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Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. In this paper, we study a multi-product multi-criteria supply de-
mand network with capacity constraints. We analyze different concepts of
equilibrium and establish some relationships between them. Particular at-
tention is paid on elementary flows and on the construction of variational
inequalities which are equivalent to network equilibrium problems.

1. Introduction

In recent years, multi-product multi-criteria supply demand networks have
become a subject of intensive study. This is because such networks find abounding
applications in several areas of applied sciences such as internet communications,
transport, economics, decisions etc. (see [1–3, 5, 7, 10–13, 15]). The concept of
equilibrium of transport networks initially introduced by Wardrop [14] in 1952
is considered as a starting point of supply demand network investigation. In
contrast to a single-product network, the concept of equilibrium for multi-product
multi-criteria networks is not unique, depending on how to interpret Wardrop’s
equilibrium conditions when the product bundles in a flow and their associated
costs are vectorial. In the existing literature, a number of interpretations are
known which lead to different concepts of multi-product equilibrium, but their
relationship is not fully exploited and sometimes misunderstood. For this reason,
we wish to develop a general approach to equilibrium for multi-product networks.
We prove equivalence of multi-product equilibrium and solutions of associated
variational inequalities. The concept of elementary flows introduced in [10] plays
a major role in the present work.

The paper is structured as follows. Section 2 describes a network model to
study with a matrix formula linking arc flows and path flows. By focusing on
networks without capacity constraints we discuss different concepts of equilib-
rium and point out some inadequacies in the current literature on these con-
cepts. In Section 3, we deal with most important concepts of equilibrium in
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multi-product networks with capacity constraints and establish some relation-
ships between them. Section 4 is devoted to elementary flows. We show that
every feasible flow can be decomposed into a sum of a pattern flow and elemen-
tary flows, which allow us to treat a network with elementary flows only. In the
final section, we construct three variational inequality problems which are equiv-
alent to the problems of finding weak, strong and ideal equilibria of the network.
As a particular case we illustrate that the variational inequality problem over all
feasible flows studied in [2] for networks without capacity constraints can easily
be derived from the variational inequality problem over elementary flows, which
is associated to ideal equilibrium.

2. Multi-product single-criterion supply demand network

We begin the section by describing a network model to study. A supply-
demand network G = [N,A,W ] consists of a set of nodes N , a set of n directed
arcs A = {a1, ..., an} and a set W of origin destination pairs of nodes w = (x, x′)
with x, x′ ∈ N such that there is a path from x to x′. For a pair of nodes
w = (x, x′), the set of available paths from the origin x to the destination x′ is
denoted by Pw, and the set of all available paths of the network is denoted by
P = {p1, ..., pm} = ∪w∈W Pw.

In a multi-product or multi-class model, it is assumed that there are q different
kinds of products to traverse the network. Given a path pj ∈ P , let yji ∈ R

denote the amount of the ith product to be transported on the path pj . The
matrix Y = (yji)m×q is called a path flow in the network. Thus, each row vector
Yj = (yj1, ..., yjq) of the matrix Y represents the vector of the q products to
traverse the path Pj , while the column vector Y i = (y1i, ..., ymi)

T (here (·)T

denotes the transpose) represents the vector of the ith product to traverse the m
paths of the network.
To evaluate the transportation of products in the network a cost function C is
given in form of an m × q matrix C(Y ) = (cji(Y ))m×q. In a single-criterion
network, the entries cji(Y ) are real numbers, and in a multi-criteria network they

are vectors of a multi-dimensional space, say R
` with ` > 1. The jth row of

entries Cj(Y ) = (cj1(Y ), ..., cjq(Y )) represents the cost for the path pj , and the

ith column Ci(Y ) = (c1i(Y ), ..., cmi(Y ))T represents the cost concerning the ith
product on the paths p1, ..., pm. For every origin destination pair w ∈ W , the
index set J(w) consists of all j ∈ {1, ...,m} such that pj ∈ Pw, and the set C(w)
consists of all vectors Cj(Y ) with j ∈ J(w).

Sometimes arc flows are also considered in association with path flows. If zki

denotes the amount of the ith product to be transported on the arc ak, then the
matrix Z whose entries are zki, k = 1, ..., n and i = 1, ..., q represents an arc flow
in the network. A vector-valued cost function for the arc flow Z is given by a
matrix Ĉ(Z) with entries ĉki(Z), k = 1, ..., n and j = 1, ..., q. It is known that
given a path flow Y , an associated arc flow Z can be determined by the formula

Z = ∆Y,
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where ∆ is the so-called incident matrix whose entries δkj are given by

δkj =

{

1 if ak ∈ pj,
0 otherwise.

The cost functions of the arc flow Z and the path flow Y are then linked by the
following matrix equality:

C(Y ) = ∆T Ĉ(Z).

From now on, we fix a path flow Ȳ and write C and cji instead of C(Ȳ ) and
cji(Ȳ ) if no misunderstanding occurs. We assume further that a positive demand
function dwi(Ȳ ) is given which expresses the quantity of the ith product to be
transported from the origin x to the destination x′ of the pair w = (x, x′) ∈ W ,
and that the demand vector dw = (dw1(Ȳ ), ..., dwq(Ȳ )) is non null. The lower and
upper capacity constraints on each product i and on each path pj are respectively
lji and uji ∈ R with lji < uji. If lower and upper capacity constraints are given on
arcs, say l(k, i) and u(k, i) for i = 1, ..., q and k = 1, ..., n, then lower and upper
capacity constraints on a path pj are defined respectively by lji = max{l(k, i) :
ak ∈ Pj} and uji = min{u(k, i) : ak ∈ Pj}.
We say that a path flow Y is feasible if it satisfies the capacity constraints and
the conservation of flow equations:

lji 5 yji 5 uji for all i = 1, ..., q; j = 1, ...,m(2.1)
∑

j∈J(w) yji = dwi(Ȳ ) for all i = 1, ..., q;w ∈ W.(2.2)

The set of all feasible flows is denoted by K(Ȳ ). When lji = 0 and uji = ∞ for
all i and j the network is called without capacity constraints.
In the space R

q we distinguish the following order relations: strict inequality “>”
is understood as “componentwise strictly greater than”, and inequality ” ≥ ”
means “componentwise greater than or equal to” and not equal to. The binary
relations “>” and “≥” are actually partial orders generated by the positive or-
thant R

q
+ of the space R

q. Namely, for two vectors c and c′ from R
q, one has c ≥ c′

(respectively c > c′ ) if and only if c− c′ ∈ R
q
+ \{0} (respectively c− c′ ∈ int R

q
+),

where int R
q
+ is the interior of R

q
+. The relation ” = ” means either “≥” or “=”.

Given a set D ⊆ R
q, the infimum of D, denoted by Inf(D), is the vector whose

ith component is the infimum of the projection of D on the ith axis. If this
infimum is finite and belongs to the set D, it is called the ideal minimal element
of D. An element d of D is called minimal (respectively weak minimal) if there
is no other element d′ ∈ D such that d ≥ d′ (respectively d > d′). The sets of all
minimal and weak minimal elements of D are denoted by Min(D) and WMin(D)
respectively. The cone generated by the set D is denoted by cone(D), that is
cone(D) = {td : d ∈ D, t = 0}, and its closure is denoted by clcone(D).

In the remainder of this section, we wish to compare different concepts of
equilibrium. We restrict ourselves to the case of multi-product, single-criterion
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network flows without capacity constraints for the sake of simplicity and compat-
ibility with existing definitions we meet in the literature. Consider the following
conditions/ implications:

(H1) for every w ∈ W and j ∈ J(w),

Ȳj ≥ 0 ⇒ Cj = Inf (C(w)),

Ȳj = 0 ⇒ Cj = Inf (C(w));

(H2) for every w ∈ W and j, k ∈ J(w),

[(C(w) − Ck) ∩ (−R
q
+) = {0}, Cj − Ck 6= 0] ⇒ Ȳj = 0;

(H3) for every w ∈ W and j, k ∈ J(w),

[clcone(C(w) + R
q
+ − Ck) ∩ (−R

q
+) = {0}, Cj − Ck 6= 0] ⇒ Ȳj = 0;

(H4) for every w ∈ W and j, k ∈ J(w),

Cj − Ck ≥ 0 ⇒ Ȳj = 0;

(H5) for every w ∈ W and j ∈ J(w),

Cj 6∈ Min (C(w)) ⇒ Ȳj = 0; and

(H6) for every w ∈ W , j, k ∈ J(w), and i = 1, ..., q,

cji − cki > 0 ⇒ ȳji = 0.

Condition (H1) was recently introduced by Cheng and Wu [2] and the pattern
flow Ȳ satisfying it is called a Wardrop equilibrium. This equilibrium is a direct
extension of the classical equilibrium principle formulated by Wardrop in [14] for
a single-product single-criterion network. Notice that the second implication of
(H1) is superfluous because for any path pj ∈ Pw inequality Cj = Inf (C(w)) is
always true.

The authors of [2] have stated that Ȳ is a Wardrop equilibrium if and only if
it satisfies (H4) (see [2, Proposition 2.1]). This assertion is, however, not always
true as it will be clear from Proposition 2.2 below and from Example 2.3. As a
matter of fact conditions (H1) and (H4) lead to different concepts of equilibrium
whenever the multiplicity of products for transport in the network is present.
Condition (H4) has been studied in [2] for multi-criteria networks, and mentioned
by Raciti in [13] as the strong vector Wardrop equilibrium. Conditions involving
WMax(C(w)) instead of Max(C(w)) are possible and handled in a similar way.

Condition (H3) has been introduced by Wu and Cheng in [15] to define the so-
called Benson equilibrium which is a version of Benson proper efficient solutions of
vector optimization problems. As we shall see in Proposition 2.2, the operation
of taking closed cone in (H3) is unnecessary and in reality (H2) and (H3) are
equivalent.

Condition (H6) has been originally developed by Li, Teo and Yang in [7] for
networks with capacity constraints. We shall give more discussion on it in the
next section. The following lemma is standard.
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Lemma 2.1. Let D be a finite subset of R
q and d ∈ D. Then the following

relations are equivalent

clcone(D + R
q
+ − d) ∩ (−R

q
+) = {0}(2.3)

(D − d) ∩ (−R
q
+) = {0}.(2.4)

Proof. The implication (2.3) ⇒ (2.4) is clear because the set D − d is a subset
of clcone(D + R

q
+ − d) and the origin of the space belongs to both of them. For

the converse suppose the contrary that (2.4) is true, but (2.3) is not. There is a
nonzero vector a belonging to the intersection on the left hand side of (2.3), say

(2.5) a = lim
α→∞

tα(dα − d + uα)

for some positive numbers tα, some vectors dα from D and uα ∈ R
q
+. Since D is a

finite set, we may assume without loss of generality that dα = d0 for some d0 ∈ D.
If d0 − d = 0, we arrive at a contradiction that a ∈ R

q
+ ∩ (−R

q
+) and a 6= 0. It

remains to consider the case d0 − d 6= 0. We may also assume that the sequence
{tα}α converges to some limit t among three possible values: 1) t = 0, 2) t = ∞,
and 3) t ∈ (0,∞). In the first case, a = limα→∞ tαuα ∈ R

q
+, which contradicts the

hypothesis. In the second case, it follows from (2.5) that a = tα(dα−d+uα)+o(tα)
with limα→∞ o(tα)/tα = 0. By dividing the latter equality by tα and passing to
the limit as α tends to ∞, we obtain d0 − d = − limα→∞ uα ∈ −R

q
+ \ {0} which

contradicts (2.4). In the case 3), a similar argument yields

d0 − d =
a

t
− lim

α→∞
uα ∈ −R

q
+ \ {0}

which is a contradiction too. �

We remark that the conclusion of Lemma 2.1 remains true under a milder
condition on D. For instance, when D is not finite, but the set cone(D − d) has
a compact base, which means that there is a compact set B not containing the
origin of the space such that cone(D − d) = cone(B), then the argument of the
proof above goes through. In particular, the conclusion of Lemma 2.1 is true
when D is a polyhedral set. Here are some relationships between (H1)-(H6).

Proposition 2.2. Given a feasible pattern flow Ȳ on the network G. The fol-
lowing assertions hold:

(i) (H1) ⇔ (H2) ⇔ (H3). Each of these conditions implies that for every
w ∈ W , the set C(w) has ideal minimal elements. Moreover, under the
latter condition on C(w), all conditions (H1) through (H5) are equivalent.

(ii) (H4) ⇔ (H5).
(iii) (H1) ⇒ (H6). The converse (H6) ⇒ (H1) is true provided q = 1.

Proof. We note that for every w ∈ W, the set C(w) is finite, hence in view of
Lemma 2.1 conditions (H2) and (H3) are equivalent. To prove the first part of
(i), it suffices to establish equivalence between (H1) and (H2). We assume (H1).
Since for each w ∈ W the demand vector dw is non null, there must be some
path pk0

∈ Pw on which the flow Ȳk0
is non null. Hence the cost Ck0

is an ideal
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minimal element of C(w). Let k ∈ J(w) satisfy (C(w) − Ck) ∩ (−R
q
+) = {0}.

Then Ck = Ck0
= Inf (C(w)), and Cj ≥ Inf (C(w)) for every j ∈ J(w) with

Cj −Ck 6= 0. By (H1), Y j = 0, which shows that (H2) holds. Now assume (H2).
Since the set C(w) is finite, it has minimal elements. Let Ck be one of them.
Then (C(w) − Ck) ∩ (−R

q
+) = {0}. For any j ∈ J(w), if Cj is not minimal, then

Cj 6= Ck and by (H2), the corresponding flow Ȳj is null. If Cj is minimal, but
Cj 6= Ck, then we also have Ȳj = 0 by (H2). With Cj minimal, switching the
roles of Cj and Ck we obtain Ȳk = 0 too. Thus, if the set Min(C(w)) consists
of more than two elements, the flow Ȳ is null on every path joining w, which is
impossible because the demand is not null. Consequently, the set Min(C(w)) has
only one value, say C∗. We deduce Cj = C∗ for all j ∈ J(w), which shows that
C∗ is the ideal minimal element of C(w) and (H1) follows.
For the second part of (i), assume that for every w ∈ W , the set C(w) has
ideal minimal elements. It suffices to prove equivalence between (H1) and (H4),
because the equivalence between (H4) and (H5) will be given in (ii). Let j, k ∈
J(w) satisfy Cj − Ck ≥ 0. Then Cj is not ideal minimal. Under (H1), one has
Ȳj = 0 and obtains (H4). Conversely, if (H4) holds and if Ȳj ≥ 0, then Cj must
be ideal minimal, which shows that (H1) is true. Indeed, if Cj were not ideal
minimal, there would exist some ideal element Ck such that Cj ≥ Ck which yields
Ȳj = 0, a contradiction. By this, (H4) is equivalent to (H1).
We proceed to (ii) by assuming (H4). Let Cj 6∈Min(C(w)). By definition, there
is some Ck ∈ C(w) such that Cj ≥ Ck. In view of (H4) one has Ȳj = 0 and
(H5) follows. Conversely, if (H5) holds and if Cj − Ck ≥ 0 for some j, k ∈ J(w),
then Cj is not a minimal element of C(w) and in view of (H5) the flow Ȳj is null.
Thus, (H4) is true and we obtain the equivalence between (H4) and (H5).
Finally, suppose (H1). Strict inequality cji > cjk for some i, k ∈ {1, ..., q} and
j ∈ J(w) in (H6) implies that Cj is not an ideal minimal element of C(w). By
(H1), one has Ȳj = 0. In particular, ȳji = 0 and (H6) follows. When q = 1
inequality Ȳj ≥ 0 means ȳj1 > 0, and so under (H6) one has cj1 − ck1 5 0 for all
k ∈ J(w), that is cj1 = Inf (C(w)). Thus, for q = 1, conditions (H1) and (H6) are
equivalent. �

We note that (H6) treats individually the products to traverse within the net-
work, and so its study belongs to single-product supply demand models. Another
remark is the fact that when the set C(w) has no ideal minimal elements, the
implication (H4) ⇒ (H1) may fail as it is shown by the next example. Proposition
2.1 of [2] and Proposition 3.2 of [15] are then not always available.

Example 2.3. Consider a network consisting of four nodes {Ni : i = 1, ..., 4}, one
origin destination pair w = (N1, N4) and two paths p1 and p2 connecting w via
N2 and N3 respectively. We assume there are two products in the network. Let
a feasible pattern flow Y be given by its rows Y1 = (20, 320) and Y2 = (10, 500)
representing the quantities of the two products to traverse the paths p1 and p2

respectively. Assume further that the cost matrix associated to the path flow Y
has its rows C1 = (2, 16) and C2 = (1, 25). The infimum of C(w) is the vector
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(1, 16). It is clear that (H1) does not hold for the pattern flow Y because both
vectors Y1 and Y2 are positive and no cost vector is equal to Inf (C(w)). However,
(H4) does hold, simply because the cost vectors C1 and C2 are not comparable.

In multi-product networks, equilibria defined via (H4) and (H6) do not follow
from each other. The flow given in the previous example satisfies (H4), but not
(H6). The example below shows that (H6) does not imply (H4) either.

Example 2.4. Consider the network of the previous example. Let a feasible
pattern flow Y be given by its rows Y1 = (0, 830) and Y2 = (30, 0) representing
the quantities of the two products to traverse the paths p1 and p2 respectively.
Assume further that the cost matrix associated to the path flow Y has its rows
C1 = (2, 16) and C2 = (2, 25). Then (H6) holds, but not (H4) because C2 ≥ C1

with Y2 6= 0.

3. Multi-product multi-criteria supply demand network

with capacity constraints

In this section, we analyze a multi-product multi-criteria supply demand net-
work G with capacity constraints in which the costs cji(Y ) take values in R

` with
` > 1. This model has been extensively studied in recent years (see [7, 10] and
many references given therein). For w ∈ W , the demand vector (dw1, ..., dwq) is
denoted by dw, and for a path pj , the upper and lower capacity bound vectors
(uj1, ..., ujq) and (lj1, ..., ljq) are respectively denoted by Uj and Lj. It is common
to impose the following restrictions on the demand

∑

j∈J(w)

Lj 5 dw 5
∑

j∈J(w)

Uj for all w ∈ W.

Otherwise, the network would have no feasible flows. Moreover, if either of equal-
ities holds in the above restrictions, then the network has a unique feasible flow
on the paths linking w. This case is not interesting from the mathematical point
of view. Therefore, from now on we assume

(3.1)
∑

j∈J(w)

Lj ≤ dw ≤
∑

j∈J(w)

Uj for all w ∈ W.

Consider the following extensions of (H1) for a feasible pattern flow Ȳ :

(H7) for every w ∈ W and j ∈ J(w),

Cj ≥ InfC(w) ⇒ Ȳj = Lj ;

(H8) for every w ∈ W and j ∈ J(w),

Cj ≥ Inf C(w) ⇒ either Ȳj = Lj or Ȳk = Uk

for all k ∈ J(w)with Ck = InfC(w);
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(H9) for every w ∈ W and j ∈ J(w),

Cj ≥ InfC(w) ⇒ either Ȳj = Lj or Ȳk = Uk

for some k ∈ J(w) with Ck = InfC(w).

Needless to say that when the capacity constraints are absent, the above condi-
tions reduce to (H1) of Section 2. Moreover, (H7) implies (H8) and in its turn
(H8) implies (H9), but the converse is not true in general. The following propo-
sition shows that these conditions are related to the existence of ideal minimal
costs as in the case of networks without capacity constraints.

Proposition 3.1. If the feasible pattern flow Ȳ satisfies either of (H7), (H8) and
(H9), then for every origin destination pair w ∈ W the set of vector costs C(w)
has ideal minimal elements.

Proof. Due to the implications of (H7), (H8) and (H9) we have mentioned, it
suffices to prove the proposition when the flow Ȳ satisfies (H9). Suppose to the
contrary that for some origin destination pair w ∈ W the set C(w) has no ideal
elements. This means that Cj ≥ InfC(w) for all j ∈ J(w). In view of (H9), we
have Ȳj = Lj. Summing up Ȳj over all paths pj joining w, we obtain

dw =
∑

j∈J(w)

Ȳj =
∑

j∈J(w)

Lj

which contradicts (3.1). �

Since in most situations, ideal elements of a set of vectors do not exist, condi-
tions (H7), (H8) and (H9) are very difficult to be fulfilled. Instead, extensions of
(H4) offer a better choice for equilibrium in multi-product multi-criteria models
with capacity constraints. We consider the following condition:

(H10) for every w ∈ W and j, k ∈ J(w),

Cj ≥ Ck ⇒ either Ȳj = Lj or Ȳk = Uk,

and its weaker version

(H11) for every w ∈ W and j, k ∈ J(w),

Cj ≥ Ck ⇒ either Ȳj 6> Lj or Ȳk 6< Uk.

In a model without capacity constraints, condition (H10) collapses to (H4) of
Section 2. Condition (H11) is known as a necessary condition for a vector varia-
tional equilibrium introduced by Oettli in [12]. It is also named as a weak vector
Wardrop principle in [13]. As far as we know, equilibrium under conditions (H7)-
(H11) has not been developed for networks with capacity constrains. For these
networks, the notion of equilibrium introduced by Li, Teo and Yang has received
a lot of attention (see [7,8,10] for instance). However, it does not really take into
account the multi-dimensionality of the products circulating within the network.
Indeed, according to Definition 2.1 [7], a feasible pattern flow Ȳ is said to be
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a vector equilibrium if for every i = 1, ..., q, w ∈ W and pβ, pα ∈ Pw one has
implication

(3.2) cαi ≥ cβi ⇒ either ȳβi = uβi or ȳαi = lαi.

In this equilibrium, the products i = 1, ..., q are considered individually, without
any link between them. In other words, study of this kind of equilibrium is within
the framework of single-product multi-criteria networks with capacity constraints.
In a similar vein, Raciti [13] studies equilibrium for a model without capacity
constraints by requiring that for every s ∈ {1, ..., `}, w ∈ W and pβ, pα ∈ Pw one
has implication

(3.3) cs
αi > cs

βi ⇒ ȳαi = 0 for all i = 1, ..., q.

In this definition not only the products are considered individually, but the cri-
teria too. So its study belongs to the category of single-product single-criterion
network equilibria.

Proposition 3.2. Let Ȳ be a feasible pattern flow. The following assertions hold.

(i) (H7) ⇒ (H10) ⇒ (H11).
(ii) (H10) ⇒ (H7) provided that for every w ∈ W , the set C(w) has ideal

minimal elements and that

dw 6≥
∑

k∈J(w):Ck=Inf C(w)

Uk +
∑

j∈J(w):Cj 6=Inf C(w)

Lj .

Proof. The implication (H10) ⇒ (H11) is obvious. For the implication (H7) ⇒
(H10) let Cj ≥ Ck for some j, k ∈ J(w). Then Cj is not ideal minimal, and
Ȳj = Lj by (H7). This shows that (H10) is satisfied.
To prove (ii), we assume (H10). Let Cj ≥ InfC(w) for some j ∈ J(w). Picking
any Ck = InfC(w), we obtain Cj ≥ Ck which implies that either Ȳj = Lj or
Ȳk = Uk. If Ȳj = Lj , we obtain (H7). If not, Ȳs = Us for all s ∈ J(w) with
Cs = InfC(w). Consequently,

dw =
∑

j∈J(w)

Ȳj

=
∑

k∈J(w):Ck=Inf C(w)

Uk +
∑

j∈J(w):Cj 6=Inf C(w)

Ȳj

≥
∑

k∈J(w):Ck=Inf C(w)

Uk +
∑

j∈J(w):Cj 6=Inf C(w)

Lj

which contradicts the hypothesis. �

It is not difficult to see that the converse of the implications in (i) is not true
without additional hypotheses. The results of Propositions 3.1 and 3.2 suggest
to call a pattern flow satisfying (H7), (H10) and (H11) as an ideal equilibrium, a
strong equilibrium and a weak equilibrium respectively. Because a multi-product
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network hardly possesses ideal equilibrium flows, the concept of strong equilib-
rium seems to be most appropriate for multi-product networks. Weak equilib-
rium is particularly interesting in networks in which products are transported
by bundles. For instance, machines sending from a factory to a destination are
accompanied by a number of accessories. It is possible that on a path lower limits
for certain accessories are reached while lower limits for other accessories are not.
In such a model, strong equilibria infrequently exist and weak equilibria turn to
be good substitutes.

4. Elementary flows

We proceed to define elementary flows that will be essential in constructing
variational inequalities for a multi-product multi-criteria network with capacity
constraints. For technical reasons, we allow flows with negative entries. Of course
these are not feasible.

Definition 4.1. A path flow V of the network G is said to be elementary if there
are some origin destination pair w ∈ W and paths pα, pβ ∈ Pw such that

Vα = −Vβ

Vj = 0 for j ∈ {1, ...,m} \ {α, β}.

This definition is a modification of elementary flows introduced in [10] in which
products are considered separately. Let us establish some properties of elementary
flows. Throughout we fix a feasible pattern flow Y and set

K0(Y )={Y ∈ K(Ȳ ) : Y −Y is elementary}

K+(Ȳ )={Y ∈ K(Ȳ ) :Y −Y is elementary with (Y − Ȳ )α ≥ 0 for some α}∪{Ȳ }

K ′
+(Ȳ )={Y ∈ K(Ȳ ) :Y −Y is elementary with (Y − Ȳ )α > 0 for some α}∪{Ȳ }.

It is clear that K ′
+(Ȳ ) ⊆ K+(Y ) ⊆ K0(Y ) and these inclusions are strict in

general. All three sets are nonempty (they contain Ȳ by definition), star-shaped
sets with a center at Ȳ which means that if Y belongs to them, then so do the
flows λȲ + (1 − λ)Y, t ∈ [0, 1]. The next result is an improved version of Lemma
3.2 of [10] for elementary flows given in Definition 4.1. We give a detailed proof
for the readers’ convenience.

Proposition 4.2. The following assertions hold:

(i) If a flow Y satisfies the constraint (2.1) and if Y −Y is a sum of elemen-
tary flows, then Y is feasible.

(ii) If Y is a feasible flow, then Y − Y can be decomposed into a sum of
elementary flows in such a way that the sum of Y with each of the terms
of the decomposition belongs to the set K+(Y ).

Proof. To prove the first assertion, it suffices to observe that the sum of a
feasible flow with an elementary flow satisfies the constraint (2.2) because for
every i = 1, ..., q and w ∈ W one has

∑

j∈J(w) vji = vαi − vβi = 0 when
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V = (vji)j=1,...,m;i=1,...,q is elementary.
We pass to prove the second assertion. Let us fix a product i ∈ {1, ..., q} and an
origin destination pair w ∈ W . Denote by Y i(w) the portion of the vector Y i

that consists of the components yji with j ∈ J(w). We wish to prove the existence
of elementary flows Vt, t = 1, ..., s such that

Y i(w) − Y
i
(w) =

s
∑

t=1

V i
t (w)(4.1)

V i′

t (w′) = 0 for all (i′, w′) ∈ {1, ..., q} × W \ {(i, w)}(4.2)

Y + Vt ∈ K+(Y ).(4.3)

Let a denote the vector on the left hand side of (4.1), a+ its positive part (the
negative components of a are set to be zero), and a− = a+ − a (the positive
components of a are set to be zero and the negative components are set to be
their absolute values). Let π(a) denote the number of nonzero components of a.
We prove the existence of Vt by induction on π(a) which depends on a feasible

flow Y . It is clear that when π(a) = 0, the single-product flows Y i and Y
i

coincide on the paths joining w, and so the null flow V will satisfy (4.1), (4.2)
and (4.3). Assuming that for any feasible flow Y with π(a) 5 k < |J(w)|, the
existence of elementary flows Vt as above is assured, we now prove it for Y with
π(a) = k + 1. Among components of a+ and a− choose a smallest nonzero one,
say aα = (a+)α > 0 (the case aα = (a−)α is treated in a similar way). Since

∑

j∈J(w)

aj =
∑

j∈J(w)

(Y i(w) − Y
i
(w))j =

∑

j∈J(w)

(yji − yji) = dwi − dwi = 0

there is some index β ∈ J(w) such that

aβ = −(a−)β 5 −aα.

Define V0 to be a flow with

(V0)ji′ =







aα if i′ = i, j = α
−aα if i′ = i, j = β

0 if i′ = i, j 6= α, β, or i′ 6= i.

Then V0 is an elementary flow. Consider the flow Ŷ = Y − V0 and â = Ŷ i(w) −

Y
i
(w). We show that it is feasible and has π(â) 5 k. Indeed, by construction,

for every product i′ 6= i, the flow Ŷ i′ and Y i′ coincide, and the same is true for
the product i on the paths connecting w′ ∈ W,w′ 6= w. As for the product i and
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the origin destination w, we have
∑

j∈J(w)

ŷji =
∑

j∈J(w)

(Y − V0)ji

=
∑

j∈J(w)

yji −
∑

j∈J(w)

(V0)ji

= dwi − ((V0)αi + (V0)βi)

= dwi,

which shows that Ŷ satisfies (2.2). Moreover,

ŷji =







yji for j 6= α, β
yαi − aα for j = α
yβi + aα for j = β

in which

yαi − aα = yαi ∈ [lαi, uαi]

lβi 5 yβi + aα 5 yβi + aβ = yβi 5 uβi.

Thus, Ŷ satisfies (2.1) and is feasible. To see π(â) 5 k it suffices to observe that

(â)j =







0 for j = α
aα + aβ for j = β
aj for j ∈ J(w) \ {α, β}.

By induction for the feasible flow Ŷ there exists a finite number of elementary
flows V1, ..., Vs satisfying (4.1), (4.2) and (4.3), with Ŷ instead of Y such that
Y + Vt, t = 1, ...s, are feasible. Then

Y − Y = Ŷ − Y + V0 = V0 + V1 + ... + Vs

in which Y + V0 = Ŷ is feasible and so belongs to K+(Y ) as requested. To
complete the proof of ii), it remains to apply the above procedure to all products
and all origin destination pairs of W . �

Note that if an origin destination pair w of the network has no more than
two paths, then due to the conservation law (2.2) a flow V taking the zero value
on the paths connecting other pairs w′ 6= w is elementary if and only if Y + V
is feasible. Evidently, this is not the case when there are more than two paths
connecting w.

5. Vector variational inequalities

An important issue of network equilibrium research is to construct an equiva-
lent variational inequality. This is because the theory of variational inequalities
is well developed and there are efficient solving methods that can be applied to
compute equilibrium of a network. In networks with single-criterion and single-
product there has been established a complete equivalence between a network
equilibrium problem and a suitably constructed variational inequality problem
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(see [11] for details). Results on this direction for multi-product multi-criteria
networks are far from being satisfactory. In fact, most of the works on multi-
product multi-criteria equilibrium use scalarization to obtain a scalar equilibrium,
and then its equivalent scalar variational inequality is constructed via standard
approach (see [2,7,13]). An attempt has been done in [12] by directly constructing
vector variational inequalities. It produces a sufficient condition for equilibrium,
but not necessary, and in general it cannot be necessary as it was already ana-
lyzed in [7]. Only in a recent paper [10], a full equivalence between a network
equilibrium problem and a vector variational inequality problem has been estab-
lished, for single-product multi-criteria models. The concept of elementary flows
does make it possible. Let us move on construction of vector variational inequal-
ities corresponding to the problems of finding weak, strong and ideal equilibrium
defined in Section 3 by using the idea of elementary flows.

5.1. Weak equilibrium. We are given a feasible pattern flow Y . Because the en-
tries of the cost matrix C(Y ) are vectors of the space R

`, each vector (cj1, ..., cjq)
T

is itself a real q × `-matrix and considered as an element of the space R
`×q. We

introduce the following variational inequality over elementary flows.

(V1) Find a feasible path flow Y such that




∑m
j=1 c1

j1(yj1 − yj1) ...
∑m

j=1 c1
jq(yjq − yjq)

... ... ...
∑m

j=1 c`
j1(yj1 − yj1) ...

∑m
j=1 c`

jq(yjq − yjq)



 6∈ −R
`×q
+ \ {0}

for all Y ∈ K ′
+(Y ).

The next result shows that the variational inequality problem (V1) is equivalent
to the problem of finding a weak equilibrium.

Theorem 5.1. A feasible flow Y is a weak equilibrium of the network G if and
only if it is a solution of the variational inequality problem (V1).

Proof. Assume that Y is a weak vector equilibrium, Y is a feasible flow from
K ′

+(Y ) and V := Y − Y . If V is a null flow, we are done because

m
∑

j=1

cji(yji − yji) = 0 for all i = 1, ..., q.

If V is not null, there are two paths pα and pβ for an origin destination pair

w ∈ W such that Vβ = −Vα > 0 and the other Vj, j 6= α, β, are all null. As Y +V
is feasible, we deduce that

Y α = Yα − Vα > Lα,

Y β = Yβ − Vβ < Uβ.

Since Y is a weak equilibrium, it follows that Cα − Cβ 6≥ 0 by which either
Cα − Cβ = 0 or there are some indices i ∈ {1, ..., q} and s ∈ {1, ..., `} such that
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cs
αi − cs

βi < 0. In the first case, one has

m
∑

j=1

cji(yji − yji) = cαivαi + cβivβi = −(cαi − cβi)vβi = 0 for all i = 1, ..., q,

where vβi is the ith component of Vβ . This shows that Y satisfies (V1). In the
second case, we have

m
∑

j=1

cs
ji(yji − yji) = cs

αivαi + cs
βivβi = −(cs

αi − cs
βi)vβi > 0,

which shows that Y satisfies (V1) too.
Conversely, if Y is not a weak equilibrium, there are some paths pα and pβ for
an origin destination pair w ∈ W such that

(5.1) Cα − Cβ ≥ 0, Y α > Lα and Y β < Uβ.

Choose a strictly positive vector v ∈ R
q such that Y α−v = Lα and Y β +v 5 Uβ,

and construct a flow V with Vα = −v, Vβ = v and Vj = 0 on the remaining paths

of the network. It is clear that Y := Y +V is a feasible flow (see also Proposition
4.2) and belongs to K ′

+(Y ). Moreover, in view of (5.1) we have cαi − cβi = 0 for
all i ∈ {1, ..., q} and cαi0 − cβi0 ≥ 0 for some i0. Consequently,

m
∑

j=1

cji(yji − yji) =
m

∑

j=1

cjivji

= (cβi − cαi)vβi ∈ −R
`
+

for all i = 1, ..., q and the sum is not equal to 0 for i = i0. Hence Y is not a
solution of (V1). �

As a consequence of Theorem 5.1, we obtain Theorem 2.1 of [7].

Corollary 5.2. If a feasible flow Y is a solution of the vector variational in-
equality problems (VIi):

m
∑

j=1

cji(yji − yji) 6∈ −R
`
+ \ {0}, Y ∈ K(Y ),

i = 1, ..., q, then it is a vector equilibrium in the sense of (3.2).

Proof. Since K ′
+(Y ) is a subset of K(Y ) every solution of the variational inequal-

ity of the corollary with i fixed solves the problems (VI’i):
m

∑

j=1

cji(yji − yji) 6∈ −R
`
+ \ {0}, Y ∈ K ′

+(Y ).

Applying Theorem 5.1 to each single-product network flow Y
i
, we deduce that

Y
i

is a weak equilibrium of the multi-criteria network G with single-product i.
This is true for all i = 1, ..., q, we conclude that (3.2) is satisfied. �
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Since the feasible set K(Y ) is generally larger than the set K ′
+(Y ), a weak

equilibrium flow is not necessarily a solution of the variational inequality problem
of the preceding corollary even in a single-product network. This is shown by the
next example.

Example 5.3. Consider a network problem with only one pair origin destination
nodes w = (x, x′) and only one product to traverse in the network where three
paths are available: Pw = {p1, p2, p3}. Assume:

y11 = 2, y21 = 1, y31 = 3, dw1(Y ) = 6,

u11 = u21 = u31 = 3, l11 = l21 = l31 = 1,

c11 = (3, 1), c21 = (2, 2), c31 = (1, 4).

By choosing the feasible flow Y with components y11 = 1, y21 = 3, y31 = 2, one
has

3
∑

j=1

cj1(yj1 − yji) = (0,−1) ∈ −R
`
+ \ {0},

which shows that the flow Y does not solve the vector variational problem of
Corollary 5.2. So at this stage, it is impossible to say whether Y is a vector
equilibrium or not (in the sense of (3.2)). Let us now appeal to Theorem 5.1 for
help. The set K ′

+(Y ) is given by

K ′
+(Y ) = Y +











0
t
−t



 : 0 ≤ t ≤ 2







∪











t
0
−t



 : 0 ≤ t ≤ 1







∪











t
−t
0



 : −1 ≤ t ≤ 0







.

Then for Y ∈ K ′
+(Y ), we have

3
∑

j1

cj1(yj1 − yj1) =







(t,−2t)T if Y − Y = (0, t,−t)T , t ∈ [0, 2]
(2t,−3t)T if Y − Y = (t, 0,−t)T , t ∈ [0, 1]
(t,−t)T if Y − Y = (t,−t, 0)T , t ∈ [−1, 0]

6∈ −R
2
+ \ {0}.

Hence Y solves (V1), and by Theorem 5.1, it is a weak vector equilibrium which
satisfies (3.2), too, because the network is single-product.

5.2. Strong equilibrium. To characterize strong equilibrium, we consider the
following vector variational inequality.

(V2) Find a feasible path flow Y such that




∑m
j=1 c1

j1(Yj − Y j) ...
∑m

j=1 c1
jq(Yj − Y j)

... ... ...
∑m

j=1 c`
j1(Yj − Y j) ...

∑m
j=1 c`

jq(Yj − Y j)



 6∈ (−R
q
+)`×q \ {0}

for all Y ∈ K+(Y ).
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Given a path flow Y on G, we shall make use of the following condition: for
every origin destination pair w ∈ W , for every couple of paths pα, pβ ∈ Pw one
has implication

(5.2) Lα ≤ Yα and Yβ ≤ Uβ ⇒ lαk < yαk and yβk < uβ for some k ∈ {1, ..., q}.

We notice that this condition is always satisfied in the case of flows without
capacity constraints. In a network with capacity constrains, it can be satisfied
if the upper bound on each path is sufficiently large with regard to the demand.
For instance, it is the case when dwi < uji for every j ∈ J(w), i ∈ {1, ..., q}.

Theorem 5.4. Every strong equilibrium flow Y is a solution of (V2). Moreover
if a solution of (V2) satisfies (5.2), then it is a strong equilibrium. In particu-
lar, when the network is without capacity constraints, a feasible flow is a strong
equilibrium if and only if it is a solution of (V2).

Proof. Assume that Y is a strong equilibrium, Y is a feasible flow from K+(Y )
and V := Y − Y . If V is a null flow, (V2) holds evidently. If V is not null,
there are two paths pα and pβ for an origin destination pair w ∈ W such that

Vβ = −Vα ≥ 0 and the other Vj, j 6= α, β, are all null. As Y + V is feasible, we
deduce that

Y α ≥ Lα and Y β ≤ Uβ.

Since Y is a strong equilibrium, it follows that Cα − Cβ 6≥ 0 by which either
Cα −Cβ = 0 or there are some indices i∗ and s∗ such that cs∗

αi∗
− cs∗

βi∗
< 0. In the

first case, we have

m
∑

j=1

cs
ji(Yj−Y j) = cs

αiVα+cs
βiVβ = −(cs

αi−cs
βi)Vβ = 0 for all i = 1, ..., q, s = 1, ..., `,

and in the second case

m
∑

j=1

cs∗
ji∗

(Yj − Y j) = −(cs∗
αi∗

− cs∗
βi∗

)Vβ ≥ 0,

which shows that Y is a solution of (V2).
Conversely, let Y be a solution of (V2) that satisfies (5.2). If it is not an equilib-
rium, there are some paths pα and pβ for an origin destination pair w ∈ W such
that

Cα − Cβ ≥ 0, Y α ≥ Lα and Y β ≤ Uβ.

We have cαi − cβi = 0 for all i and cαi0 − cβi0 ≥ 0 for some i0. Moreover, in view
of (5.2), there is some index k ∈ {1, ..., q} such that yαk > lαk and yβk < uβk.
Choose a small number ε such that yαk − ε = lαk and yβk + ε 5 uβk, and define
V to be an elementary flow with vαk = −ε, vβk = ε and the other components
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equal to zero. Then Y := Y + V belongs to K+(Y ) for which
m

∑

j=1

cs
ji(Yj − Y j) =

m
∑

j=1

cs
jiVj

= (cs
βi − cs

αi)Vβ 5 0

for all i = 1, ..., q, s = 1, ..., ` and the sum is not zero for i = i0, s = s0. This
contradicts the hypothesis. �

We note that problems (V1) and (V2) are the same when the network is single-
product because the sets of elementary flows K+(Y ) and K ′

+(Y ) coincide in such
a model.

5.3. Ideal equilibrium. A more familiar formulation of variational inequalities
is obtained when the sign of ”does not belong to” in (V2) is replaced by inequal-
ities. Such a formulation is given next.

(V3) Find a feasible path flow Y such that




∑m
j=1 c1

j1(Yj − Y j) ...
∑m

j=1 c1
jq(Yj − Y j)

... ... ...
∑m

j=1 c`
j1(Yj − Y j) ...

∑m
j=1 c`

jq(Yj − Y j)



 ∈ (Rq
+)`×q

for all Y ∈ K+(Y ).

Note that the positive orthant (Rq
+)`×q is a part of the complement of the negative

orthant −(Rq
+)`×q\{0}, therefore solutions of (V3) are also solutions of (V2). The

converse is evidently not true in general.

Theorem 5.5. If a feasible flow Y is an ideal equilibrium, then it is a solution of
(V3). Conversely, if the network is without capacity constraints and if a feasible
flow Y is a solution of (V3), then it is an ideal equilibrium.

Proof. Assume that Y is an ideal equilibrium and Y is a feasible flow from K+(Y ).
Let V := Y − Y . There are two paths pα and pβ for an origin destination pair
w ∈ W such that Vβ = −Vα = 0 and the other Vj, j 6= α, β, are all null. We have
(5.3)

m
∑

j=1

cs
ji(Yj − Y j) = (cs

αi − cs
βi)Vα = (cs

βi − cs
αi)Vβ, for all i = 1, ..., k; s = 1, ..., `.

If Cα ≥ Inf (C(w)), then Y α = Lα and Vα = 0, implying that the expression in
the middle of (5.3) is equal to zero. If Cα = Inf (C(w)), then Cβ = Cα and the

expression on the right hand side of (5.3) is positive. By this, Y is a solution of
(V3).
Conversely, let Y be a feasible flow which is a solution of (V3). If it is not an
ideal equilibrium, one may find some w ∈ W , pα, pβ ∈ Pw, s ∈ {1, ..., `} and
i, k ∈ {1, ..., q} such that cs

αi > cs
βi, which means that Cα 6= Inf (C(w)), and

yαk > 0. Define Y to be a flow with yαk = 0, yβk = yαk + yβk and yji = yji for
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other j and i. It is evident that Y is feasible and belongs to K+(Y ). Moreover,
one has

m
∑

j=1

cs
ji(Yj − Y j) = cs

αi(Yα − Y α) + cs
βi(Yβ − Y β)

= Y α(cs
βi − cs

αi) ≤ 0,

which contradicts the hypothesis. �

A particular case of Theorem 5.5 has been treated by Cheng and Wu (Section
2, [2]) for a single-criterion multi-product model without capacity constraints.
Actually the above authors consider the variational inequality problem (with
` = 1):

(V4) find a feasible path flow Y such that




m
∑

j=1

c1
j1(Yj − Y j), ...,

m
∑

j=1

c1
jq(Yj − Y j)



 ∈ (Rq
+)q for all Y ∈ K(Y ),

and prove (Theorem 2.1, [2]) that a feasible flow Y is an ideal equilibrium (called
a Wardrop equilibrium in the sense of (H1) of Section 2) if and only if it is a
solution to (V4). By the definition, the set of feasible flows K(Y ) contains the set
K+(Y ). Therefore, every solution of (V4) is a solution of (V3). It turns out that
the converse is also true which shows that (V3) and (V4) are equivalent. Indeed,
given a feasible flow Y , applying Proposition 4.2, we obtain a decomposition of
Y − Y by a sum V1 + ... + Vs with Y + Vt ∈ K+(Y ), t = 1, ..., s. If Y solves
(V3), then all vectors on the left hand side of (V3) with (Vt)j , t = 1, ..., s instead

of (Yj − Y j) are positive, hence their sum over i is positive, which proves that Y
solves (V4).

We close up this section by a remark that the second part of Theorem 5.5 can
be formulated for flows with capacity constraints under certain hypotheses similar
to that given in (5.2). We do not go into details of such hypotheses because as
already said the main concern of multi-product networks is not ideal equilibrium,
but its weaker version such as weak equilibrium or strong equilibrium stated in
Theorems 5.1 and 5.4.
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