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ASYMPTOTIC PROPERTIES OF SOLUTIONS OF

OPERATOR EQUATIONS

VU QUOC PHONG

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. We study properties of solutions of operator equations Du−Bu =
f (∗) where D is the generator of an isometric group V (t) on a Banach space
F and B is a closed operator commuting with D. We introduce the equation
spectrum Σ and prove that if f is an almost periodic element (with respect
to the group V (t)) and Σ is countable, then any solution u of (*) is almost
periodic, provided either F 6⊃ c0 or u is totally ergodic. The presented ap-
proach when applied to functional-differential equations gives spectral criteria
of almost periodicity of bounded uniformly continuous solutions. The discrete
version of the results, with applications to properties of solutions of functional-
difference equations, also is described.

1. Introduction

Let E be a Banach space and BUC(R, E) the space of uniformly contin-
uous bounded functions on R with values in E, with sup-norm. A function
f ∈ BUC(R, E) is called almost periodic, if the family of translates {ft(s) :=
f(s + t) : t ∈ R} is relatively compact in BUC(R, E). The classical Loomis
theorem, which states that, for a scalar function, countability of its spectrum
implies almost periodicity, has been generalized to vector-valued functions (see,
e.g. [4, 14, 21]). This generalized Loomis theorem plays an important role in
investigations of almost periodicity of solutions of various classes of linear time-
invariant differential and functional-differential equations in Banach spaces (see
e.g. [1,4,12,14,18,21,23–25]). Typically, the main condition imposed on equations
considered in these papers is the countability of some spectral set associated with
the equation, which implies the countability of the spectrum of the solution, and,
therefore, almost periodicity follows from the Loomis theorem.

In this paper, we consider the abstract operator equations of the following form
Lu = f, where L is a closed operator on a Banach space F which commutes with
operators from a C0-group of isometric operators V (t). This operator equation
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includes, e.g., the following operator equation

Du− Bu = f,

where D is the generator of V (t) and B is a closed linear operator which com-
mutes with V (t), as well as other classes of equations which occur in applications
to functional-differential equations. We introduce the notion of equation spectrum
Σ associated with this operator equation and prove that if the equation spectrum
is countable and f is an almost periodic (asymptotically almost periodic) element
(under the group V (t)), then the solution u is almost periodic (resp., asymptot-
ically almost periodic) (Theorems 3.20 and 3.21). The discrete version of this
result also is presented in Section 4. The results of this paper give a unified ap-
proach to questions of almost periodicity of solutions of linear time-independent
functional-differential or difference equations in Banach spaces, which we present
in Section 5. They have potential for further applications to the theory of as-
ymptotic behaviour of solutions of functional-differential and difference equations
and also have, in our opinion, independent interest.

Throughout this paper, we denote by BC(R, E), BUC(R, E) and AP (R, E)
the Banach spaces of bounded continuous, bounded unniformly continuous and
almost periodic functions on R with values in a Banach space E, respectively. If
A is a linear operator on E, then D(A), σ(A) and ρ(A) will denote the domain,
spectrum and resolvent of A, respectively.

2. Preliminaries: spectrum of elements under isometric groups

For convenience of the reader, we recall the definition of the spectrum of a
continuous bounded function on R with values in a Banach space E and the well
known properties of the spectrum, that will be used throughout the paper 1. For
details, the reader is referred to the books [4, 8, 13,19], or papers [21,25].

The Beurling spectrum, SpB(f), of f is defined as the hull of the ideal If of
the Banach algebra L1(R), where

If := {g ∈ L1(R) : g ∗ f = 0}.

Since maximal ideals of L1(R) are identified with points λ ∈ R, we have

SpB(f) := {λ ∈ R : ĝ(λ) = 0 for all g ∈ If}.

We will frequently use the following well known equivalent characterization of the
Beurling spectrum.

Proposition 2.1. A point λ ∈ R is in SpB(f) if and only if for every neigh-
borhood U of λ there exists a function φ ∈ L1(R) such that supp φ ⊂ U and
φ ∗ f 6= 0.

Beside the Beurling definition of the spectrum, there is another definition via
the notion of Carleman transform. Define, for each bounded continuous function

1The spectrum is defined and all its properties hold for strongly measurable bounded
functions
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f , its Carleman transform by

f̃(λ) =

{ ∫ ∞

0 eiλtdt if Imλ > 0∫ 0
−∞

eiλtdt if Imλ < 0.

Thus, f̃ is an analytic function in {λ ∈ C : Imλ 6= 0} 2. The Carleman spectrum,

SpC(f), is defined as the set of λ ∈ R such that f̃ does not have an analytic
continuation into a neighborhood of λ.

It is well known that SpB(f) = SpC(f) for any function f ∈ BUC(R, E) (see
e.g. [4, 19, 25]), so that we can denote the spectrum of f simply by Sp(f). In
the next statement we gather the well known properties of Sp(f) (we denote by
Lc(R) the set of functions φ ∈ L1(R) Fourier transforms of which have compact
support).

Proposition 2.2. (i) Sp(f) is a closed subset of R and Sp(f) = ∅ if and only if
f = 0;

(ii) Sp(ft) = Sp(f);
(iii) Sp(f) = {λ} if and only if f(t) = eiλtx for some x ∈ E;
(iv) Sp(f + g) ⊆ Sp(f) ∪ Sp(g);

(v) Sp(φ ∗ f) ⊆ supp φ ∩ Sp(f), Sp(f − φ ∗ f) ⊆ Sp(f) ∩ supp (1 − φ̂), for
every φ ∈ L1(R);

(vi) Sp(f) = ∪φ∈Lc(R)Sp(φ ∗ f);

(vii) If ‖fn − f‖ → 0 as n→ ∞ and Sp(fn) ⊂ Λ for all n, then Sp(f) ⊆ Λ;
(viii) If B is a closed operator such that f(t) ∈ D(B) ∀t, and Bf(t) ∈ BC(R, E),

then Sp(Bf) ⊆ Sp(f). Moreover, if B : BC(R, E) → BC(R, E) is a closed
operator which commutes with the translations, then Sp(Bf) ⊆ Sp(f) for all
f ∈ BC(R, E).

Let AP (R, E) denote the space of Bohr almost periodic functions on R with
values in E. It is well known that AP (R, E) is a closed, translation-invariant
subspace of BUC(R, E). The following notion of almost periodic spectrum of a
function f is due to Loomis [15].

Definition 2.3. The almost periodic spectrum (or ap-spectrum) is defined by

Spap(f) :={λ ∈ R : for every neighborhood U of λ

there exists φ ∈ Lc(R) such that supp φ̂ ⊂ U and φ ∗ f 6∈ AP (R, E)}.

Observe that many properties of the spectrum in Proposition 2.2 remain valid,
with corresponding modifications, for the ap-spectrum.

Proposition 2.4. (i) Spap(f) is a closed subset of R and Spap(f) = ∅ if and
only if f ∈ AP (R, E);

(ii) Spap(ft) = Spap(f);
(iii) Spap(f + g) ⊆ Spap(f) ∪ Spap(g);

(iv) Spap(φ ∗ f) ⊆ supp φ∩Spap(f), Spap(f −φ ∗ f) ⊆ Spap(f)∩ supp (1− φ̂),
for every φ ∈ L1(R);

2More exactly, f̃ represents a pair of analytic functions
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(v) Spap(f) = ∪φ∈Lc(R)Spap(φ ∗ f);

(vi) If ‖fn−f‖∞ → 0 as n→ ∞ and Spap(fn) ⊂ Λ for all n, then Spap(f) ⊆ Λ;
(vii) If B is a closed operator such that f(t) ∈ D(B)∀t, and Bf(t) ∈ BC(R, E),

then Spap(Bf) ⊆ Spap(f). Moreover, if B : BC(R, E) → BC(R, E) is a closed
operator which commutes with the translations, then Spap(Bf) ⊆ Spap(f) for all
f ∈ BC(R, E).

The following characterization of the ap-spectrum will not be used in the sequel
but serves to add information on spectra of a function.

Proposition 2.5. The following identity holds

Spap(f) = ∩g∈AP (R,E)Sp(f + g).

Proof. First we show that Spap ⊆ Sp(f+g) for every g ∈ AP (R, E). Assume that
λ 6∈ Sp(f + g). Then there exists a neighborhood U of λ such that if φ ∈ Lc(R)

and supp φ̂ ⊂ U , then φ ∗ (f + g) = 0. Hence φ ∗ f = −φ ∗ g is almost periodic

for all φ with supp φ̂ ⊂ U , which means λ 6∈ Spap(f).
Conversely, assume that λ 6∈ Spap(f). Then one can choose neighborhoods

U and V of λ, with U ⊂ V and φ ∈ Lc(R) such that supp φ̂ ⊂ V, φ̂|U = 1

and φ ∗ f ∈ AP (R, E). Then, for every ψ such that ψ̂ ⊂ U , we have Sp(ψ ∗

φ ∗ f − ψ ∗ f) ⊂ supp ψ̂ ∩ Sp(f − φ ∗ f) = ∅, since Sp(f − φ ∗ f) ∩ U = ∅, by
Proposition 2.2, (vii). Thus, ψ∗φ∗f = φ∗f , so that λ 6∈ Sp(φ∗f−f). Therefore,
λ 6∈ ∩g∈AP (R)Sp(f + g). �

Recall that a function f ∈ BUC(R, E) is said to be a C+
0 -function, denoted

by f ∈ C+
0 (R, E), if limt→∞ ‖f(t)‖ = 0. A function f is called asymptotically

almost periodic, denoted by f ∈ AAP (R, E), if there exist an almost periodic
function g ∈ AP (R, E) and a C+

0 - function h ∈ C+
0 (R, E) such that f(t) =

g(t) + h(t). Thus, AAP (R, E) = AP (R, E) ⊕ C+
0 (R, E). If in Definition 2.3

we replace AP (R, E) by AAP (R, E) (C+
0 (R, E)), then we arrive at the notion of

asymptotically almost periodic spectrum, or aap-spectrum, denoted by Spaap(f),
(resp., asymptotic spectrum, or C+

0 -spectrum, denoted by Sp0(f)) which have
been considered in [21]. For a generalization of this approach see [1,6]. Note that

Spaap(f) ⊆ Spap(f) ⊆ Sp(f), Spaap(f) ⊆ Sp0(f) ⊆ Sp(f),

and all the above inclusions are, in general, strict [21].
From Proposition 2.2 (iii) it is easily seen that if Sp(f) is finite, S(f) =

{eiλkt, k = 1, 2, ...,m}, then f is a trigonometric polynomial, i.e. there exist
x1, ...xm in E such that f(x) =

∑m
k=1 e

iλktxk. The following theorem is a gener-
alization of this fact to the case when Sp(f) is a discrete set (see [2, 7]).

Theorem 2.6. If Sp(f) is a discrete set, then f is almost periodic.

Now we state the Loomis theorem mentioned in Introduction.

Theorem 2.7. Let f ∈ BUC(R, E) and suppose that Spap(f) is countable. Then
f is almost periodic if one of the following conditions holds:
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(i) E does not contain a subspace which is isomorphic to the space c0 of se-
quences convergent to zero (or briefly, E 6⊃ c0);

(ii) f(R) is relatively weakly compact in E;
(iii) For every λ 6∈ Sp(f), the function e−iλtf(t) has uniformly convergent

means, i.e. the limit

lim
T→∞

1

2T

∫ T+h

−T+h

e−iλtf(t)dt

converges uniformly in h.

Parts (i)-(ii) of Theorem 2.7 (the almost periodic case) are contained in [14],
part (iii) is in [21].

A function f satisfying condition (iii) in Theorem 2.7 is called totally ergodic.
This terminology is justified by the fact that f satisfies (iii) if and only if the
restriction Tf (t) of the translation group T (t) to the subspace Mf spanned by

ft, t ∈ R, is totally ergodic, i.e. e−iλtTf (t) is ergodic for every λ ∈ R.
The following is a version of the Loomis theorem for asymptotically almost

periodic functions (see [21]).

Theorem 2.8. Let f ∈ BUC(R, E) and suppose that Spaap(f) is countable.
Then f is asymptotically almost periodic if and only if for every λ 6∈ Sp(f), the
function e−iλtf(t) has uniformly convergent means. In addition, if the means are
equal to 0, then f ∈ C+

0 (R, E).

Now let F be another Banach space and V (t), t ∈ R, be a strongly continuous
group of isometric operators on F , with generator D. For each element x ∈ F ,
put x(t) := V (t)x, t ∈ R. Then x ∈ BUC(R,F).

Definition 2.9. (i) An element x ∈ F is called almost periodic element with
respect to V (t), if the corresponding function x(t) is almost periodic;

(ii) The spectrum (almost periodic spectrum) of and element x in F , under
the isometric group V (t), is defined by

SpV (x) = Sp(x) (resp. SpV
ap(x) = Spap(x)).

It is well known that iSpV (x) = σ(D|Mx), where Mx is the closure of the span
of V (t)x (see [25]).

Let Λ be a closed subset of R and M(Λ) = {x ∈ F : Sp(x) ⊂ Λ}. The following
proposition contains well known results on isometric groups. We refer the reader
to [5, 16,17] for details.

Proposition 2.10. (i) M(Λ) is a closed subspace which is an invariant subspace
for V (t),∀t, and D;

(ii) σ(D|M(Λ)) ⊆ Λ; if Λ is compact, then D|M(Λ) is bounded.
(iii) M(Λ) is invariant with respect to every closed operator B which commutes

with V (t).
(iv) M({λ}) = {x ∈ F : Sp(x) = {λ}} = {x : Dx = iλx}.
(v) The span of M(Λ), where Λ runs over all compact subsets, is dense in F .
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It is well known that an element x in F is an almost periodic element under
the group V (t) if and only if the set {V (t)x : t ∈ R} is relatively compact. The
group V (t) is called almost periodic group if every x in F is an almost periodic
element under V (t).

More gerenally, assume that K is a closed subspace of F which is invariant

with respect to V (t), t ∈ R. Let F̂ = F/K be the corresponding quotient space,

that is F̂ := {x̂ := x+ K : x ∈ F} with the norm defined by

‖x̂‖ = inf{‖x+ y‖ : y ∈ K}.

Define operators V̂ (t) : F̂ → F̂ by V̂ (t)(x̂) = ̂(V (t)x). Then, as directly verified,

V̂ (t), t ∈ R is an isometric C0-group on F̂ . Define K-spectrum of an element
x ∈ F , with respect to V (t), by

SpV
K(x) = SpV̂ (x̂).

Proposition 2.11. The following are equivalent
(i) x ∈ K.
(ii) SpV

K(x) = ∅.

Proof. If x ∈ K, then x̂ = 0, hence SpV
K(x) = SpV̂ (x̂) = ∅. Converserly, if

SpV
K(x) = SpV̂ (x̂) = ∅, then x̂ = 0, hence x ∈ K. �

In the sequel, when the underlying operator group V (t) is fixed (and, as a rule,
it is the translation group in an appropriate function space), we will simply write
Sp(x), Spap(x), SpK(x) instead of SpV (x), SpV

ap(x), Sp
V
K(x) , respectively.

For the special case when F = BUC(R, E), V (t) is the translation group and
K is one of the following subspaces

(i) K = AP (R, E),
(ii) K = AAP (R, E),
(iii) K = C+

0 (R, E),
the corresponding notion of K-spectrum SpK(f), f ∈ F , coincides with Spap(f),
Spaap(f) and Sp0(f), respectively.

The Loomis theorem when applied to the isometric group V (t) implies that
an element x is almost periodic if Spap(x) is countable and either F 6⊃ c0 or

e−iλtV (t)x has convergent means for each λ /∈ Sp(x). The latter is equivalent to
ergodicity of the group e−λtV (t) restricted to Mx, for each λ 6∈ Sp(x) 3. In the
sequel, elements x satisfying this condition are called totally ergodic, and V (t) is
called totally ergodic if V (t)x is totally ergodic for each x ∈ E. Thus, if σ(D)
is countable and either F 6⊃ c0 or V (t) is totally ergodic, then V (t) is an almost
periodic group.

3. The equation spectrum and almost periodicity

Let F be a Banach space, V (t) an isometric C0-group on F , with the generator
D, and B be a closed, generally unbounded, operator on F , which commutes

3It is well known that if λ 6∈ Sp(x), then the group e−iλtV (t)|Mx is always ergodic.
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with V (t), t ∈ R. The difference D − B is defined in the usual way, namely
D(D − B) = D(D) ∩ D(B) and (D − B)u = Du − Bu for u ∈ D(D − B). This

implies that, for every function φ ∈ L1(R), B commutes with φ̂(T ), where

φ̂(T ) =

∫

R

φ(t)V (t)dt.

In particular, if x ∈ D(B), then (φ ∗x)(t) ∈ D(B) and B(φ ∗x)(t) = (φ ∗ (Bx))(t)
(where Bx(t) = V (t)Bx).

Lemma 3.1. D − B is closable.

Proof. Let xn ∈ D(D) ∩D(B), xn → 0 and Dxn − Bxn → y. Then DV (t)xn −

BV (t)xn → V (t)y uniformly. Take φ ∈ L1(R) such that suppφ̂ is compact. Then
D[(φ∗xn)(t)]−B[φ∗xn(t)] converges uniformly to (φ∗y)(t). But D[(φ∗xn)] → 0,
hence B[(φ ∗ xn)(t)] → −(φ ∗ y)(t), so that (φ ∗ y)(t) = 0 (∀t). This implies
y = 0. �

Note that, in general, D−B is not closed. Let (D−B)∼ denote the closure of
(D − B).

We consider the operator equation

Du− Bu = f, f ∈ F(3.1)

Definition 3.2. An element u in F is called a mild solution of (3.1) if u ∈
D((D − B)∼) and (D − B)∼u = f .

We are interested in the almost periodicity of solutions of (3.1) or, more gen-
erally, in whether a solution u of (3.1) belongs to a corresponding subspace K,
where K is a closed subspace of F which is invariant with respect to V (t) and
every closed linear operator which commutes with V (t), t ∈ R. It is not difficult
to see that if the solution u is almost periodic or u ∈ K, then so is f . Therefore,
it is natural to assume that the element f is almost periodic (resp, f ∈ K). Note
that if D − B is invertible (i.e. has a bounded inverse), then the solution u is
given by u = (D − B)−1f , hence u is almost periodic (resp., u ∈ K).

Definition 3.3. Let Λ be a closed subset of R. The spaceM(Λ) is called regularly
admissible if for every f ∈ M(Λ) there exists a unique mild solution u in M(Λ)
of (3.1).

Example 3.4. Let E be a Banach space, F = BUC(R, E), V (t) be the transla-
tion group on F , with the generator D, and let A be a closed linear operator on
E. Then A generates a closed linear operator B on F by

D(B) := {f ∈ F : f(t) ∈ D(A) ∀t and Af(t) ∈ F}, (Bf)(t) = Af(t), f ∈ D(B).

It is easily seen that B is a closed operator which commutes with V (t), and one
can show, without difficulty, that a function u ∈ F is a mild solution to (3.1) in
our sense if and only if u is a mild solution of the differential equation

u′(t) = Au(t) + f(t)
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in the standard sense, i.e.
∫ t

0 u(s)ds ∈ D(A) and

u(t) = u(0) +A

∫ t

0
u(s)ds +

∫ t

0
f(s)ds, t ∈ R.

In particular, if A is the generator of a C0-semigroup T (t), then u ∈ F is a mild
solution in our definition if and only if u is a mild solution in the standard sense
of the theory of C0-semigroups, i.e. u satisfies

u(t) = T (t− s)u(s) +

∫ t

s

T (t− τ)f(τ)dτ, (t ≥ s)

(see the proof of Proposition 5.3).

Lemma 3.5. M(Λ) is regularly admissible if and only if (D − B)|M(Λ) is in-
vertible.

Proof. Let M(Λ) be regularly admissible and define an operator K : M(Λ) →
M(Λ) by Kf = u, where u is the unique solution in M(Λ) of (3.1). We show
that K is closable. Let fn ∈M(Λ), fn → 0 and (D−B)∼un = fn, un → u. Since
(D−B)∼ is closed, we have u ∈ D((D−B)∼) and (D−B)∼u = 0. But this implies
u = 0, because of the uniqueness of solutions in M(Λ). By the closed graph
theorem, K is a bounded linear operator. Therefore [(D − B)|M(Λ)]∼Kf = f
for all f ∈ M(λ). Since [(D − B)|M(Λ)]∼ is injective in M(Λ), this implies that
([(D − B)|M(Λ)]∼ is invertibe and ([(D − B)|M(Λ)]∼)−1 = K.

Conversely, assume that [(D−B)|M(Λ)]∼ is invertible and let K be its inverse.
Then, for every f ∈M(Λ), it is easily seen that u = Kf satisfies (3.1). �

Lemma 3.6. Assume M(Λ) is regularly admissible.
(i) If f ∈ M(Λ) and u is the corresponding mild solution of (3.1) in M(Λ),

then Sp(u) ⊆ Sp(f);
(ii) If Λ0 is a closed subset of Λ, then M(Λ0) is also regularly admissible;
(iii) If f is an almost periodic element (resp., f ∈ K), then the corresponding

solution u ∈M(Λ) also is almost periodic (resp., u ∈ K).

Proof. (i) Assume that λ 6∈ Sp(f). Then there exists a neighborhood U of λ such

that if supp φ̂ ⊂ U , then φ∗ f = 0. Since (φ∗u)(t) is the mild solution in M(Λ) of
the homogeneous equation (3.1) (with f replaced by 0), we have (φ∗u)(t) = 0∀t.
Therefore, λ 6∈ Sp(u).

(ii) follows directly from (i).
(iii) By Lemma 3.5, [(D − B)|M(Λ)]∼ is invertible. Let K be its inverse. It

is easily seen that K commutes with V (t)|M(Λ). Hence, if V (t)f is relatively
compact, then so is V (t)Kf = V (t)u. If f ∈ K, then u = Kf ∈ K. �

The following lemma is contained in [3, Theorem 7.2] (cf. also [26, Lemma
22]).

Lemma 3.7. Let A be a bounded linear operator and B be a closed operator
which commutes with A. If σ(A) ∩ σ(B) = ∅, then A−B is invertible.

Lemma 3.5 and Lemma 3.7 imply the following result.
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Lemma 3.8. Assume that Λ is a compact subset of R. If σ(B|M(Λ))∩σ(D)∩iΛ =
∅, then M(Λ) is regularly admissible.

Lemma 3.9. σ(B|M(Λ)) ⊆ σ(B).

Proof. It is well known that if a subspace M of the Banach space F is an invari-
ant subspace with respect to B and to all resolvents (λ − B)−1, λ ∈ ρ(B), then
σ(B|M) ⊂ σ(B). Since M(Λ) is invariant with respect to (λ − B)−1, the lemma
follows. �

From Lemma 3.9 and Lemma 3.8 we have the following corollary.

Corollary 3.10. Assume that Λ is a compact subset of R. If σ(B)∩σ(D)∩iΛ = ∅,
then M(Λ) is regularly admissible.

In the case when D = d
dt

and B is a functional-differential operator (in F :=
BUC(R, E)), the standard notion of equation spectrum is obtained by applying
the Fourier transform to both parts of the equation. Below we introduce the
notion of equation spectrum, which genegalizes this notion of equation spectrum
for functional differential equations to general operator equations of the form
(3.1).

Definition 3.11. The equation spectrum of (3.1) is

Σ(D,B) := {λ ∈ R : for every neighborhood U of λ,

(D − B)|M(U) is not invertible}

Since the operators D,B are fixed, we will denote the equation spectrum simply
by Σ. The following lemma follows immediately from Corollary 3.10.

Lemma 3.12. iΣ ⊂ [σ(B) ∩ σ(D].

As we will see in examples 3.13-3.17 below, σ(B) is, in general, too large for
the purpose of establishing effective spectral criteria of almost periodicity.

Example 3.13. Let E be a Banach space, F := BUC(R, E) be the space of
bounded uniformly continuous functions on R with values in E, V (t) be the
translation group in BUC(R, E), D be the generator of V (t) (the differentiation
operator) and A be a closed linear operator on E. The operator A generates
a closed operator B on BUC(R, E) by (Bf)(t) = Af(t). Then the equation
spectrum Σ of equation Du− Bu = f is

Σ = {λ ∈ R : iλ ∈ σ(A)},

so that iΣ = σ(A) ∩ iR. This follows from [24], Theorem 3.3.

Example 3.14. Let F = BUC(R,C), D be the differentiation operator and
B : F → F be defined by (Bf) = −iπf(t − 1) (i.e. B = QV (−1) where Q is
multiplication by −iπ and V (−1) is right translation by the unit). The operator
equation Du− Bu = f is the same as the delay equation

u′(t) = −iπu(t− 1) + f(t).

It is not difficult to calculate that the equation spectrum is Σ = {−π}, while
σ(B) ∩ σ(D ∩ iR = {−iπ, iπ}, so that iΣ 6= σ(B) ∩ σ(D).
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Example 3.15. Let H be a finite or infinite dimensional Hilbert space, with
an orthonormal basis {ek}

N
k=1, N ∈ N ∪ {∞}, D and B be diagonal operators

defined by Dek = idkek, Bek = ibkek, 1 ≤ k ≤ N . Then one can easily show
that the equation spectrum for (3.1) consists of those bk’s which are equal to the
corresponding dk’s.

Example 3.16. Let B be the space of Bohr almost periodic functions on R,
equipped with the scalar product

〈f, g〉 := lim
T→∞

∫ T

−T

f(t)g(t)dt,

and let H = AP (R) be the completion of B. Then H is a nonseparable Hilbert
space with the orthonormal basis eλ := eiλt, λ ∈ R. Define D and B on H by:

Deλ = iλeλ, Beλ = b(λ)eλ, λ ∈ R,

where b(λ) is an arbitrary continuous function on R. Then B extends to a closed
operator on H with domain

D(B) =

{
f =

∑

λ

a(λ, f)eλ ∈ H :
∑

λ

|b(λ)a(λ, f)|2 <∞

}
,(3.2)

(where the summation in (3.2) is over a countable set of λ’s), and

Bf =
∑

λ

[b(λ)a(λ, f)]eλ.

One can show, using a standard argument of the theory of operators (in particular,
the Parseval’s equality) that the equation spectrum Σ for the equation Du−Bu =
f is given by

Σ = {λ : b(λ) = iλ}.

Therefore, iΣ coincides with the set of those b(λ) that b(λ) = iλ, while the
spectrum σ(B) of B is the closure of the whole range of b(λ) (and σ(D) = iR).

Example 3.17. Consider the Volterra equation

u′(t) = Au(t) +

∫ ∞

0
dB(τ)u(t− τ) + f(t),(3.3)

whereA is a closed linear operator on a Banach space E, with dense domainD(A),
{B(t)}t≥0 is a family of closed linear operators in E with D(B(t)) ⊃ D(A) for
all t ≥ 0 such that B ∈ BV (R+,B(Y,E)) (the space of B(Y,E)-valued functions
of bounded variation over R+ ) and Y = D(A) with the graph norm. (3.3) is
associated with an operator equation Du − Bu = f , where Df = f ′ and B is
defined by

(Bu)(t) = Au(t) +

∫ ∞

0
dB(τ)u(t− τ), u ∈ BUC(R, E).

One can show that, under well-posedness conditions, B is closable and its closure,
which is denoted by the same symbol B, commutes with the translation group
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V (t) (hence with D). It follows from [20, Proposition 1 and Theorem 1], that the
equation spectrum Σ of the equation (D −B)u = f is

Σ = {λ ∈ R : [iλ−A− d̂B(iλ)] is not invertible}.

On the other hand, σ(D) = iR, and σ(B) contains the complement of the set

Ω := {λ ∈ R : [iλ−A− d̂B(iξ)] are invertible for all ξ ∈ R and

supξ∈R ‖[iλ −A− d̂B(iξ)]−1‖ <∞}.

Examples 3.16 and 3.17 demonstrate that, in general, the equation spectrum
Σ can be significantly smaller than σ(B).

Lemma 3.18. Let f ∈ F and u be a mild solution of (3.1). Then
(i) Sp(u) ⊆ Σ ∪ Sp(f); in particular, if f = 0 (i.e. Lu = 0), then Sp(u) ⊆ Σ;
(ii) Spap(u) ⊆ Σ ∪ Spap(f); in particular, if f is almost periodic, then

Spap(u) ⊆ Σ.
(iii) SpK(u) ⊆ Σ ∪ SpK(f); in particular, if f ∈ K, then SpK(u) ⊆ Σ.

Proof. (i) Let λ ∈ R and λ 6∈ (Σ ∪ Sp(f). Then there exists a neighborhood U
of λ such that U ∩ Σ = ∅, M(U) is regularly admissible and φ ∗ f = 0 whenever

supp φ̂ ⊂ U . If u is a solution of (3.1), then (D−B)(φ ∗u)(t) = φ ∗ f(t) = 0. This
implies φ ∗ u = 0, since M(U) is regularly admissible. Hence λ 6∈ Sp(u).

The proofs of (ii)-(iii) are analogous. �

From Theorems 2.6, 2.7, 2.8 and Lemma 3.18 we immediately obtain the fol-
lowing main results of this paper.

Theorem 3.19. Assume that Σ∪Sp(f) is a discrete set and u is a mild solution
of (3.1). Then u is almost periodic.

Theorem 3.20. Assume that Σ is countable, f is an almost periodic element
and u is a mild solution of (3.1). Then Spap(u) is countable. In particular, u is
almost periodic, provided one of the following conditions holds:

(i) F does not contain a copy of c0;
(ii) {V (t)u : tR} is weakly relatively compact;
(iii) V (t)x is totally ergodic.

Theorem 3.21. Assume that Σ is countable, f ∈ K and u is a mild solution of
(3.1). Then SpK(u) ⊂ Σ, so that it is countable.

Remark 3.22. Wishing to emphasize the connection between our results and
previously known results on almost periodicity of differential equation u′(t) =
Au(t)+f(t), we have chosen to consider operator equations of the form Du−Bu =
f . However, all results in this section have a direct generalization to operator
equation of the form

Lu = f,(3.4)

where L is a closed linear operator on F which commutes with V (t). A subspace
M(Λ) is said to be regularly admissible if for every f ∈M(Λ), (3.4) has a unique
solution inM(Λ), or, equivalently, if L|M(Λ) is invertible. The equation spectrum
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of (3.4) is the set of real numbers λ such that for every neighborhood U of λ, M(U)
is not regularly admissible. If u is a solution of (3.4), then Sp(u) ⊆ Σ∪Sp(f) and
analogous inclusions hold for ap-, aap- and C+

0 -spectra (generalization of Lemma
3.18). Therefore, all theorems in this section remain true for (3.4).

4. The discrete case

The results presented in the previous section have discrete analogs, which are
of independent interest. We first recall the notion of spectrum of a bounded
sequence in E.

4.1. Spectrum of sequences. Let l∞(Z, E) be the Banach space consisting
of bounded two-sided sequences x = {xn}

∞
n=−∞, where xn are elements of a

Banach space E. As usual, we denote by l1(Z) the space of absolutely convergent
numerical sequences φ = {φn}, with the norm ‖φ‖ =

∑∞
n=−∞ |φn|. It is well

known that l1(Z) is a commutative regular Banach algebra, with convolution
as multiplication. The Gelfand space of l1(Z) is identified with the unit circle
Γ = {λ ∈ C : |λ| = 1}, and the Gelfand transform of elements φ in l1(Z) is given
by

φ̂(λ) =

∞∑

n=−∞

λ−nφn.

For every x in l∞(Z, E), define

Ix := {φ ∈ l1(Z) : φ ∗ x = 0},

and define the Beurling spectrum of x, SpB(x), as the hull of Ix. In other words,

SpB(x) consists of common zeros of φ̂(λ) for φ ∈ Ix. The following is another
equivalent definition of the Beurling spectrum.

SpB(x) = {λ ∈ Γ : for every neighborhood U of λ there exists φ ∈ l1(Z)

such that supp φ̂ ⊂ U , φ ∗ x 6= 0}.

As for functions on R, one can also define Carleman transform and Carleman
spectrum. For a sequence x ∈ l∞(Z, E), the Carleman transform x̃(λ) is defined
by

x̃(ξ) =

{ ∑∞
n=1 ξ

n−1xn if |ξ| < 1,∑0
n=−∞ ξn−1xn if |ξ| > 1

and the Carleman spectrum SpC(x) is the set of all points λ on Γ such that x̃

does not have an analytic continuation across λ. It is well known that SpC(x) =
SpB(x) for all x ∈ l∞(Z, E), so that we will denote the spectrum of x simply by
Sp(x).

The notions of almost periodic functions and ap-spectrum also have analogs
for sequences. Recall that a sequence x = {xn} is called almost periodic sequence
if the family of shifts xk = {xn+k} is relatively compact in l∞(Z, E). The set of
almost periodic sequences in E is denoted by AP (Z, E) and is a Banach subspace
of l∞(Z, E). A sequence x = {xn} is called asymptotically almost periodic if the



ASYMPTOTIC PROPERTIES 409

family of shifts xk = {xn+k} is asymptotically relatively compact in l∞(Z, E),
and x is called a C+

0 -sequence if limn→∞‖xn‖ = 0. We denote by AAP (Z, E) the
space of asymptotically almost periodic sequences and by C+

0 (Z, E) the space of
all C+

0 -sequences. It is well known that AAP (Z, E) = AP (Z, E) ⊕ C+
0 (Z, E).

A point λ ∈ Γ is said to be in the ap-spectrum Spap(x) of a sequence x if

for every neighborhood U of λ, there exists φ ∈ l1(Z) such that supp φ̂ ⊂ U and
φ ∗ x 6∈ AP (Z, E). The aap-spectrum and C+

0 -spectrum are defined analogously
and are denoted by Spaap(x) (resp., Sp0(x)).

The spectra of sequences have properties analogous to properties of the spectra
of functions, i.e. analogs of Propositions 2.2 and 2.4 hold for Sp(x), Spap(x),
Spaap(x) and Sp0(x). We omit the details.

The Loomis theorem states that if Spap(x) is countable, then x ∈ AP (Z, E),
provided one of the following holds: (i) X 6⊃ c0; (ii) x has weakly relatively
compact range; (iii) x is totally ergodic, i.e.

lim
n→∞

1

n

n+h∑

k=h

λ−kxk

converges uniformly in h ∈ Z, for all λ ∈ Sp(x). The analog of Theorem 2.8
states that if Spaap(x) is countable, then x ∈ AAP (Z, E) if (and only if) x is
totally ergodic.

4.2. Discrete isometric groups. Now suppose that F is another Banach space
and V is a single invertible isometry on F . Every element x in F is associated
with a bounded sequence x = {V nx : n ∈ Z}. An element x is called almost
periodic element under V (i.e., under the discrete group {V n : n ∈ Z}), if the
corresponding sequence x is almost periodic. The spectrum and ap-spectrum of
x are defined by

Sp(x) := Sp(x), Spap(x) := Spap(x).

Asymptotically almost periodic and C+
0 elements are defined analogously, as well

as the aap-spetrum and C+
0 -spectrum. All facts of the theory of continuous groups

presented in Section 2 remain true for discrete isometric groups. In particular, for
every closed subset Λ of the unit circle Γ, the subspace M(Λ) consisting of x such
that Sp(x) ⊆ Λ is invariant for V and for any closed operator which commutes
with V , and Sp(V |M(Λ)) ⊆ Λ. If Spap(x) is countable and either F 6⊃ c0 or
λ−nV nx has uniformly convergent mean for every λ ∈ Γ \ Sp(x) (i.e. is totally
ergodic), then x is almost periodic (under the discrete group V n).

4.3. Almost periodicity of solutions of operator equation. Let L be a
closed, generally unbounded, linear operator on F which commutes with V and
consider the operator equation

Lu = f,(4.1)

where f, u are in F . A subspace M(Λ) is said to be regularly admissible for (4.1)
if for every f ∈M(Λ), (4.1) has a unique solution in M(Λ). Equivalently, M(Λ)
is regularly admissible if L|M(Λ) is invertible. Define the equation spectrum of
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(4.1) as the set Σ of points λ ∈ Γ such that for every neighborhood U of λ, M(U)
is not regularly admissible.

Lemma 4.1. If u is a solution of (4.1), then
(i) Sp(u) ⊆ Σ ∪ Sp(f); in particular, if Lu = 0 then Sp(u) ⊆ Σ;
(ii) Spap(u) ⊆ Σ ∪ Spap(f); in particular, if f is almost periodic, then

Spap(u) ⊆ Σ;
(iii) Spaap(u) ⊆ Σ ∪ Spaap(f); in particular, if f is asymptotically almost

periodic, then Spaap(u) ⊆ Σ;
(iv) Sp0(u) ⊆ Σ ∪ Sp0(f); in particular, if f is a C+

0 -element, then Sp0(u) ⊆
Σ;

Theorem 4.2. Assume that Σ ∪ Sp(f) is a discrete set and u is a solution of
(4.1). Then u is almost periodic.

Theorem 4.3. Assume that Σ is countable, f is almost periodic and u is a
solution of (4.1). Then Spap(u) is countable. In particular, u is almost periodic,
provided one of the following holds

(i) F 6⊃ c0;
(ii) {V nu : n ∈ Z} is relatively weakly compact;
(ii) u is totally ergodic.

Theorem 4.4. Assume that Σ is countable, f is asymptotically almost periodic
and u is a solution of (4.1). Then Spaap(u) is countable. In particular, u is
asymptotically almost periodic if (and only if) u is totally ergodic.

5. Examples

5.1. First order differential equations. Consider the differential equation

u′(t) = Au(t) + f(t),(5.1)

where A is a closed linear operator on a Banach space E. Assume that f is almost
periodic (asymptotically almost periodic), and we are interested in conditions
under which a solution u ∈ BUC(R, E) is almost periodic (resp., asymptotically
almost periodic). We will apply results of Section 2 to the case F = BUC(R, E),
and (V (t)f)(s) = f(s+ t) is the translation group on BUC(R, E), hence D, the
generator of (V (t), is the differentiation operator on BUC(R, E). Let B be an
operator on BUC(R, E) defined by

D(B) := {u ∈ BUC(R, E) : u(t) ∈ D(A) ∀t ∈ R and Af(t) ∈ BUC(R, E)},

(Bf)(t) = Af(t), ∀f ∈ D(B).

As noted in Example 3.13, (5.1) has the form

Du− Bu = f,(5.2)

and the equation spectrum Σ of (5.1)-(5.2) coincides with [−iσ(A)]∩R. Therefore,
we have the following theorems (cf. [1, 14,21]).
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Theorem 5.1. Assume that σ(A)∩iR is countable, f is almost periodic and u is a
uniformly continuous bounded mild solution of (5.1). Then Spap(u) is countable.
In particular, u is almost periodic provided one of the following conditions holds:

(i) E 6⊃ c0;
(ii) u has relatively compact range;
(iii) u(t) is totally ergodic.

It should be noted that the space F = BUC(R, E) always contains c0, hence
Theorem 3.20-(i) does not apply to this case. However, in Theorem 5.1-(i) the
assumption E 6⊃ c0 is on the Banach space E, not on F . The corresponding con-
clusion follows simply from the fact that Spap(u) is countable and from Theorem
2.7-(i).

Theorem 5.2. Assume that σ(A) ∩ iR is countable, f is asymptotically almost
periodic, and u is a uniformly continuous bounded mild solution of (5.1). Then
u is asymptotically almost periodic if (and only if) u(t) is totally ergodic.

5.2. Second order differential equations. Consider the differential equation

u′′(t) = Au(t) + f(t),(5.3)

where A is a closed linear operator on a Banach space E. Assume that f is
(asymptotically) almost periodic, and we are interested in conditions under which
a solution u ∈ BUC(R, E) is also (asymptotically) almost periodic. Let D be as
in Example 3.13, B be an operator on BUC(R, E) defined by

D(B) := {u ∈ BUC(R, E) : u(t) ∈ D(A) ∀t ∈ R and Af(t) ∈ BUC(R, E)},

(Bf)(t) = Af(t), ∀f ∈ D(B),

and L0 = D2 − B. Exactly as in the proof of Lemma 3.1, we obtain that the
operator L0 is closable. Let L be the closure of L0. A function u is called a mild
solution of ((5.3)) if u ∈ D(L) and Lu = f . The following proposition shows that
a function u is a mild solution in our definition if and only if it is a mild solution
in the standard definition (cf. [1]).

Proposition 5.3. A function u is a mild solution of (5.3) if and only if∫ t

0 (t− s)u(s)ds ∈ D(A) and there exist x, y ∈ E such that

u(t) = x+ ty +A

∫ t

0
(t− s)u(s)ds+

∫ t

0
(t− s)f(s)ds, t ∈ R.(5.4)

Proof. Assume u is a mild solution of (5.3), i.e. u ∈ D(L) and Lu = f . Then there
exist functions un ∈ D(D2)∩D(B) and fn ∈ BUC(R, E) such that ‖un−u‖∞ → 0,
‖fn − f‖∞ → 0 and D2un − Bun = fn. Therefore, un are classical solutions of
5.3 (with f replaced by fn), so that the following holds (for some xn, yn in E):

un(t) = un(0) + tu′
n
(0) +A

∫
t

0

(t− s)un(s)ds+

∫
t

0

(t− s)fn(s)ds, t ∈ R.(5.5)

From ‖un − u‖∞ → 0 and u′n, u
′′
n ∈ BUC(R, E), it follows that un(0) and u′n(0)

converge to some x and y, respectively. Using (5.5) and a standard argument
involving closed operators, we obtain (5.4).
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Conversely, assume that u satisfies (5.4). Choose φn ∈ L1(R) such that supp φ̂n

are compact and u∗φn → u as n→ ∞ uniformly (see e.g. [14], Chapter 6). Then
we have

u ∗ φ(t) =
[∫ ∞

−∞
φ(t)dt

]
x+

[∫ ∞

−∞
(t− s)φ(s)ds

]
y+

A
∫ t

0 (t− s)(u ∗ φ)(s)ds+
∫ t

0 (t− s)(f ∗ φ)(s)ds, t ∈ R,

so that un = u ∗ φn is a classical solution of (5.3), with f replaced by f ∗ φn.
Thus, un ∈ D(L0) and L0un = fn → f , so that u ∈ D(L) and Lu = f , i.e. u is a
mild solution. �

Let Σ be the equation spectrum for equation

Lu = f,(5.6)

where L is defined above.

Proposition 5.4. Σ = {λ ∈ R : −λ2 ∈ σ(A)}.

Proof. Assume that λ0 ∈ R and (λ2
0 + A) is invertible. Then there exists a

neighborhood U of λ0 such that (λ2+A)−1 exists for every λ ∈ U . ConsiderM(U).
The restriction D2|M(U) is a bounded operator and σ(D2|M(U)) = {−λ2 : λ ∈
U}. Therefore, by Lemma 3.7, (D2 − B)|M(U) is invertible, i.e. λ0 6∈ Σ. Thus
we have showed Σ ⊆ {λ ∈ R : (λ2 + A) is not invertible} Conversely, let λ0 6∈ Σ.
Then there exists a neighborhood U of λ0 such that M(U) is regularly admissible.
In particular, M({λ0}) is regularly admissble. Since M({λ0}) = {eiλ0tx : x ∈ E},
it follows that for every x ∈ E there exists a unique y ∈ E such that the function
u(t) = eiλ0ty is a mild solution of (5.3)-(5.6). This implies that for every x ∈ E
there exists a unique y ∈ E such that (−λ2

0−A)y = x, i.e. λ2
0+A is invertible. �

Therefore, we have the following theorems (cf. [1, 23]).

Theorem 5.5. Assume that σ(A) ∩ (−∞, 0] is countable, f is almost periodic,
and u is a uniformly continuous bounded mild solution of (5.3). Then Spap(u)
is countable. In particular, u is almost periodic, provided one of the following
conditions holds:

(i) E 6⊃ c0;
(ii) u(R) is relatively weakly compact;
(iii) u(t) is totally ergodic.

Theorem 5.6. Assume that σ(A) ∩ (−∞, 0] is countable, f is asymptotically
almost periodic, and u is a uniformly continuous bounded mild solution of (5.3).
Then u is asymptotically almost periodic if (and only if) u(t) is totally ergodic.

5.3. Convolution equations. Consider the equation

µ ∗ u = f,(5.7)

where µ is a complex bounded measure on R, f ∈ BUC(R, E). This equation
has the form

Lu = f,(5.8)
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where L is the convolution operator

Lu = µ ∗ u, u ∈ BUC(R, E).

It follows from the Wiener Tauberian theorem that the equation spectrum Σ
for (5.7) or (5.8) coincides with all λ such that µ̂(λ) = 0. Therefore, we have the
following theorems (cf. [21], [22]).

Theorem 5.7. Assume that the set Σ = {λ ∈ R : µ(λ) = 0} is countable, f is
almost periodic and u is a uniformly continuous bounded mild solution of (5.7).
Then Spap(u) is countable. In particular, u is almost periodic provided one of the
conditions (i)-(iii) in Theorem 5.1 holds.

Theorem 5.8. Assume that the set Σ = {λ ∈ R : µ(λ) = 0} is countable, f
is asymptotically almost periodic and u is a uniformly continuous bounded mild
solution of (5.7). Then u is asymptotically almost periodic if (and only if) u(t)
is totally ergodic.

5.4. Volterra equations. Consider the Volterra equation

u′(t) = Au(t) +

∫ ∞

0
dB(τ)u(t− τ) + f(t),(5.9)

where A is a closed linear operator on a Banach space E with dense domain D(A),
{B(t)}t≥0 is a family of closed linear operators in E with D(B(t)) ⊃ D(A) for
all t ≥ 0 such that B ∈ BV (R+,B(Y,E)) (the space of B(Y,E)-valued functions
of bounded variation over R+) and Y = D(A) with the graph norm. (5.9) is
associated with an operator equation Du − Bu = f , where Df = f ′ and B is
defined by

(Bu)(t) = Au(t) +

∫ ∞

0
dB(τ)u(t− τ), u ∈ BUC(R, E).

The spectrum Σ of the equation (D − B)u = f is

Σ = {λ ∈ R : [iλ−A− d̂B(iλ)] is not invertible}.

Therefore, we obtain the following results (cf. [23]).

Theorem 5.9. Assume that Σ is countable, f is almost periodic and u is a uni-
formly continuous bounded mild solution of (5.9). Then Spap(u) is countable. In
particular, u is almost periodic provided one of the conditions (i)-(iii) in Theorem
5.1 holds.

Theorem 5.10. Assume that Σ is countable, f is asymptotically almost peri-
odic and u is a uniformly continuous bounded mild solution of (5.9). Then u is
asymptotically almost periodic if (and only if) u(t) is totally ergodic.

5.5. Difference equations. Consider the difference equation

un+1 = Aun +

m∑

k=1

Bkun−k + fn,(5.10)
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where A is an arbitrary closed operator and Bk, k = 1, 2, ...,m, are arbitrary
bounded operators on a Banach space E. (5.10) has the form

Lu = f,

where u = (un) and f = (fn) are elements (sequences) in l∞(Z, E) and L is a
closed linear operator in l∞(Z, E) defined by

D(L) := {u = (un) : un ∈ D(A) ∀n} and (Lu)n = un+1 −Aun −
m∑

k=1

Bkun−k.

Lemma 5.11. The equation spectrum Σ of (5.10) is given by

Σ =

{
λ ∈ Γ : (λ−A−

m∑

k=1

λ−kBk) is not invertibe

}
.

Proof. Assume that λ0 ∈ Γ is such that (λ0 − A −
∑m

k=1 λ
−k
0 Bk) is invertible.

Then there exists a neighborhood U of λ0 such that (λ − A −
∑m

k=1 λ
−kBk)

−1

exists for all λ ∈ U . Let Λ be a neighborhood of λ0 such that Λ ⊂ U . We show
that M(Λ) is regularly admissible, i.e. for every f ∈M(Λ), there exists a unique
solution u ∈M(Λ) of (5.10).

First, we show the uniqueness. Assume that u1 and u2 are solutions in M(Λ)
of (5.10) with f ∈ M(Λ). Then u = u1 − u2 is a solution in M(Λ) of the
homogeneous equation

un+1 = Aun +

m∑

k=1

Bkun−k.

By considering the Carleman transform of both parts of the above equation, and
denoting the shift operator by S ((Su)n = un+1), we have

(̃Su)(λ) = λ−1ũ− λ−1u0

= Aũ(λ) +

m∑

k=1

λkBũ(λ) +

m∑

k=1

λk
0∑

j=1−k

λj−1xj ,

or

(λ−1 −A−
m∑

k=1

λkB)ũ(λ) = y,(5.11)

for some y ∈ E. From

µ−A−
m∑

k=1

µ−kBk = λ−A−
m∑

k=1

λ−kBk + (µ− λ) −
m∑

k=1

(µk − λk)Bk

it follows that if (λ−A−
∑m

k=1 λ
−kBk) is invertible and |µ−λ| < ε for sufficiently

small ε > 0, then (µ−A−
∑m

k=1 µ
−kBk) is invertible. Therefore, the set

Ω := {λ : (λ−A−
m∑

k=1

λ−kBk) is invertible}
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is open. From (5.11) it follows that if (ξ −A−
∑m

k=1 ξ
−kBk)

−1 exists for some ξ
from a neighborhood of λ0, then ũ(λ) has analytic continuation in a neighborhood
of λ0. Thus, we have shown that

Sp(u) ⊆ {λ : (λ−A−
m∑

k=1

λ−kBk) is not invertible}.

On the other hand, Sp(u) ⊆ Λ and (λ − A −
∑m

k=1 λ
−kBk) is invertible for all

λ ∈ Λ. Therefore, Sp(u) = ∅, hence u = 0. The uniqueness is proved.
Now we prove the existence of a solution u ∈ M(Λ). Suppose f ∈ M(Λ). Let

φ ∈ l1(Z) be such that supp φ̂ ⊂ U and φ̂ = 0 on a neighborhood of Λ. Define

G(n) =

∫

Γ
(λ−A−

m∑

k=1

λ−kBk)
−1φ̂(λ)λ−ndλ,

(where the integral is in fact over U , since supp φ̂ ⊂ U). Double integration by
parts yields

G(n + 1) =
1

n2

∫

Γ

[
d2

dλ2
(λ−A−

m∑

k=1

λ−kBk)
−1φ̂(λ)

]
λ−n+2dλ,

which implies that
∑∞

n=−∞ ‖Gn‖ < ∞. Therefore, we can define u ∈ l∞(Z, E)
by

un =
∞∑

k=−∞

G(n − k)fk, n ∈ Z.

From the uniqueness theorem it follows that u is a solution of (5.10) and from
spectral properties of sequences it follows that Sp(u) ⊆ Sp(f) ⊆ Λ. Thus, we
have proved the inclusion Σ ⊆ {λ ∈ Γ : (λ−A−

∑m
k=1 λ

−kBk) is not invertibe}.
To show the inverse inclusion, suppose that λ0 6∈ Σ. Then there exists an open
neighborhood U of λ0 such that M(U) is regularly admissible. This implies that
M({λ0}) is admissible, i.e. for every fn = (λn

0x), x ∈ E, there exists a unique
solution u = (λn

0y) of (5.10), for some y ∈ E. Therefore, for every x ∈ E there

exists a unique y ∈ E such that (λ0−A−
∑m

k=1 λ
−k
0 Bk)y = x, which implies that

(λ0 −A−
∑m

k=1 λ
−k
0 Bk) is invertible. �

Thus, we obtain the following theorems.

Theorem 5.12. Assume that Σ :=
{
λ ∈ Γ : (λ−A−

m∑
k=1

λ−kBk) is not invertible
}

is countable, f = (fn) is almost periodic and u = (un) is a bounded solution of
(5.10). Then Spap(u) is countable. In particular, u is an almost periodic sequence
provided one of the following conditions holds:

(i) E 6⊃ c0;
(ii) u has relatively compact range;
(iii) (un) is totally ergodic.
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Theorem 5.13. Assume that Σ is countable, f = (fn) is an asymptotically
almost periodic sequence and u is a uniformly continuous bounded mild solution
of (5.10). Then u is an asymptotically almost periodic sequence if (and only if)
u(t) is totally ergodic.

In conclusion, we note the results on discrete semigroups in Section 4 can
be used to study asymptotic properties of ω-periodic functional-differential equa-
tions, since these equations are characterized by commutativity of the correspond-
ing operator L with T (ω), the translation by ω. These applications to periodic
equations will be treated in a subsequent paper.
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