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ON CHARACTERISTIC SYSTEMS FOR GENERAL

MULTIDIMENSIONAL MONGE-AMPÈRE EQUATIONS

HA TIEN NGOAN

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. Like the characteristic method in solving the Cauchy problem for
a first-order partial differential equation, we reduce the Cauchy problem for a
general multidimensional Monge-Ampère equation to that for a normal first-
order system of nonlinear partial differential equations, that could be called
characteristic system for a given multidimensional Monge-Ampère equation.

1. Introduction

It is well known that the Cauchy problem for a first-order partial differential
equation in R

n can be reduced to that for the characteristic first-order system
of (2n + 1) ordinary differential equations. In this paper, we try to do the same
for the Cauchy problem for a general multidimensional Monge-Ampère equation,
that is in the following form:

(1.1)

∣

∣

∣

∣

∣

∣

∣

∣

zx1x1
+ a11 zx1x2

+ a12 ... zx1xn + a1n

zx2x1
+ a21 zx2x2

+ a22 ... zx2xn + a2n

... ... ... ...

zxnx1
+ an1 zxnx2

+ a12 ... zxnxn + ann

∣

∣

∣

∣

∣

∣

∣

∣

= b,

where z = z(x1, x2, ..., xn) is an unknown function defined for x = (x1, x2, ..., xn) ∈
Ω ⊂ R

n; ajk = ajk(x, z(x), zx(x)), b = b(x, z(x), zx(x)), zx(x) = (zx1
(x), zx2

(x),...
zxn(x)). All functions in this paper are assumed to be smooth and real-valued. We
will denote p = (p1, p2, ..., pn), zxx(x) ≡ [zxjxk

(x)]n×n, A(x, z, p) ≡ [ajk(x, z, p)]n×n.

The Cauchy problem for multidimensional Monge-Ampère equation (1.1) can
be described as follows:
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Suppose that in R
n
x there is an (n − 1)-dimensional surface Γ, that is given by

equations:


















x1 = X0
1 (y′)

x2 = X0
2 (y′)

. . .

xn = X0
n(y′),

(1.2)

where

rank
[DX0(y′)

Dy′

]

= n − 1,

and X0(y′) ≡ (X0
1 (y′),X0

2 (y′), . . . ,X0
n(y′)).

Here and in what follows we put

y′ = (y1, y2, . . . , yn−1) ∈ ω ⊂ R
n−1
y′ .

Suppose also that we are given (n + 1) functions Z0(y′);P 0
j (y′), j = 1, 2, . . . , n.

The Cauchy problem for equation (1.1) consists in looking for z = z(x) ∈ C2

that is a solution of (1.1) such that
{

z(x)
∣

∣

x=X0(y′)
= Z0(y′),

zx(x)
∣

∣

x=X0(y′)
= P 0(y′),

(1.3)

where P 0(y′) ≡ (P 0
1 (y′), P 0

2 (y′), . . . , P 0
n(y′)). From (1.3) we have the following

necessary consistency conditions for the initial Cauchy data:

(1.4)
∂Z0(y′)

∂yk
=

n
∑

j=1

P 0
j (y′)

∂X0
j (y′)

∂yk
, y′ ∈ ω, k = 1, . . . , n − 1,

which are assumed to be fulfilled.
In the case b(x, z, p) ≡ 0, we considered in [6] the Cauchy problem for the

general multidimensional Monge-Ampère equations (1.1) and we have reduced
the Cauchy problem (1.1), (1.3) to that for a normal system of (2n + 1) first-
order nonlinear partial differential equations. In this paper we try to do the
same for the case when b(x, z, p) may be not zero. Namely, our main result is
Theorem 3.5 in section 3, which states that any solution z(x) ∈ C2 of the Cauchy
problem (1.1), (1.3) will generate a solution to the corresponding Cauchy problem
for the normal system (3.20) of (2n + 1) first-order nonlinear partial differential
equations. Moreover, at the end of section 4 we will establish also the so-called
non-characteristic condition for the Cauchy problem (1.1), (1.3), that has been
established in [6] for the case b(x, z, p) ≡ 0.

In the next section we discuss some existing characteristic methods for the
Cauchy problem (1.1), (1.3), that can be applied only to rather narrow classes
of equations (1.1). Section 3 is the main one, where in any dimension n and for
any right-hand side b(x, z, p) we drive the so-called characteristic system (3.20)
for equation (1.1). As in [6], at the last section in Theorem 4.1, we will prove
the converse assertion of Theorem 3.5, which states that any solution to the
corresponding Cauchy problem for system (3.20) will give us a solution z(x) ∈ C2
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of the Cauchy problem (1.1), (1.3). This explains us, why system (3.20) could be
called characteristic system for the Monge-Ampère equation (1.1).

2. Characteristic method for classical hyperbolic

Monge-Ampère equations

Before formulating characteristic system for equation (1.1), we resume the
characteristic method for classical hyperbolic Monge-Ampère equations. When
n = 2, the classical Monge-Ampère equation (1.1) is of the form

(2.1)

∣

∣

∣

∣

zx1x1
+ a11 zx1x2

+ a12

zx2x1
+ a21 zx2x2

+ a22

∣

∣

∣

∣

= b.

The characteristic equation for (2.1) is ([3])

(2.2) λ2 + (a12 + a21)λ + (a11a22 − b) = 0.

We set

(2.3) ∆ ≡ (a12 + a21)
2 − 4(a11a22 + b) = (a12 − a21)

2 − 4b.

When ∆ > 0, equation (2.1) is called hyperbolic. In this case we denote the
roots of (2.2) by λ1, λ2. When ∆ < 0, equation (2.1) is called elliptic, and when
∆ ≡ 0, it is called parabolic. At the end of the 19-th century, G. Darboux and E.
Goursat in [1] and [2] introduced the characteristic method for solving the Cauchy
problem for hyperbolic equation (2.1), that reduces this problem to that for a
first-order partial differential equation in R

2. But this method requires existence
of two independent first integrals for equation (2.1). A function ϕ(x1, x2, z, p1, p2)
is called a first integral for equation (2.1) if it satisfies the following system of
equations:

{

∂ϕ
∂x1

+ ∂ϕ
∂z

− a11
∂ϕ
∂p1

− λ1
∂ϕ
∂p2

= 0,
∂ϕ
∂x2

+ ∂ϕ
∂z

− λ2
∂ϕ
∂p1

− a22
∂ϕ
∂p2

= 0.

The characteristic method of G. Darboux and E. Goursat then have been de-
veloped in [3] by M. Tsuji to the Cauchy problem for general multidimensional
Monge-Ampère equations (1.1) with b(x, z, p) ≡ 0, provided that this equation
possesses n independent first integrals. But, the condition on existence of two in-
dependent first integrals for equation (2.1) is rather strict one, because in [5] H. T.
Ngoan. D. Kong and M. Tsuji have showed that there are many Monge-Ampère
equations (2.1), that do not possess this property. To avoid this difficulty, M.
Tsuji in [4] has reduced the Cauchy problem for the hyperbolic equation (2.1) to
that for the following first-order system of quasilinear equations































∂Z
∂y1

− P1
∂X1

∂y1
− P2

∂X2

∂y1
= 0,

∂P1

∂y1
+ a11

∂X1

∂y1
+ λ1

∂X2

∂y1
= 0,

∂P2

∂y1
+ λ2

∂X1

∂y1
+ a22

∂X2

∂y1
= 0,

∂P1

∂y2
+ a11

∂X1

∂y2
+ λ2

∂X2

∂y2
= 0,

∂P2

∂y2
+ λ1

∂X1

∂y2
+ a22

∂X2

∂y2
= 0.

(2.4)
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We see that system (2.4) of quasilinear partial differential equations is not a
normal one. Moreover, this method of reduction cannot be applied neither to
the case of dimension greater than 2, nor to elliptic, parabolic Monge-Ampère
equations.

We would like to emphasis that our characteristic system (3.20) is a normal one
and our method of reduction to the characteristic system can be applied for any
dimension n and for any general Monge-Ampère equation with arbitrary values
of b(x, z, p).

3. Reduction of the multidimensional Monge-Ampère equation to

characteristic system

3.1. Change of variables in equation (1.1). Suppose z(x) is a C2-solution of
the Cauchy problem (1.1), (1.3). In equation (1.1) we change variables

(3.1) x = X(y) ≡ (X1(y),X2(y), ...,Xn(y)),

where y ≡ (y1, y2, ..., yn); y′ ≡ (y1, y2, ..., yn−1) ∈ ω is a chosen local coordinate of
the surface Γ ⊂ R

n defined by (1.2). We assume that the vector-function X(y)
satisfies the following conditions:

(3.2) X(y′, 0) = X0(y′), y′ ∈ ω

and

(3.3) det

[

DX(y)

Dy

]

6= 0, y = (y′, yn) ∈ ω × (−δ, δ),

where X0(y′) is the vector-function defined in (1.2) and

DX

Dy
≡













∂X1

∂y1

∂X2

∂y1
. . . ∂Xn

∂y1

∂X1

∂y2

∂X2

∂y2
. . . ∂Xn

∂y2

...
...

...
...

∂X1

∂yn

∂X2

∂yn
. . . ∂Xn

∂yn













.

We denote

(3.4) y = Y (x) ≡ (Y1(x), Y2(x), ..., Yn(x)),

that is the inverse to (3.1). We set

(3.5) Z(y) ≡ z(X(y)),

(3.6) P (y) ≡ zx(X(y)) = (P1(y), P2(y), ..., Pn(y)).

Remark 3.1. From (3.2), (3.5), (3.6) and (1.3) it follows that (X(y), Z(y), P (y))
satisfy the following ”initial” conditions:











X(y′, 0) = X0(y′),

Z(y′, 0) = Z0(y′),

P (y′, 0) = P 0(y′),

y′ ∈ ω(3.7)
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where X0(y′), Z0(y′), P 0(y′) are given in (1.2) and (1.3) as Cauchy data for equa-
tion (1.1).

From (3.5) and (3.6) it follows that

(3.8)
∂Z(y)

∂yk
=

n
∑

j=1

Pj(y)
∂Xj(y)

∂yk
, k = 1, . . . , n.

From (3.5) and (3.6) it follows also that

(3.9) zxx(X(y)) =
DY

Dx

DP

Dy
.

Proposition 3.2. Suppose X(y) ∈ C1 is given so that condition (3.3) holds;

z(x) ∈ C2 is a solution of (1.1) and the functions Z(y), P (y) are defined re-

spectively by (3.5) and (3.6). Then equation (1.1) is equivalent to the following

relation:

(3.10) det

[

DP

Dy
+

DX

Dy
A(X,Z,P )

]

= bdet

[

DX

Dy

]

.

Proof. From (3.9) we have

det[zxx + A(x, z(x), zx(x))]

= det

[

DY

Dx

DP

Dy
+ A(X,Z,P )

]

= det

[

DY

Dx

(

DP

Dy
+

(DY

Dx

)

−1
A(X,Z,P )

)]

= det

[

DX

Dy

]

−1

det

[

DP

Dy
+

DX

Dy
A(X,Z,P )

]

= b,

from which the equivalence of (1.1) and (3.10) follows. �

3.2. Some row-vectors. We introduce now some row-vectors, that will play
important roles in reducing equation (1.1) to a characteristic system.

∂X(y)

∂yj
≡

(

∂X1(y)

∂yj
,
∂X2(y)

∂yj
, . . . ,

∂Xn(y)

∂yj

)

, j = 1, 2, . . . , n − 1,

(3.11)

∂P (y)

∂yj
≡

(

∂P1(y)

∂yj
,
∂P2(y)

∂yj
, . . . ,

∂Pn(y)

∂yj

)

, j = 1, 2, . . . , n − 1,

(3.12)

~vj(y) ≡
∂P (y)

∂yj
+

∂X

∂yj
A(X(y), Z(y), P (y)) = (vj1(y), vj2(y), . . . , vjn(y)),(3.13)

j = 1, 2, . . . , n − 1

~g ≡ ~v1(y) × ~v2(y) × · · · × ~vn−1(y) = (g1, g2, . . . , gn),(3.14)

~h ≡
∂X(y)

∂y1
×

∂X(y)

∂y2
× · · · ×

∂X(y)

∂yn−1
= (h1, h2, . . . , hn),(3.15)
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where

(3.16) ~v1 × ~v2 × · · · × ~vn−1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~e1 ~e2 . . . ~en−1 ~en

v11 v12 . . . v1,n−1 v1,n

v21 v22 . . . v2,n−1 v2,n

...
...

...
. . .

...
vn−1,1 vn−1,2 . . . vn−1,n−1 vn−1,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∈ Rn,

~e1, ~e2, . . . , ~en are unit row-vectors on coordinate axes Ox1, Ox2, . . . , Oxn respec-

tively. From the definitions of the vectors ~g and ~h, it is easy to get the following
propositions

Proposition 3.3. The following properties are valid for the vector ~g:

1) The vector ~g is orthogonal to all vectors ~vk, k = 1, 2, ..., n − 1, i.e.

(3.17) 〈~g,~vk〉 = 0, k = 1, 2, ..., n − 1;

2) ~g 6= ~0 if and only if the vectors ~vk, k = 1, 2, ..., n−1 are linearly independent;

3) Each of gj(y) depends on (X(y), Z(y), P (y)), that are in functions aik(X(y),
Z(y), P (y)). All components gj(y) are homogeneous polynomials of degree (n−1)

with respect to derivatives
∂X(y)
∂yk

,
∂P (y)
∂yk

, k = 1, 2, . . . , n − 1.

Proposition 3.4. The following properties are valid for the vector ~h:

1) Vector ~h is orthogonal to all vectors
∂X(y)
∂yk

= 0, k = 1, 2, ..., n − 1, i.e.

(3.18) 〈~h,
∂X(y)

∂yk

〉 = 0, k = 1, 2, ..., n − 1;

2) ~h 6= ~0 if and only if the vectors
∂X(y)
∂yk

, k = 1, 2, ..., n − 1 are linearly in-

dependent. In this case, if there is a vector ~m, such that 〈~m,
∂X(y)
∂yk

〉 = 0, k =

1, 2, ..., n − 1, then there exists a real number c ∈ R such that ~m = c~h;
3) Each of hj(y) is a homogeneous polynomial of degree (n− 1) with respect to

derivatives
∂X(y)
∂yk

, k = 1, 2, . . . , n − 1.

3.3. The main result. Our main result is the following one.

Theorem 3.5. Suppose that following conditions hold:

1) X(y) ∈ C2 and satisfies (3.3),
2) z(x) ∈ C2 is a solution of equation (1.1),
3) Functions Z(y), P (y) are defined respectively by (3.5) and (3.6),
4) The vector-function X(y) satisfies the following system of relations:

(3.19)

n
∑

k=1

∂X(y)

∂yk
= ~g, y ∈ ω

where the vector-function ~g is defined by (3.14).
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Then (X(y), Z(y), P (y)) is a C1-solution of the following first-order normal

system of (2n + 1) nonlinear partial differential equations:










∑n
k=1

∂X
∂yk

= ~g,
∑n

k=1
∂Z
∂yk

= 〈~g, P 〉,
∑n

k=1
∂P
∂yk

= −~gAT (X,Z,P ) + b(X,Z,P )~h,

(3.20)

where the vector-function ~h is defined by (3.15).

Proof. We begin the proof of Theorem 3.1 by proving some lemmas.

Lemma 3.6. Suppose X(y) ∈ C2 and satisfies (3.19). Then we have

(3.21) det

[

DX(y)

Dy

]

= (−1)(n−1)〈~g,~h〉,

where the vector-functions ~g,~h are defined respectively by (3.14) and (3.15).

Proof. By definition

(3.22) det

[

DX(y)

Dy

]

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂X1

∂y1

∂X2

∂y1
. . . ∂Xn

∂y1

∂X1

∂y2

∂X2

∂y2
. . . ∂Xn

∂y2

...
...

...
...

∂X1

∂yn−1

∂X2

∂yn−1
. . . ∂Xn

∂yn−1

∂X1

∂yn

∂X2

∂yn
. . . ∂Xn

∂yn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In the determinant at the right-hand side we sum up (n− 1) first rows and then

add them to the last row. Then using (3.19) and definitions of ~g and ~h, we have

det
[DX(y)

Dy

]

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂X1

∂y1

∂X2

∂y1
. . . ∂Xn

∂y1

∂X1

∂y2

∂X2

∂y2
. . . ∂Xn

∂y2

...
...

...
...

∂X1

∂yn−1

∂X2

∂yn−1
. . . ∂Xn

∂yn−1

g1 g2 . . . gn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)(n−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1 g2 . . . gn
∂X1

∂y1

∂X2

∂y1
. . . ∂Xn

∂y1

∂X1

∂y2

∂X2

∂y2
. . . ∂Xn

∂y2

...
...

...
...

∂X1

∂yn−1

∂X2

∂yn−1
. . . ∂Xn

∂yn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)(n−1)〈~g,~h〉.

The lemma is proved. �

Corollary 3.7. Suppose X(y) ∈ C2 and satisfies (3.19). Then the condition

(3.3) holds if and only if

(3.23) 〈~g,~h〉 6= 0.
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Lemma 3.8. Suppose all conditions of Theorem 3.1 hold. Then the second

equation of (3.20) holds, i.e.

(3.24)

n
∑

k=1

∂Z

∂yk
= 〈~g, P 〉.

Proof. The relation (3.24) follows easily from (3.8) and (3.19). �

Lemma 3.9. Suppose all conditions of Theorem 3.1 hold. We set

(3.25)

n
∑

k=1

∂P

∂yk
= ~f.

Then the following relations hold

(3.26) 〈~f,
∂X

∂yk

〉 = 〈~g,
∂P

∂yk

〉, k = 1, 2...., (n − 1).

Proof. From (3.8) we have for k,m = 1, 2, ..., n

(3.27)
∂Z

∂yk

=
n

∑

`=1

P`
∂X`

∂yk

,

(3.28)
∂Z

∂ym
=

n
∑

`=1

P`
∂X`

∂ym
.

Differentiating both sides of (3.27), (3.28) with respect to ym and yk respectively,
we get

(3.29)
∂2Z

∂yk∂ym
=

n
∑

`=1

∂P`

∂ym

∂X`

∂yk

+
n

∑

`=1

P`
∂2X`

∂yk∂ym
,

(3.30)
∂2Z

∂ym∂yk
=

n
∑

`=1

∂P`

∂yk

∂X`

∂ym
+

n
∑

`=1

P`
∂2X`

∂ym∂yk
.

Since Z(y),X(y) ∈ C2, from (3.29), (3.30) we get

(3.31)

n
∑

`=1

∂P`

∂ym

∂X`

∂yk
=

n
∑

`=1

∂P`

∂yk

∂X`

∂ym
.

Summing up both sides of (3.31) with respect to m from 1 to n, we get (3.26). �

Lemma 3.10. Suppose that (3.19) and (3.25) hold, where ~g is defined by (3.14).
Then the following assertions are equivalent

(3.32) 〈~f,
∂X

∂yk

〉 = 〈~g,
∂P

∂yk

〉, k = 1, 2...., (n − 1),

(3.33) 〈~f + ~gAT (X,Z,P ),
∂X

∂yk
〉 = 0, k = 1, 2...., (n − 1).
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Proof. a) Suppose that (3.32) holds. Since 〈~g,~vk〉 = 0, from (3.13) we have for
any k = 1, 2...., n − 1

〈~f,
∂X

∂yk
〉 = 〈~g,

∂P

∂yk
〉

= 〈~g,~vk〉 − 〈~g,
∂X

∂yk
A〉

= −〈~g,
∂X

∂yk
A〉

= −〈~gAT ,
∂X

∂yk
〉,

from which (3.33) follows.
b) Suppose that (3.33) holds. Then from (3.33) and (3.13) we have for any

k = 1, 2...., n − 1

〈~f,
∂X

∂yk

〉 = −〈~gAT ,
∂X

∂yk

〉

= −〈~g,
∂X

∂yk

A〉

= 〈~g,~vk〉 − 〈~g,
∂X

∂yk

A〉

= 〈~g,~vk −
∂X

∂yk

A〉 = 〈~g,
∂P

∂yk

〉.

The lemma is proved. �

Lemma 3.11. Suppose that (3.19) and (3.25) hold, where ~g is defined by (3.14).
Then the following assertions are equivalent

det

[

DP

Dy
+

DX

Dy
A

]

= bdet

[

DX

Dy

]

.(3.34)

〈~f + ~gA(X,Z,P ), ~g〉 = b(X,Z,P )〈~g,~h〉.(3.35)

Proof. a) Suppose that (3.34) holds. We rewrite (3.34) as follows
(3.36)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂P1

∂y1
+

∑n
`=1

∂X`

∂y1
a`1 . . . ∂Pn

∂y1
+

∑n
`=1

∂X`

∂y1
a`n

...
...

...
∂P1

∂yn−1
+

∑n
`=1

∂X`

∂yn−1
a`1 . . . ∂Pn

∂yn−1
+

∑n
`=1

∂X`

∂yn−1
a`n

∂P1

∂yn
+

∑n
`=1

∂X`

∂yn
a`1 . . . ∂Pn

∂yn
+

∑n
`=1

∂X`

∂yn
a`n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂X1

∂y1
. . . ∂Xn

∂y1

...
...

...
∂X1

∂yn−1
. . . ∂Xn

∂yn−1

∂X1

∂yn
. . . ∂Xn

∂yn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

We will verify the validity of (3.35). To do this, within each determinant at both
sides of (3.36) we sum up (n − 1) first rows and then add them to the last row.
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From (3.19) we have for any j = 1, 2...., n

n
∑

k=1

n
∑

`=1

∂X`

∂yk
a`j =

n
∑

`=1

(

n
∑

k=1

∂X`

∂yk

)

a`j

=
n

∑

`=1

g` a`j(3.37)

= (~gA)j .

From (3.36), (3.37) and (3.25) it follows that
(3.38)

∣

∣

∣

∣

∣

∣

∣

∣

∣

v11 v12 . . . v1n

...
...

...
...

vn−1,1 vn−1,2 . . . vn−1,n

(~f + ~gA)1 (~f + ~gA)2 . . . (~f + ~gA)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

= b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂X1

∂y1

∂X2

∂y1
. . . ∂Xn

∂y1

...
...

...
...

∂X1

∂yn−1

∂X2

∂yn−1
. . . ∂Xn

∂yn−1

g1 g2 . . . gn

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We can rewrite (3.38) as follows
(3.39)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(~f + ~gA)1 (~f + ~gA)2 . . . (~f + ~gA)n
v11 v12 . . . v1n

...
...

...
...

vn−1,1 vn−1,2 . . . vn−1,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

= b

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1 g2 . . . gn
∂X1

∂y1

∂X2

∂y1
. . . ∂Xn

∂y1

...
...

...
∂X1

∂yn−1

∂X2

∂yn−1
. . . ∂Xn

∂yn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

From the definitions of vectors ~g and ~h, we can rewrite (3.39) in the form

〈~f + ~gA(X,Z,P ), ~g〉 = b(X,Z,P )〈~g,~h〉,

that means (3.35) is proved.
b) Suppose that (3.35) holds. Then we can rewrite it as (3.39), then we get

(3.38). Within each determinant in both sides of (3.38) we multiply all (n − 1)
first rows by (−1) and then add to the last row. Then, from the obtained equality
and from (3.19), (3.25), (3.37) we get (3.36). The lemma is proved. �

Continuation of the proof of Theorem 3.5. To end the proof of Theorem 3.5
we need to prove that

(3.40) ~f = −~gAT (X,Z,P ) + b~h.

Indeed, from Lemmas 3.9 and 3.10, (3.33) follows. Then from (3.33) and from
Proposition 3.4 it follows that there exists c ∈ R such that

(3.41) ~f + ~gAT (X,Z,P ) = c~h.

Then from Proposition 3.2 and from (3.35), (3.41) it follows that

(3.42) 〈~g(A − AT ), ~g〉 + 〈c~h,~g〉 = b〈~g,~h〉.

Since 〈~g(A − AT ), ~g〉 = 0 and 〈~g,~h〉 6= 0, from (3.42) we get c = b. Theorem 3.5
is proved. �
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3.4. Necessary and sufficient condition for validity of (3.19). In this sub-
section we will discuss the necessary and sufficient condition for validity of (3.19).
From (3.9) and (3.12) it follows that

(3.43)
∂P (y)

∂yj
=

∂X(y)

∂yj
[zxx(X(y), z(X(y)), zx(X(y)))].

We set for j = 1, 2, . . . , n − 1
(3.44)

~wj ≡
∂X(y)

∂yj
[zxx(X(y), z(X(y)), zx(X(y))) + A(X(y), z(X(y)), zx(X(y)))]

and

(3.45) ~G ≡ ~w1 × ~w2 × · · · × ~wn−1 = (G1, G2, ..., Gn).

Note that each component Gj is a polynomial of degree (n − 1) with respect to
∂Xk(y)

∂y`
, k = 1, 2, ..., n; ` = 1, 2, . . . , (n − 1).

Theorem 3.12. Suppose that following conditions hold:

1) X(y) ∈ C2 and satisfies (3.3),
2) z(x) ∈ C2 is a solution of equation (1.1),
3) Functions Z(y), P (y) are defined respectively by (3.5) and (3.6).
Then the vector-function X(y) satisfies condition (3.19) if and only if it satis-

fies the following first-order system of n nonlinear partial differential equations

(3.46)

n
∑

k=1

∂X(y)

∂yk
= ~G, y ∈ ω,

where the vector-function ~G is defined by (3.45).

Proof. Since Z(y) = z(X(y)), P (y) = zx(X(y)), from (3.43), (3.44) and (3.13), (3.14)
we get

(3.47) ~wj = ~vj , j = 1, 2, ..., n − 1,

and therefore

(3.48) ~G = ~g.

So, it follows from (3.48) that (3.46) is equivalent to (3.19). The theorem is
proved. �

3.5. Noncharacteristic condition for the Cauchy problem. We finish this
section by giving a definition of noncharacteristic condition for the Cauchy prob-
lem (1.1), (1.3), that was given in [6] in the case b(x, z, p) ≡ 0. The idea of intro-

ducing the noncharacteristic condition is that the value of determinant
∣

∣

DX(y)
Dy

∣

∣

must not vanish at yn = 0. So, from Lemma 3.6 we come to the following:

Definition 3.13. The Cauchy problem (1.1), (1.3) is called noncharacteristic if
the following condition holds:

(3.49) 〈~g0(y′),~h0(y′)〉 6= 0,∀y′ ∈ ω,
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where

~h0(y′) ≡
∂X0(y′)

∂y1
×

∂X0(y′)

∂y2
× ... ×

∂X0(y′)

∂yn−1
,(3.50)

~g0(y′) ≡ ~v0
1(y

′) × ~v0
2(y

′) × ... × ~v0
n−1(y

′),(3.51)

~v0
k(y

′) ≡
∂P 0(y′)

∂yk

+
∂X0(y′)

∂yk

A(X0(y′), Z0(y′), P 0(y′)),(3.52)

where X0(y′), Z0(y′), P 0(y′) are given in (1.2) and (1.3) as Cauchy data for equa-
tion (1.1).

4. Cauchy problem for the characteristic system

We now formulate corresponding Cauchy problem for the characteristic system
(3.20): Look for (X(y), Z(y), P (y)) that is a C1-solution of (3.20) and satisfies
the following initial conditions:











X(y′, 0) = X0(y′),

Z(y′, 0) = Z0(y′),

P (y′, 0) = P 0(y′),

(4.1)

where X0(y′), Z0(y′), P 0(y′) are given in (1.2) and (1.3) as Cauchy data for equa-
tion (1.1).

The following theorem is the converse one of Theorem 3.5. We show that
a solution (X(y), Z(y), P (y)) of the Cauchy problem (3.20), (4.1) will give us a
solution z(x) of the Cauchy problem (1.1), (1.3). In the case b(x, z, p) ≡ 0 this
theorem has been proved in [6].

Theorem 4.1. Suppose (X(y), Z(y), P (y)) is a C2-solution of the Cauchy prob-

lem (3.20), (4.1) and conditions (1.4) and (3.3) hold. Then the following function

(4.2) z(x) = Z(Y (x)),

where Y (x) is defined by (3.4), is a solution of the Cauchy problem (1.1), (1.3).
Moreover, we have also

(4.3) zx(x) = P (Y (x)).

Proof. From system (3.20) we set

(4.4) ~f ≡ −~gAT (X(y), Z(y), P (y)) + b(X(y), Z(y), P (y))~h.

Then it is obvious that (3.25) and (3.35) hold. Since (~h, ∂X
∂yk

) = 0, k = 1, 2, ..., n−1,

from (4.4) we have

(4.5) 〈~f + ~gAT (X(y), Z(y), P (y)),
∂X

∂yk

〉 = 0, k = 1, 2, ..., n − 1.

From (4.5) and from Lemma 3.10 it follows for k = 1, 2, ..., n − 1 that

(4.6) 〈~f,
∂X

∂yk
〉 = 〈~g,

∂P

∂yk
〉.
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From conditions (1.4), (4.6) and from the proof of Theorem 3 in [6], it follows
that relations (3.8) hold, i.e. we have

(4.7)
∂Z(y)

∂yk
=

n
∑

j=1

Pj(y)
∂Xj(y)

∂yk
, k = 1, . . . , n.

Since condition (3.3) holds, relation (4.2) is equivalent to the following one

(4.8) Z(y) = z(X(y)).

From (4.7), (4.8) and condition (3.3), (4.3) follows
Now, from (3.35), Lemma 3.11 and Proposition 3.2 it follows that the function
z(x) is a solution of the Cauchy problem (1.1), (1.3). Theorem 4.1 is proved. �

Theorem 4.1 can be considered as characteristic method for solving the Cauchy
problem (1.1), (1.3). This means that instead of solving the Cauchy problem
(1.1), (1.3) we try to solve the corresponding Cauchy problem (3.20), (4.1). But,
to study the solvability of the Cauchy problem (3.20), (4.1), we should classify
well the first-order normal systems (3.20) of nonlinear partial differential equa-
tions. In the case 2 6 n 6 5 and b(x, z, p) ≡ 0, we have proved in [7] that
system (3.20) is weekly hyperbolic and it is hyperbolic if and only if n = 2 and
a12(x, z, p) 6= a21(x, z, p). Moreover, in the case n = 2 we have given in [8] some
sufficient conditions for solvability of the Cauchy problem (3.20), (4.1) for weekly
hyperbolic systems and then have applied them to get solvability conditions of the
corresponding Cauchy problem (1.1), (1.3) for classical weekly hyperbolic Monge-
Ampère equations in two variables.
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