

|∇jG(x)| ≤ n−Cjc0

for 0 ≤ j ≤ 5 and all x ∈ R, where C is the constant in the three moment
theorem. We may thus apply that theorem and conclude that

EG(
√
nλi(Mn)) = EG(

√
nλi(M ′n)) +O(n−c0)

for some absolute constant c0 > 0, where M ′n is drawn from GUE. On the other
hand, from (13) one easily sees that

EG(
√
nλi(M ′n)) =

1
10R2

E|λi(M ′n)−
√
nγi|2 +O(n−10)

(say), and similarly from (14) one has

EG(
√
nλi(Mn)) =

1
10R2

E|λi(Mn)−
√
nγi|2 +O(n−10).

We conclude that

E|λi(Mn)−
√
nγi|2 = E|λi(M ′n)−

√
nγi|2 +O(n−c0R2) +O(n−10).

Substituting in the definition of R, we obtain Theorem 1.3.

Remark 2.4. From (13) and the three moment theorem one can also show
that for any Wigner matrix Mn whose atom distribution has the third vanishing
moment, and any 1 ≤ i ≤ n, one has

(15) λi(Mn) =
√
nγi +O(nε min(i, n+ 1− i)−1/3n−1/6)

with probability 1−Oε(n−c) for some absolute constant c > 0; in particular, one
has

Mλi(Mn) =
√
nγi +Oε(nε min(i, n+ 1− i)−1/3n−1/6).

We omit the details,which are similar to the above calculations and also to the
proof of [17, Theorem 32] (which is essentially the bulk case of (15)). Heuristically,
this suggests that one can take c = 1− ε in (9), which would be consistent with
the results in [8]; however, the available bound O(n−c) of the tail probability
for (15) is too weak to make this heuristic rigorous. Unfortunately, even if one
assumes more than three matching moments, the methods of proof in [17], [18] do
not seem strong enough to establish this conjecture; the main technical obstacle
arises from the need to truncate away the event that an eigenvalue gap such as
λi+1(Mn) − λi(Mn) is unexpectedly small, such events occur with a probability
of size O(n−c) but no better.
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Remark 2.5. The vanishing third moment was needed since we compare to
GUE. One can omit this assumption if one can extend Lemma 2.1 to Johansson
matrices (i.e. Wigner matrices whose atom distribution is gauss divisible, see
[13]). In fact, one only needs this lemma with some ε < 1/2. A similar remark
applies to the proof of Theorem 1.4 below. The techniques in the recent paper [8]
also imply a version of Theorem 1.3 in which no condition on the third moment
is required (but with a slightly different right-hand side).

2.1. Proof of Theorem 1.4. We now prove Theorem 1.4. The method of proof
is only a slight variant of that used above.

Fix x, and let ε > 0 be a small absolute constant to be chosen later. From
Lemma 2.3 one has

ix −R ≤ N[−2,x] ≤ ix +R

with probability 1−O(n−100), where R = O(n1/2+ε) and

ix := n

∫ x

−∞
ρsc(t) dt.

Inside the interval Ix := [ix−R, ix−R]∩ [1, n], we locate m = O(n1/4+2ε) integers
i1, . . . , im such that every integer in Ix lies within O(n1/4−ε) of one of the ij . Then
with probability 1−O(n−100), one has

N[−2,x] = ix −R+
∑

ix−R<j≤ix+R
I(

1√
n
λij (Mn) ≤ x)

where I(E) is the indicator of an event E, and we adopt the conventions that
λi(Mn) = −∞ for i < 1 and λi(Mn) = +∞ for i > n. Taking expectations, we
conclude that

Fn(x) =
1
n

(ix −R) +
1
n

∑
ix−R<j≤ix+R

P(
1√
n
λj(Mn) ≤ x) +O(n−10)

(say). Let M ′n be sampled using GUE. Using the three moment theorem as in
[17, Corollary 21], we have

P(
1
n
λj(Mn) ≤ x) ≤ P(

1√
n
λj(M ′n) ≤ x+ n−1+c′) +O(n−c)

uniformly in j, for some small absolute c, c′ > 0 independent of ε. Using this
bound, we conclude that

Fn(x) ≤ 1
n

(ix −R) +
1
n

∑
ix−R<j≤ix+R

P(
1√
n
λj(M ′n) ≤ x+ n−1+c′)

+O(
R

n
n−c) +O(n−10).

The second error term is O(n−1/2−ε) if ε is small enough depending on c. On the
other hand, using Lemma 2.3 for M ′n instead of Mn, we conclude from a variant
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of the above arguments that

F ′n(x+n−1+c′) =
1
n

(ix−R)+
1
n

∑
ix−R<j≤ix+R

P(
1√
n
λj(M ′n) ≤ x+n−1+c)+O(n−10),

where F ′n is the counterpart of Fn for M ′n instead of Mn. We conclude that

Fn(x) ≤ F ′n(x+ n−1+c′) +O(n−1/2−ε);

a similar argument also gives

Fn(x) ≥ F ′n(x− n−1+c′)−O(n−1/2−ε).

On the other hand, from Lemma 2.1 one easily sees that

F ′n(x) =
∫ x

−∞
ρsc(t) dt+O(n−1+ε)

for all x, and the claim follows.

Remark 2.6. Using the three moment theorem, one can control the median
MN[−2,x] with much higher accuracy than the mean EN[−2,x]. Indeed, using (15)
it is not difficult to show that

MNI = n

∫
I
ρsc(x) dx+Oε(nε)

uniformly for all intervals I and any ε > 0, assuming vanishing third moment of
the atom distribution; we leave the details to the interested reader. In view of
this, it is reasonable to conjecture that one can take c arbitrarily close to 1 in
Theorem 1.4. In [8], this claim is established in the bulk region I ⊂ [−2+δ, 2−δ].

3. Proof of Theorem 1.6

We now begin the proof of Theorem 1.6. Let Mn,M
′
n, λi, λ

′
i be as in that

theorem. The starting point is the following fourth moment calculation:

Lemma 3.1 (Fourth moment calculation). Set κ0 := E(η4) − E((η′)4), thus
κ0 6= 0 by hypothesis. Then

n∑
i=1

E(λ4
i )−E((λ′i)

4) = 2κ0(n2 − n).

Proof. We expand
n∑
i=1

E(λ4
i ) = E(traceM4

n)

=
∑

1≤a,b,c,d≤n
Eζabζbcζcdζda.

Of course, there is a similar formula for
∑n

i=1 Eλ′4i , in which the ζij are replaced
by ζ ′ij .

Consider the four sets {a, b}, {b, c}, {c, d}, {d, a}. If one of these sets occurs
with multiplicity one, then the expectation Eζabζbcζcdζda vanishes from the mean
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zero and independence properties of the coefficients of Mn. If instead one has two
pairs of sets occuring with multiplicity two, then the expectation of Eζabζbcζcdζda
is equal to that of Eζ ′abζ

′
bcζ
′
cdζ
′
da. From this we see that

n∑
i=1

E(λ4
i )−

n∑
i=1

E((λ′i)
4) = 2

∑
1≤a<b≤n

E(|ζab|4)−E(|ζ ′ab|4).

But a short calculation (using the fact that η, η′ match to the third order) reveals
that

E(|ζab|4)−E(|ζ ′ab|4) = 2(E(η4)−E((η′)4)).

The claim follows. �

The value max{|λ1|, |λn|} is called the spectral norm of Mn and will be denoted
by ‖Mn‖. The following result is well-known:

Lemma 3.2 (Concentration of the spectral norm). For any A ≥ 0, one has

P(‖Mn‖ ≥ 3n1/2) = OA(n−A).

In particular,
P(|λi(Mn)| ≥ 3n1/2) = OA(n−A)

and
E|λi(Mn)|A = OA(nA/2).

Proof. This follows easily from (5) or (6), combined with (3) (as well as using
crude estimates, such as Hölder’s inequality, to deal with the rare tail event in
which the estimates (5) or (6) fail). Note that this argument allows us to replace
the coefficient 3 in the above large deviation inequality by 2 + o(1), but we will
not need this improvement here. For even sharper concentration results, see the
recent paper [8]. �

We can now invoke Theorem 1.3 to establish

Proposition 3.3 (Fourth moment concentration). We have

|
n∑
i=1

E(λ4
i )− (

√
nγi)4 − 4(

√
nγi)3(Eλi −

√
nγi)| = O(n2−c)

for some absolute constant c > 0, and similarly for λ′i.

Proof. We begin with the Taylor expansion

λ4
i = (

√
nγi)4 + 4(

√
nγi)3(λi −Eλi) +O(|λi −

√
nγi|2(|λi|+

√
nγi)2).

From Lemma 3.2, we see that with probability 1 − O(n−100) (say), we have
|λi| +

√
nγi = O(

√
n). Taking expectations and summing using Theorem 1.3

(and using crude estimates, such as Hölder’s inequality, to deal with the tail
event of probability O(n−100)) we obtain the claim. �
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Combining Proposition 3.3 with Lemma 3.1 and the triangle inequality, we
conclude (for n large enough) that

|
n∑
i=1

4γ3
i (Eλi −Eλ′i)| ≥ |κ0|n1/2.

Since γi = O(1), Theorem 1.6 now follows from the triangle inequality.

Remark 3.4. One can use [8, Theorem 7.1] as a substitute for Theorem 1.3 in
the arguments above.

4. Higher moment computations

In this section we discuss a higher moment computation that lead to Conjecture
4.2. We will restate this conjecture at the end of this section for the reader’s
convenience.

Lemma 4.1 (Higher moment computations). Let Mn,M
′
n, λi, λ

′
i be as in The-

orem 1.6. Set κ0 := E(η4) − E((η′)4), and let k ≥ 0 be an integer. Then we
have

n∑
i=1

E(λki )−E((λ′i)
k) = (2D(k−2)/2κ0 +Ok(n−1))nk/2

where the modified Catalan number Dm is defined to be equal to

(16) Dm =
(

2m+ 2
m− 1

)
=

(2m+ 2)!
(m− 1)!(m+ 3)!

when m = 1, 2, . . . is a positive integer, and Dm = 0 otherwise, thus

D0 = 0; D1 = 1; D2 = 6; D3 = 28; D4 = 120; . . .

Proof. This is a standard moment method computation (which was the method
used by Wigner to prove the semi-circle law [3]; this is also related to the genus
expansion from string theory). We have

n∑
i=1

E(λi)k =
∑

1≤a1,...,ak≤n
Eζa1a2 . . . ζaka1

and similarly for
∑n

i=1 E(λ′i)
k.

Consider the k sets {a1, a2}, {a2, a3}, . . . , {ak, a1}. If one of these sets appears
with multiplicity one, then the expectation vanishes. If none of the sets ap-
pears with multiplicity at least four, then the contributions to

∑n
i=1 E(λi)k −∑n

i=1 E(λ′i)
k cancel each other out. Thus the only terms that survive are those

in which each set appears with multiplicity at least two, and at least one set
appears with multiplicity four. In particular, there are at most (k− 2)/2 distinct
sets {ai, ai+1} (with the convention ak+1 = a1), and thus at most k/2 distinct
values of ai.

If there are fewer than k/2 distinct values of ai, then the total contribution
here is easily seen to be Ok(nk/2−1), which is acceptable. Thus we may restrict
attention to the case when there are exactly k/2 distinct values of ai, which
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forces there to be exactly (k − 2)/2 distinct sets {ai, ai+1}, and furthermore
the (connected) graph formed by these edges cannot contain any cycles and is
thus a tree. Finally, each set {ai, ai+1} must appear with multiplicity two, with
the exception of one set that appears with multiplicity four. The summand
Eζa1a2 . . . ζaka1 is then equal to 2Eη4, and similarly Eζ ′a1a2

. . . ζ ′aka1
is then equal

to 2E(η′)4.
We now assign each ai a label j = j(ai) from 1 to k/2 by order of appearance;

thus a1 will be assigned a label j(a1) of 1, the first ai that is distinct from a1 will be
assigned a label of j(ai) = 2, the first ai has not already been labeled 1 or 2 will be
labeled 3, and so forth. The closed path γ = ((j(a1), j(a2)), . . . , (j(ak/2), j(a1)))
then traverses a tree Tγ of (k − 2)/2 edges spanning the vertices {1, . . . , k/2},
where the path γ traverses each edge of Tγ with multiplicity two, with the excep-
tion of one edge of Tγ that is traversed four times. Furthermore, the path γ only
encounters a vertex j in {1, . . . , k/2} after it has first encountered 1, . . . , j− 1; in
particular, the starting (and ending) vertex of γ is necessarily 1.

Call a closed path γ = ((j1, j2), . . . , (jk/2, j1)) of length k/2 in {1, . . . , k/2}
4-admissible if it traverses a tree of (k − 2)/2 edges spanning {1, . . . , k/2}, so
that each edge is traversed twice with the exception of one edge that is traversed
four times, and such that each vertex j is encountered only after encountering
1, . . . , j − 1. It is not hard to see that each such 4-admissible path contributes

(nk/2 +Ok(nk/2−1))× 2Eη4

to
∑n

i=1 E(λi)k, and similarly contributes

(nk/2 +Ok(nk/2−1))× 2E(η′)4

to
∑n

i=1 E(λ′i)
k. Subtracting, we see that each γ contributes

(nk/2 +Ok(nk/2−1))× 2κ0

to
∑n

i=1 E(λi)k −
∑n

i=1 E(λ′i)
k. Thus, it will suffice to show that for any m, the

number of 4-admissible paths on trees of m edges is equal to Dm.
The claim is trivial unless m is a positive integer. We observe the recurrence

(17) Dm = 2
m−1∑

i,j≥0:i+j=m−1

CiDj +
∑

i,j,k,l≥0:i+j+k+l=m−1

CiCjCkCl

for m = 1, 2, . . ., where

Cm :=
(2m)!

m!(m+ 1)!
are the Catalan numbers, thus

C0 = 0; C1 = 1; C2 = 2; C3 = 5; C4 = 14; . . . .

Indeed, writing

c(x) :=
∞∑
m=0

Cmx
m =

1−
√

1− 4x
2x
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and

(18) d(x) :=
∞∑
m=0

Dmx
m =

(1−
√

1− 4x)4

16x3
√

1− 4x

a brief calculation shows that

d(x) = 2xc(x)d(x) + xc(x)4

whence the claim.
Call a path ((j1, j2), . . . , (j2m, j1)) 2-admissible if it traverses a tree of m edges

spanning {1, . . . ,m+ 1}, such that each edge is traversed exactly twice, and each
vertex j is encountered only after encountering 1, . . . , j − 1. It is a classical fact
that the number of 2-admissible paths is Cm.

Now suppose inductively that there are Dj 4-admissible paths on trees of j
edges for all j < m. It suffices to show that the number of 4-admissible paths on
trees of m edges is given by the right-hand side of (17). To do this, consider the
first edge (j1, j2) of an admissible path γ on a tree with m edges. This edge is
traversed either two or four times. Suppose first that it is traversed two times.
Then one can split γ into the following pieces: the first edge (j1, j2), a (relabeled)
2-admissible or 4-admissible path on a tree with i edges that starts and ends at
j2, a return edge (j2, j1), and a (relabeled) 4-admissible or 2-admissible path on
a tree with j edges that is disjoint from the first tree that starts and ends at j1,
where i, j ≥ 0 add up to m− 1. This case gives a net contribution of∑

i,j≥0:i+j=m−1

CiDj +DiCj = 2
∑

i,j≥0:i+j=m−1

CiDj

which is the first term of (17).
Now suppose that (j1, j2) is traversed four times. Then we can split γ into

the following pieces: the first edge (j1, j2), a (relabeled) 2-admissible path on a
tree with i edges that starts and ends at j2, a return edge (j2, j1), a (relabeled)
2-admissible path with j edges that starts and ends at j1, a repeated edge (j1, j2),
a (relabeled) 2-admissible path with k edges that starts and ends at j2, a repeated
return edge (j2, j1), and a (relabeled) 2-admissible path on a tree with l edges
that starts and ends at j1, where all trees are disjoint (except at their roots) and
i, j, k, l ≥ 0 add up to m−1. This gives the second contribution to the right-hand
side of (17). �

We now repeat the arguments from the previous section. A routine generali-
sation of Proposition 3.3 yields the bound

|
n∑
i=1

E(λki )− (
√
nγi)k − k(

√
nγi)k−1(Eλi −

√
nγi)| = Ok(nk−c)

for any k ≥ 1 and some absolute constant c > 0 (note that the left-hand side
vanishes for k = 1). We conclude from this and Lemma 4.1 that

(19)
1
n

n∑
i=1

kγk−1
i

√
n(Eλi −Eλ′i) = 2D(k−2)/2κ0 +Ok(n−c).
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Next, we observe from (18) that

−
∞∑
k=0

D(k−2)/2

zk
= −(z −

√
z2 − 4)4

16
√
z2 − 4

for z near infinity, where we pick the branch of the square root of
√
z2 − 4 that

equals z near infinity and is analytic away from the interval [−2, 2]. Then the
right-hand side continues analytically to the exterior of this interval. Calling this
analytic function f(z), we compute the jump formula

lim
b→0

f(x+ ib)− f(x− ib)
2πi

= g(x),

where g : R→ R vanishes outside of the interval [−2, 2], and is equal to

g(x) :=
1

2π
x4 − 4x2 + 2√

4− x2

on this interval. From the Cauchy integral formula we conclude the moment
formula

D(k−2)/2 =
∫ 2

−2
g(x)xk dx

for k = 0, 1, 2, . . .. The antiderivative of g(x) is

− 1
8π

(x3 − 2x)
√

4− x2 = −1
8

(x3 − 2x)ρsc(x)

so by an integration by parts we have

D(k−2)/2 =
∫ 2

−2

1
8

(x3 − 2x)kxk−1 ρsc(x)dx.

By Riemann integration (or more precisely, the trapezoid rule), the right-hand
side is equal to

1
n

n∑
i=1

1
8

(γ3
i − 2γi)kγk−1

i +Ok(n−c)

for some absolute constant c > 0.
Thus if we introduce the normalised shift

si :=
√
n(Eλi −Eλ′i)−

1
4

(γ3
i − 2γi)κ0

we can rewrite (19) as

(20)
1
n

n∑
i=1

kγk−1
i si = Ok(n−c).

This suggests (but does not rigorously prove3) that the si are small, of sizeO(n−c),
at least in the bulk region δn ≤ i ≤ (1 − δ)n. In particular, we are led to the

3Specifically, the difficulty is that there could be cancellation between nearby values of si. If
one could show some assertion to the effect that si ≈ si′ when i, i′ are close together, then this
would go a long way towards establishing Conjecture 4.2 below.
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conjecture (Conjecture 4.2) that

(Eλi −Eλ′i) =
1

4
√
n

(γ3
i − 2γi)κ0 +O(n−1/2−c)

and this in turn suggests the following asymptotic for the expected value of λi:

Conjecture 4.2 (Conjectured asymptotic). For δn ≤ i ≤ (1 − δ)n with δ > 0
fixed, one has

Eλi = n1/2γi + n−1/2Ci,n +
1

4
√
n

(γ3
i − 2γi)Eη4 +Oδ(n−1/2−c)

for some absolute constant c > 0, where Ci,n is some bounded quantity depending
only on i, n (and is in particular independent of η). The same statement should
also be true for the median Mλi.

The bound on Ci,n is plausible in view of results such as Lemma 2.1. It
should in fact be possible to obtain (at least conjecturally) a precise value for
Ci,n from an analysis of the GUE case. Such an asymptotic would demonstrate
more precisely the dependence of the ith eigenvalue on the fourth moment Eη4

at the scale Θ(n−1/2) of the mean eigenvalue spacing.
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