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MINIMAX VARIATIONAL INEQUALITIES

NGUYEN QUANG HUY AND NGUYEN DONG YEN

Dedicated to Tran Duc Van on the occasion of his sixtieth birthday

Abstract. We introduce a new notion called minimax variational inequal-

ity (MVI). The solution existence of nonmonotone MVIs in Euclidean spaces,
pseudomonotone MVIs in reflexive Banach spaces, and strongly monotone
MVIs in Hilbert spaces is studied in detail. We show that MVIs can serve as
a good tool for studying minimax problems given by convex sets and differen-
tiable functions.

1. Introduction to MVIs

Minimax variational inequality (MVI for short) is a new mathematical model
which is considered systematically for the first time, as far as we understand, in
this paper. Naturally, one may pose the following questions:

(a) What is MVI?
(b) Why to study MVIs?
(c) What is the difference between the new model and the celebrated notion

of variational inequality (VI for short)?

Questions (a) and (c) will be answered later, in the final part of this section.
Question (b) can be answered simply by saying that MVIs deserve a study because
they provide us with a good tool for studying minimax problems given by convex
sets and differentiable functions. The role of MVIs for differentiable minimax
problems is quite similar to that of VIs for differentiable optimization problems.
We refer to [10, 12, 24] for an explanation about the two-way connection between
VIs and differentiable optimization problems with convex constraint sets. Before
going further, we need to recall some basic facts about minimax problems and
saddle points.

Let K,L be nonempty closed convex sets in Banach spaces X and Y , respec-
tively. Suppose that f : Ω → R is a Fréchet continuously differentiable function
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defined on an open subset Ω of X × Y with K × L ⊂ Ω. The minimax problem
given by the convex sets K,L and the function f , which is written formally as

(1.1) max
y∈L

min
x∈K

f(x, y),

is that one of finding a point (x̄, ȳ) ∈ K × L such that

(1.2) f(x̄, y) ≤ f(x̄, ȳ) ≤ f(x, ȳ) ∀x ∈ K, ∀y ∈ L.

If (x̄, ȳ) ∈ K × L satisfies (1.2), then one says that it is a saddle point of the
minimax problem (1.1). Following [16] we put

η = sup
y∈L

inf
x∈K

f(x, y), γ = inf
x∈K

sup
y∈L

f(x, y).

From the formulae it follows that η ≤ γ. If (x̄, ȳ) is a saddle point of (1.1), then
it is easy to show that η ≥ f(x̄, ȳ) ≥ γ; hence η = γ = f(x̄, ȳ). Therefore, the
existence of saddle points implies that

sup
y∈L

inf
x∈K

f(x, y) = inf
x∈K

sup
y∈L

f(x, y).

The common value η = γ = f(x̄, ȳ) is called the saddle value of (1.1). Note that
the equality η = γ may hold even in the case there are no saddle points.

To make the presentation more pleasant for reading, proofs will be provided
for the following standard necessary and sufficient conditions for saddle points.

Theorem 1.1. If (x̄, ȳ) ∈ K × L is a saddle point of (1.1), then

(1.3) 〈F2(x̄, ȳ), y − ȳ〉 ≤ 0 ≤ 〈F1(x̄, ȳ), x − x̄〉 ∀x ∈ K, ∀y ∈ L,

where F1(u, v) := ∇xf(u, v) and F2(u, v) := ∇yf(u, v) denote respectively the
partial gradients of f(x, y) at (u, v) with respect to x and y.

Proof. Suppose that (x̄, ȳ) ∈ K ×L is a saddle point of (1.1). Let (x, y) ∈ K ×L
be given arbitrarily. Since yt := ȳ + t(y− ȳ) = (1− t)ȳ + ty belongs to L for every
t ∈ (0, 1) and since the first inequality in (1.2) holds for any y ∈ L, we obtain

〈F2(x̄, ȳ), y − ȳ〉 = ∇yf(x̄, ȳ)(y − ȳ) = lim
t↓0

f(x̄, yt) − f(x̄, ȳ)

t
≤ 0,

which establishes the first inequality in (1.3). The second inequality of (1.3) can
be proved in the same manner. �

Theorem 1.2. Suppose that, for every (x, y) ∈ K × L, f(·, y) is pseudo-convex
on K and f(x, ·) is pseudo-concave on L, i.e.,

(
u, u′ ∈ K, 〈∇xf(u, y), u′ − u〉 ≥ 0

)
⇒ f(u′, y) − f(u, y) ≥ 0

and (
v, v′ ∈ K, 〈∇yf(x, v), v′ − v〉 ≤ 0

)
⇒ f(x, v′) − f(x, v) ≤ 0.

If (x̄, ȳ) ∈ K × L satisfies condition (1.3) where F1(u, v) := ∇xf(u, v) and
F2(u, v) := ∇yf(u, v), then (x̄, ȳ) ∈ K × L is a saddle point of (1.1). In partic-
ular, if (1.3) is valid and f(·, y) is convex on K and f(x, ·) is concave on L for
every fixed pair (x, y) ∈ K × L, then (x̄, ȳ) ∈ K × L is a saddle point of (1.1).
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Proof. Suppose that (x̄, ȳ) ∈ K × L and (1.3) holds. Given any x ∈ K, from the
second inequality in (1.3) we can deduce that

〈∇xf(x̄, ȳ), x − x̄〉 = ∇xf(x̄, ȳ)(x − x̄) = 〈F1(x̄, ȳ), x − x̄〉 ≥ 0.

Combining this with the pseudo-convexity of f(·, ȳ) yields f(x, ȳ) − f(x̄, ȳ) ≥ 0
and establishes the second inequality in (1.2). The first inequality of (1.2) can
be proved similarly. �

Theorem 1.1 hints that it is worthy to consider (1.3) as a mathematical model
standing independently from the source problem (1.1). To make a good credit to
the origin of the model and to stress its potential applications back to the source
problem (1.1), we may call it a “minimax variational inequality”.

Definition 1.3. Let X, Y be Banach spaces with the dual spaces denoted respec-
tively by X∗ and Y ∗. Let K ⊂ X, L ⊂ Y be nonempty closed convex sets, and
let F1 : K × L → X∗, F2 : K × L → Y ∗ be arbitrarily given functions. The min-
imax variational inequality defined by the data set {K,L,F1, F2} is the problem
of finding a point (x̄, ȳ) ∈ K × L such that

(MV I) 〈F2(x̄, ȳ), y − ȳ〉 ≤ 0 ≤ 〈F1(x̄, ȳ), x − x̄〉 ∀x ∈ K, ∀y ∈ L.

The solution set of (MV I) is abbreviated to Sol(MV I).

Remark 1.4. According to Theorem 1.1, if the solution set of (1.1) is denoted by
S then it holds S ⊂ Sol(MV I), provided that we put F1 = ∇xf and F2 = ∇yf .
Moreover, if f(·, y) is pseudo-convex on K and f(x, ·) is pseudo-concave on L for
every (x, y) ∈ K × L, then S = Sol(MV I) by Theorem 1.2. Thus, (MV I) can
be used in studying the minimax problem (1.1).

Remark 1.5. The notion of pseudo-convex function plays an important role in
optimization theory (see e.g. [11, Chapter 9]). According to [11, Theorem 5,
p. 143], if f(·, y) is pseudo-convex on K, then it is quasiconvex on K in the sense
that

f((1 − t)x + tu, y) ≤ max{f(x, y), f(u, y)} ∀x, u ∈ K, ∀t ∈ (0, 1).

Moreover, this f(·, y) is also strictly quasiconvex on K, i.e.,

f((1 − t)x + tu, y) < max{f(x, y), f(u, y)}
∀x, u ∈ K, f(x, y) 6= f(u, y), ∀t ∈ (0, 1).

Quasiconvexity and quasiconcavity of functions are basic assumptions in some
minimax theorems (see for instance Sion’s theorem [1, Theorem 7, p. 218] and
the related deep results in [16, Section 2]). We refer to [3, Theorem 2.1(ii), p. 92]
for an interesting sufficient condition for having the implication quasiconvexity
⇒ pseudoconvexity. Fundamental facts about generalized convexity of functions
and monotonicity of operators can be found in the handbook [7].

Remark 1.6. Problem (1.1) can be interpreted as a two-person zero-sum game
(see [1, Chapter 7], [2, p. 312]). Despite its importance in many applications, (1.1)
only represents a standard minimax problem. We refer to [1, 2, 15] for the funda-
mentals of minimax theory and to [13, 16] for some recent results on the stability
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of saddle points and/or saddle values, and on minimax theorems. New advances
in minimax theory with applications to studying the solution multiplicity of non-
linear equations and well-posedness of optimization problems are presented in
[14]. Some applications of the lop-sided minimax theorem to differential stability
of optimization problems involving set-valued maps and to solution existence of
generalized quasi-variational inequalities can be found respectively in [6] and [4].

Consider problem (MV I) and put G(x, y) = (F1(x, y),−F2(x, y)) for all (x, y) ∈
K ×L. Thus, the value of the functional G(x, y) ∈ X∗ × Y ∗ at (u, v) ∈ X × Y is
given by

(1.4) 〈G(x, y), (u, v)〉 = 〈F1(x, y), u〉 − 〈F2(x, y), v〉.
Unless otherwise stated, the norm in the product space X×Y is defined by setting
‖(x, y)‖ = ‖x‖ + ‖y‖. We are interested in the variational inequality defined by
the closed convex set K × L ⊂ X × Y and the operator G : K × L → X∗ × Y ∗:

(1.5) Find (x̄, ȳ) ∈ K × L s.t. 〈G(x̄, ȳ), (x, y) − (x̄, ȳ)〉 ≥ 0 ∀(x, y) ∈ K × L.

Proposition 1.7. The inclusion (x̄, ȳ) ∈ Sol(MV I) holds if and only if (x̄, ȳ) is
a solution of (1.5).

Proof. If (x̄, ȳ) ∈ Sol(MV I), then for every (x, y) ∈ K × L, we have

(1.6) 〈F2(x̄, ȳ), y − ȳ〉 ≤ 0 ≤ 〈F1(x̄, ȳ), x − x̄〉.
It is easy to see that (1.6) implies 〈G(x̄, ȳ), (x, y) − (x̄, ȳ)〉 ≥ 0 for every (x, y) ∈
K × L. Conversely, if (x̄, ȳ) is a solution of (1.5), then

〈G(x̄, ȳ), (x, y) − (x̄, ȳ)〉 ≥ 0 ∀(x, y) ∈ K × L.

Taking x = x̄, from the last condition we can deduce that 〈F2(x̄, ȳ), y − ȳ〉 ≤ 0
for every y ∈ L. Similarly, by choosing y = ȳ we get 0 ≤ 〈F1(x̄, ȳ), x − x̄〉 for
every x ∈ K. This establishes (1.6), which shows that (x̄, ȳ) ∈ Sol(MV I). �

For variational inequalities, coercivity, monotonicity, strict monotonicity, pseu-
domonotonicity, strict pseudomonotonicity, and strong monotonicity are funda-
mental concepts; see e.g. [7, 9, 10, 19, 20, 21, 22, 23]. Applied to the map
G = (F1,−F2) : K × L → X∗ × Y ∗ given in (1.4) and the variational inequal-
ity (1.5), coercivity, monotonicity, strict monotonicity, pseudomonotonicity, and
strong monotonicity in theory of VIs mean the following:

(i) Problem (1.5) is said to satisfy the coercivity condition if there exists a
point (x0, y0) ∈ K × L such that

(1.7) lim
‖(x,y)‖→∞
(x,y)∈K×L

〈G(x, y) − G(x0, y0), (x, y) − (x0, y0)〉
‖x − x0‖ + ‖y − y0‖

= +∞.

(ii) Problem (1.5) is said to be monotone if

〈G(x, y) − G(u, v), (x − u, y − v)〉 ≥ 0 ∀(x, y), (u, v) ∈ K × L.
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(iii) Problem (1.5) is said to be strictly monotone if

〈G(x, y) − G(u, v), (x − u, y − v)〉 > 0
∀(x, y), (u, v) ∈ K × L, (x, y) 6= (u, v).

(iv) Problem (1.5) is said to be pseudomonotone if
(
(x, y), (u, v) ∈ K × L, 〈G(u, v), (x − u, y − v)〉 ≥ 0

)

=⇒ 〈G(x, y), (x − u, y − v)〉 ≥ 0.

(v) Problem (1.5) is said to be strictly pseudomonotone if
(
(x, y), (u, v) ∈ K × L, (x, y) 6= (u, v), 〈G(u, v), (x − u, y − v)〉 ≥ 0

)

=⇒ 〈G(x, y), (x − u, y − v)〉 > 0.

(vi) Problem (1.5) is said to be strongly monotone if there exists a constant
α > 0 such that

〈G(x, y) − G(u, v), (x − u, y − v)〉 ≥ α(‖x − u‖2 + ‖y − v‖2)
∀(x, y), (u, v) ∈ K × L.

(1.8)

The implications strong monotonicity ⇒ strict monotonicity, strict monotonic-
ity ⇒ monotonicity, monotonicity ⇒ pseudomonotonicity, strict monotonicity ⇒
strict pseudomonotonicity, and strong monotonicity ⇒ coercivity, are well known.
Remembering that G = (F1,−F2), we can rewrite the definitions (i)–(vi) equiva-
lently as follows.

Definition 1.8. (MV I) is said to satisfy the coercivity condition if there exists
a point (x0, y0) ∈ K × L such that
(1.9)

lim
‖(x,y)‖→∞
(x,y)∈K×L

〈F1(x, y) − F1(x0, y0), x − x0〉 − 〈F2(x, y) − F2(x0, y0), y − y0〉
‖x − x0‖ + ‖y − y0‖

= +∞.

Definition 1.9. (MV I) is said to be a monotone minimax variational inequality
if

〈F1(x, y) − F1(u, v), x − u〉 − 〈F2(x, y) − F2(u, v), y − v〉 ≥ 0
∀(x, y), (u, v) ∈ K × L.

Definition 1.10. (MV I) is said to be a strictly monotone minimax variational
inequality if

〈F1(x, y) − F1(u, v), x − u〉 − 〈F2(x, y) − F2(u, v), y − v〉 > 0
∀(x, y), (u, v) ∈ K × L, (x, y) 6= (u, v).

Definition 1.11. (MV I) is said to be a pseudomonotone minimax variational
inequality if

(
(x, y), (u, v) ∈ K × L, 〈F1(u, v), x − u〉 − 〈F2(u, v), y − v〉 ≥ 0

)

=⇒ 〈F1(x, y), x − u〉 − 〈F2(x, y), y − v〉 ≥ 0.
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Definition 1.12. (MV I) is said to be a strictly pseudomonotone minimax vari-
ational inequality if
(1.10)(

(x, y), (u, v) ∈ K × L, (x, y) 6= (u, v), 〈F1(u, v), x − u〉 − 〈F2(u, v), y − v〉 ≥ 0
)

=⇒ 〈F1(x, y), x − u〉 − 〈F2(x, y), y − v〉 > 0.

Definition 1.13. (MV I) is said to be a strongly monotone minimax variational
inequality if there exists a constant α > 0 such that

(1.11)
〈F1(x, y) − F1(u, v), x − u〉 − 〈F2(x, y) − F2(u, v), y − v〉
≥ α(‖x − u‖2 + ‖y − v‖2) ∀(x, y), (u, v) ∈ K × L.

Remark 1.14. Strictly pseudomonotone MVI can have at most one solution.
This fact follows from the above definitions, Proposition 1.7, and [19, Lemma 3.2].

Let us consider a mimimax problem which leads to a monotone MVI.

Example 1.15. Consider problem (1.1) where X = R
n, Y = R

m, f(x, y) =
xT By, with B being an n × m matrix and T denoting the matrix transposi-
tion. Since F1(x, y) = ∇xf(x, y) = By, F2(x, y) = ∇yf(x, y) = BT x, we have

G(x, y) = (By,−BT x). Therefore

〈G(x, y) − G(u, v), (x − u, y − v)〉
= 〈By − Bv, x − u〉 + 〈−BT x + BTu, y − v〉
= 〈B(y − v), x − u〉 − 〈x − u,B(y − v)〉 = 0.

This means that the MVI corresponding to the minimax problem under consid-
eration is monotone.

We now look at another, more general, mimimax problem which leads to
strongly monotone MVIs.

Example 1.16. Consider problem (1.1) where X = R
n, Y = R

m,

f(x, y) =
1

2
xT Ax + xT By − 1

2
yT Cy + aT x + bT y

with A ∈ R
n×n and C ∈ R

m×m being symmetric matrices, B ∈ R
n×m, a ∈ R

n,
and b ∈ R

m. Since

F1(x, y) = ∇xf(x, y) = Ax + By + a, F2(x, y) = ∇yf(x, y) = BT x − Cy + b,

it holds
G(x, y) = (Ax + By + a,−BT x + Cy − b).

Hence

〈G(x, y) − G(u, v), (x − u, y − v)〉
= 〈A(x − u) + B(y − v), x − u〉 + 〈−BT (x − u) + C(y − v), y − v〉
= 〈A(x − u), x − u〉 + 〈C(y − v), y − v〉 + 〈B(y − v), x − u〉 − 〈x − u,B(y − v)〉
= 〈A(x − u), x − u〉 + 〈C(y − v), y − v〉.

From the latter it follows that the MVI corresponding to the minimax problem
under consideration is strongly monotone if and only if uT Au > 0 for all u ∈
(spanK) \ {0} and vT Cv > 0 for all v ∈ (span L) \ {0}, with spanM denoting
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the linear subspace generated by M . It is also clear that the MVI in question
is monotone if and only if uT Au ≥ 0 for all u ∈ spanK and vT Cv ≥ 0 for all
v ∈ spanL. Interestingly, for this MVI, the strict monotonicity is equivalent to
the strong monotonicity. Observe also that from the well known second-order
characterization of the convexity of differentiable real-valued functions [17] (see
also [11, 15, 18]) it follows that the property “uT Au ≥ 0 for all u ∈ spanK and
vT Cv ≥ 0 for all v ∈ spanL” is equivalent to the convexity of f(·, y) for all y ∈ L
and the concavity of f(x, ·) for all x ∈ K. Thus, the monotonicity of this MVI is
equivalent to the requirement that f(x, y) is a convex-concave function on K×L.

Now we can answer question (a) stated at the beginning of this section by
saying that MVI is an analogue of the well-known variational inequality model,
which gives us a convenient tool for dealing with minimax problems of the form
(1.1).

To answer question (c), we observe that although any MVI can be transformed
to a VI by the trick described in Proposition 1.7 but, as shown in Definitions 1.8–
1.13, the operator F1 (resp., F2) is attached to variable x (resp., y) tighter than
to the second variable (resp., the first variable). In result, one has a VI with a
decomposable structure.

It is worthy observing that if L is a singleton, then (MV I) collapses to the
classical VI. Thus, (MV I) is an extension of the latter.

In this paper, we focus on the solution existence and solution uniqueness of
MVIs. The solution stability and sensitivity of MVIs are considered in [8]. Solu-
tion methods will be discussed in a subsequent paper.

The remainder of this paper has 4 sections. Solution existence for nonmonotone
MVIs in Euclidean spaces is discussed in Section 2. Section 3 investigates the
solution existence of pseudomonotone MVIs in reflexive Banach spaces. Section
4 establishes the solution existence and uniqueness of strongly monotone MVIs
in Hilbert spaces. Applications of the obtained results to minimax problems are
derived in each of these three sections. Several useful examples are given in the
last section.

2. Nonmonotone MVIs in Euclidean Spaces

In this section, it is assumed that X = R
n, Y = R

m. Then X∗ and Y ∗ can
be identified with R

n and R
m, respectively. The value of x∗ ∈ X∗ at x ∈ X is

identified with the inner product 〈x∗, x〉 of two vectors in R
n.

The Hartman-Stampacchia theorem [10] can be applied only to variational
inequalities in finite-dimensional Euclidean spaces. Its key feature is that it does
not require any monotonicity assumption.

Theorem 2.1. (see [10, Theorem 3.1, p. 12]) If K ⊂ R
n is a nonempty compact

convex subset and F : K → R
n is a continuous function, then the variational

inequality problem

Find x̄ ∈ K s.t. 〈F (x̄), x − x̄〉 ≥ 0 ∀x ∈ K
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has a solution.

We now derive an analogue of the Hartman-Stampacchia theorem for MVIs.

Theorem 2.2. Suppose that K ⊂ R
n, L ⊂ R

m are nonempty compact convex
subsets, and F1 : K×L → R

n, F2 : K ×L → R
m are continuous functions. Then

the minimax variational inequality problem (MV I) has a solution.

Proof. Let G : K × L → R
n × R

m be defined by formula (1.4). From our
assumptions it follows that K ×L ⊂ R

n ×R
m is a nonempty compact convex set,

G is a continuous map. According to Theorem 2.1, (1.5) has a solution (x̄, ȳ) ∈
K × L. Invoking Proposition 1.7 we can conclude that (x̄, ȳ) ∈ Sol(MV I). �

Remark 2.3. If L is a singleton, then Theorem 2.2 recovers Theorem 2.1.

Theorem 2.2 yields the next statement on the existence of saddle points. This
result is not new. In fact, it is a corollary of Sion’s minimax theorem (see e.g. [1,
Theorem 7, p. 218]).

Theorem 2.4. Consider the minimax problem (1.1) and assume that K ⊂ R
n

and L ⊂ R
m are nonempty compact convex subsets. If f(·, y) is pseudo-convex

on K and f(x, ·) is pseudo-concave on L for every (x, y) ∈ K ×L, then (1.1) has
a saddle point. In particular, if f(·, y) is convex on K and f(x, ·) is concave on
L for every fixed pair (x, y) ∈ K × L, then (1.1) has a saddle point.

Proof. Put F1(u, v) = ∇xf(u, v) and F2(u, v) = ∇yf(u, v) for every (u, v) ∈
K × L. By Theorem 2.2, (MV I) has a solution (x̄, ȳ) ∈ K × L. The assertions
now follow from applying Theorem 1.2. �

If K and F are unbounded, then a coercivity condition likes the one in Defini-
tion 1.8 must be imposed. Otherwise, the minimax variational inequality under
consideration may have no solutions.

Theorem 2.5. Suppose that K ⊂ R
n, L ⊂ R

m are nonempty closed convex
subsets, and F1 : K × L → R

n, F2 : K × L → R
m are continuous functions. If

(MV I) satisfies the coercivity condition, then it has a solution.

Proof. Our assumptions imply that the map G = (F1,−F2) : K×L → R
n×R

m is
continuous and the coercivity condition (1.7) is satisfied for some point (x0, y0) ∈
K × L. By [10, Corollary 4.3, p. 14], there is a solution (x̄, ȳ) ∈ K × L to (1.5).
Then, in accordance with Proposition 1.7, (x̄, ȳ) ∈ Sol(MV I). �

Remark 2.6. Coercivity is a vital condition in Theorem 2.5. Namely, even a
monotone (MV I) may have no solutions if condition (1.9) does not hold. To see
this, it suffices to take L = K = R, F1(x, y) = a, F2(x, y) = b, where a 6= 0 and
b ∈ R are some constants.

We now obtain a result on the existence of saddle points of (1.1) where K and
L are permitted to be unbounded.
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Theorem 2.7. Consider the minimax problem (1.1) and assume that K ⊂ R
n

and L ⊂ R
m are nonempty closed convex subsets. If f(·, y) is pseudo-convex on

K and f(x, ·) is pseudo-concave on L for every (x, y) ∈ K × L and there exists
a point (x0, y0) ∈ K × L such that (1.9) holds for F1(u, v) = ∇xf(u, v) and
F2(u, v) = ∇yf(u, v), then (1.1) has a saddle point. In particular, if f(·, y) is
convex on K and f(x, ·) is concave on L for every fixed pair (x, y) ∈ K × L and
there is a point (x0, y0) ∈ K × L satisfying (1.9) with F1(u, v) = ∇xf(u, v) and
F2(u, v) = ∇yf(u, v), then (1.1) has a saddle point.

Proof. By Theorem 2.5, if there exists some (x0, y0) ∈ K × L with the property
(1.9) then (MV I) has a solution (x̄, ȳ) ∈ K × L. It remains to apply Theorem
1.2 to get the desired conclusions. �

Remark 2.8. In Theorem 2.7, the coercivity condition (1.9) is an essential as-
sumption. Note that even a very simple minimax problem of the form (1.1) may
not have solutions if there is no (x0, y0) ∈ K ×L with the property (1.9). To see
this, one can choose L = K = R, f(x, y) = ax + by, where a 6= 0 and b ∈ R are
some constants.

3. Pseudomonotone MVIs in Reflexive

Banach Spaces

In this section we assume that X, Y are reflexive Banach spaces. The norm in
the product space X × Y is given by setting ‖(x, y)‖ = ‖x‖ + ‖y‖. Then X × Y
is also a reflexive Banach space. Besides, (X × Y )∗ ≡ X∗ × Y ∗ and the value of
(x∗, y∗) ∈ X∗×Y ∗ at (x, y) ∈ X×Y is given by 〈(x∗, y∗), (x, y)〉 = 〈x∗, x〉+〈y∗, y〉.
These conventions imply that ‖(x∗, y∗)‖ = max{‖x∗‖, ‖y∗‖}.

Since any bounded closed convex subset of a reflexive Banach space is weakly
compact by the Banach-Alaoglu theorem, the assertions of the next theorem
follow from Lemma 3.1, Theorem 3.3, and Corollary 4.7 of [19].

Theorem 3.1. (see [19]) Suppose that K ⊂ X is a nonempty closed convex
subset and F : K → X∗ is a function which is continuous on finite-dimensional
subspaces, i.e., for any finite-dimensional subspace M ⊂ X with K ∩ M 6= ∅ the
restricted function F : K ∩ M → X∗ is continuous from the norm topology of
K∩M to the weak∗ topology of X∗. Suppose in addition that F is pseudomonotone
on K, i.e., if x, u ∈ K and 〈F (u), x − u〉 ≥ 0, then 〈F (x), x − u〉 ≥ 0. Then the
following holds:

(i) Vector x is a solution of the variational inequality

x ∈ K, 〈F (x), u − x〉 ≥ 0 ∀u ∈ K(3.1)

if and only if

x ∈ K, 〈F (u), u − x〉 ≥ 0 ∀u ∈ K.

(ii) The solution set of (3.1) is closed and convex (may be empty).
(iii) If K is bounded, then (3.1) has a solution.
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(iv) If (3.1) satisfies the coercivity condition, i.e., there exists x0 ∈ K such
that

lim
‖x‖→∞

x∈K

〈F (x) − F (x0), x − x0〉
‖x − x0‖

= +∞,

then the problem has a solution.

Remark 3.2. As concerning assertion (iv), in [19, Corollary 4.7] it is assumed

that 0 ∈ K. Setting K̃ = K − x0 and apply the just cited result, we get the
desired claim.

An analogue of Theorem 3.1 for pseudomonotone MVIs can be formulated as
follows.

Theorem 3.3. Let K ⊂ X, L ⊂ Y be nonempty closed convex subsets, and
F1 : K × L → X∗, F2 : K × L → X∗ be given functions. Suppose that F1 and
F2 are continuous on finite-dimensional subspaces and the minimax variational
inequality problem (MV I) is pseudomonotone. Then the following holds:

(i) Vector (x̄, ȳ) is a solution of (MV I) if and only if

〈F1(u), u − x̄〉 − 〈F2(v), v − ȳ〉 ≥ 0 ∀(u, v) ∈ K × L.

(ii) The solution set of (MV I) is closed and convex (may be empty).
(iii) If K and L are bounded, then (MV I) has a solution.
(iv) If the problem (MV I) satisfies the coercivity condition, then it has a so-

lution.

Proof. Let G = (F1,−F2). It is easy to show that G : K × L → X∗ × Y ∗ is
continuous on finite-dimensional subspaces if and only if F1 and F2 are continuous
on finite-dimensional subspaces. Hence the assumptions made allow us to get the
assertions (i)–(iv) directly from Theorem 3.1. �

The following statement on the existence of saddle points is new.

Theorem 3.4. Consider the minimax problem (1.1) and assume that K ⊂ X
and L ⊂ Y are nonempty closed convex subsets. If

(
(x, y), (u, v) ∈ K × L, 〈∇xf(u, v), x − u〉 − 〈∇yf(u, v), y − v〉 ≥ 0

)

=⇒ 〈∇xf(x, y), x − u〉 − 〈∇yf(x, y), y − v〉 ≥ 0,
(3.2)

then the following holds:

(i) Vector (x̄, ȳ) is a saddle point of (1.1) if and only if

〈∇xf(u, v), u − x̄〉 − 〈∇yf(u, v), v − ȳ〉 ≥ 0 ∀(u, v) ∈ K × L.

(ii) The set of the saddle points of (1.1) is closed and convex (may be empty).
(iii) If K and L are bounded, then (1.1) has a saddle point.
(iv) If there exists a point (x0, y0) ∈ K×L such that (1.9) holds for F1(u, v) =

∇xf(u, v) and F2(u, v) = ∇yf(u, v), then (1.1) has a saddle point.
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Proof. Since the pseudo-convexity of a differentiable function is equivalent to the
pseudomonotonicity of its gradient mapping [3, Proposition 2.2], condition (3.2)
implies that f(·, y) is pseudo-convex on K and f(x, ·) is pseudo-concave on L for
every (x, y) ∈ K × L. Putting F1(x, y) = ∇xf(x, y), F2(x, y) = ∇yf(x, y), and
G(x, y) = (F1(x, y),−F2(x, y)), we see that all the assumptions of Theorem 3.3
are satisfied. So the assertions (i)–(iv) of that theorem are valid. It remains to
apply Theorem 1.2 to get the desired claims. �

Remark 3.5. Due to the uniqueness result recalled in Remark 1.14, if the strict
pseudomonotonicity condition (1.10) is fulfilled then the MVI problem (resp.,
the minimax problem) considered in Theorem 3.3 (resp., in Theorem 3.4) cannot
have more than one solution.

4. Strongly Monotone MVIs in Hilbert Spaces

In this section, it is assumed that X, Y are Hilbert spaces. Then X∗ and
Y ∗ can be identified with X and Y , respectively. The value of x∗ ∈ X∗ at
x ∈ X is identified with the inner product 〈x∗, x〉 of two vectors in X. A similar
interpretation is given for the inner product 〈y∗, y〉 of two vectors in Y . Setting
〈(x, y), (u, v)〉 = 〈x, u〉 + 〈y, v〉 for all (x, y), (u, v) ∈ X × Y , we define an inner
product in X × Y . Note that X × Y is again a Hilbert space with the norm

‖(x, y)‖ = (‖x‖2 + ‖y‖2)1/2.

We call z ∈ K the metric projection of a point x ∈ X onto a closed convex
subset K ⊂ X and write z = PK(x) if ‖x − z‖ = inf{‖x − u‖ : u ∈ K}. It is
well known [10, Lemma 2.1, p. 8] that the metric projection z = PK(x) exists
and is uniquely defined by x. Besides, z = PK(x) if and only if z ∈ K and
〈x− z, u− z〉 ≤ 0 for every u ∈ K; see [10, Theorem 2.3, p. 9]. We also know [10,
Corollary 2.4, p. 10] that PK(·) : X → K is a nonexpansive mapping, that is,

‖PK(x′) − PK(x)‖ ≤ ‖x′ − x‖ ∀x, x′ ∈ X.

It is well known that a strongly monotone VI in a Hilbert space has a unique
solution. In fact, the following result implies the fundamental Lax-Milgram the-
orem saying that if A : X → X is a bounded linear operator and if there exists
a constant α > 0 satisfying 〈Ax, x〉 ≥ α‖x‖2 for all x ∈ X, then for every u ∈ X
the linear equation Ax = u possesses a unique solution x = x(u) ∈ X. Since the
proof of [10] only dealt with the case F is a linear operator arising from the rep-
resentation of a coercive continuous bilinear form, we will use the scheme given
in [5] to give a short proof for the completeness of our discussion.

Theorem 4.1. (cf. [10, Theorem 2.1, p. 24]) Suppose that K ⊂ X is a nonempty
closed convex subset and F : K → X is a Lipschitz, strongly monotone operator,
i.e., there exist constants ` > 0 and α > 0 such that

‖F (x) − F (u)‖ ≤ `‖x − u‖ ∀x, u ∈ K,
〈F (x) − F (u), x − u〉 ≥ α‖x − u‖2 ∀x, u ∈ K.

(4.1)



276 NGUYEN QUANG HUY AND NGUYEN DONG YEN

Then the variational inequality problem

(4.2) Find x̄ ∈ K s.t. 〈F (x̄), x − x̄〉 ≥ 0 ∀x ∈ K

has a unique solution.

Proof. If K has at least two elements, then by the estimate

|〈F (x) − F (u), x − u〉| ≤ ‖F (x) − F (u)‖‖x − u‖
and (4.1) we can assert that ` ≥ α. Thus, there is no loss of generality in
assuming that ` ≥ α. Take any ρ ∈ (0, α

`2
] and define a map g : K → K by

setting g(x) = PK(x − ρF (x)). Note that

‖g(x) − g(u)‖2 = ‖PK(x − ρF (x)) − PK(u − ρF (u))‖2

≤ ‖(x − ρF (x)) − (u − ρF (u))‖2.

Invoking (4.1) we have

‖(x − ρF (x)) − (u − ρF (u))‖2 = ‖x − u‖2 − 2ρ〈F (x) − F (u), x − u〉
+ρ2‖F (x) − F (u)‖2

≤ ‖x − u‖2 − 2ρα‖x − u‖2 + ρ2`2‖x − u‖2

= (1 + ρ2`2 − 2ρα)‖x − u‖2.

Hence

(4.3) ‖g(x) − g(u)‖2 ≤ (1 + ρ2`2 − 2ρα)‖x − u‖2.

Since 0 < ρ2 ≤ ρα
`2

, we have ρ2`2 ≤ ρα. Hence

(4.4) 1 + ρ2`2 − 2ρα = (1 − ρα) + (ρ2`2 − ρα) ≤ 1 − ρα.

As ρα ≤ α2

`2
≤ 1, we see that 0 ≤ 1− ρα < 1. From (4.3) and (4.4) it follows that

‖g(x) − g(u)‖ ≤
√

1 − ρα‖x − u‖ ≤ β‖x − u‖,
where β :=

√
1 − ρα ∈ [0, 1). By the Banach contractive mapping principle,

there is a unique point x̄ ∈ K satisfying g(x̄) = x̄. The latter means that PK(x̄−
ρF (x̄)) = x̄. Using the characterization of the metric projection recalled above,
we can rewrite the last equality equivalently as follows:

〈F (x̄), u − x̄〉 ≥ 0 ∀u ∈ K.

This shows that x̄ is a solution of (4.2). Observing that the latter holds if and
only if g(x̄) = x̄, from the uniqueness of the fixed point of g we obtain the solution
uniqueness of (4.2). �

Let us formulate an analogue of Theorem 4.1 for strongly monotone MVIs.

Theorem 4.2. Suppose that K ⊂ X, L ⊂ Y are nonempty closed convex subsets,
and F1 : K × L → X and F2 : K × L → Y are such that there exist constants
`i > 0 (i = 1, 2) such that

(4.5) ‖Fi(x, y)−Fi(u, v)‖ ≤ `i‖(x, y)−(u, v)‖ ∀(x, y), (u, v) ∈ K×L, i = 1, 2.
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If the minimax variational inequality (MV I) is strongly monotone, then it has a
unique solution (x̄, ȳ) ∈ K × L.

Proof. Consider the map G = (F1,−F2) : K × L → X∗ × Y ∗ and note that (4.5)
yields

(4.6) ‖G(x, y) − G(u, v)‖ ≤ `‖(x, y) − (u, v)‖ ∀(x, y), (u, v) ∈ K × L,

where ` :=
√

`2
1 + `2

2. Since (MV I) is strongly monotone, there exists α > 0 such
that (1.11) holds. This means that condition (1.8) is valid for G. On the basis
of (4.6) and (1.8), by Theorem 4.1 we can infer that (1.5) has a unique solution
(x̄, ȳ) ∈ K × L. The desired conclusion now follows from applying Proposition
1.7. �

Recall that a function ϕ : X → R is said to be strongly convex on a convex set
K ⊂ X if there exists ρ > 0 such that

ϕ((1− t)x+ tu) ≤ (1− t)ϕ(x)+ tϕ(u)−ρt(1− t)‖x−u‖2 , ∀x, u ∈ K, ∀t ∈ (0, 1).

The number ρ is called a coefficient of strong convexity of ϕ on K. If −ϕ is
strongly convex on K with a coefficient of strong convexity ρ > 0, then ϕ is said
to be strongly concave on K with the coefficient of strong concavity ρ > 0. It is
well known [17, Lemma 1, p. 184] that ϕ is strongly convex on K with a coefficient
of strong convexity ρ if and only if the function ϕ̃(x) := ϕ(x) − ρ‖x‖2 is convex
on K. Moreover, if ϕ is continuously differentiable in an open set containing K,
then this strong convexity property holds if and only if

〈∇ϕ(x) −∇ϕ(u), x − u〉 ≥ 2ρ‖x − u‖2 ∀x, u ∈ K.

A proof of the fact can be found in [17] for the case X = R
n. Observe that the

method of proof works also for the case where X is an arbitrary Hilbert space.
(See also [18, Propositions 4.3 and 4.10], where it is also assumed that X = R

n.)

Theorem 4.2 gives us the following result on the existence and uniqueness of a
saddle point.

Theorem 4.3. Consider the minimax problem (1.1) and assume that K ⊂ X
and L ⊂ Y are nonempty closed convex subsets. If there exist constants α > 0
and `i > 0 (i = 1, 2) such that the conditions (1.11) and (4.5) are satisfied for
F1(u, v) := ∇xf(u, v) and F2(u, v) := ∇yf(u, v), then (1.1) has a unique saddle
point (x̄, ȳ) ∈ K × L.

Proof. It suffices to apply Theorems 4.2 and 1.2, observing that the assumptions
made imply that, for any (x, y) ∈ K ×L, f(·, y) (resp., f(x, ·)) is strongly convex
on K (resp., strongly concave on L) with the coefficient of strong convexity α/2
(resp., with the coefficient of strong concavity α/2) . �

Combining Theorem 4.3 with the analysis of Example 1.16 and noting that
the Lipschitz condition (4.5) holds for the partial gradient mappings F1(u, v) :=
∇xf(u, v) and F2(u, v) := ∇yf(u, v) with

`1 := (‖A‖2 + ‖B‖2)1/2 and `2 := (‖B‖2 + ‖C‖2)1/2,
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we obtain the following result on the solution existence of quadratic minimax
problems.

Theorem 4.4. Consider the minimax problem (1.1) of the form described in
Example 1.16. If uT Au > 0 for all u ∈ (span K) \ {0} and vT Cv > 0 for all
v ∈ (span L) \ {0}, then (1.1) has a unique saddle point (x̄, ȳ) ∈ K × L.

5. Illustrative Examples

First, let us consider some MVIs which are resulted from twice continuously
differentiable minimax problems via differentiation.

Example 5.1. Let X = Y = R. Consider the following minimax problems and
the corresponding MVIs with F1(u, v) = ∇xf(u, v) and F2(u, v) = ∇yf(u, v):

1. K = [1, 2], L = [1, 3], f(x, y) = xy.
2. K = [1,+∞), L = [0, 3], f(x, y) = x2y3.
3. K = [−1, 1], L = [−1, 2], f(x, y) = x2y2.
4. K = [−1, 1], L = [−1, 2], f(x, y) = xy.
5. K = (−∞,+∞), L = [−1, 2], f(x, y) = x2y3.
Denote by Si the set of the saddle points of the i-th minimax problem and by

Sol(MV I)i the solution set of the corresponding MVI problem. We have

S1 = {(1, 3)}, Sol(MV I)1 = {(1, 3)},
S2 = {(1, 3)}, Sol(MV I)2 =

(
[1,+∞) × {0}

)
∪ {(1, 3)},

S3 = {0} × [−1, 2], Sol(MV I)3 =
(
{0} × [−1, 2]

)
∪

(
[−1, 1] × {0}

)
,

S4 = {(0, 0)}, Sol(MV I)4 = {(0, 0)},
S5 = {0} × [0, 2], Sol(MV I)5 =

(
{0} × [−1, 2]

)
∪

(
(−∞,+∞) × {0}

)
.

Second, we look back to the coercivity and strong monotonicity assumptions
used in the preceding sections. The next example shows that a “uniform partial
strong monotonicity” of F1 and −F2 together with the Lipschitz condition (4.5)
is not enough for obtaining the solution existence stated in Theorem 4.2. The
same example tells us that a “uniform partial coercivity” of F1 and F2 together
with the continuity of these functions is not enough for having the conclusion of
Theorem 2.5.

Example 5.2. Consider (MV I) with K = R, L = [1,+∞) ⊂ R, and

F1(x, y) = x − 2y, F2(x, y) = −y + x, ∀(x, y) ∈ K × L.

Then, Sol(MV I) = ∅. Indeed, if there existed (x̄, ȳ) ∈ K × L with

(−ȳ + x̄)(y − ȳ) ≤ 0 ≤ (x̄ − 2ȳ)(x − x̄) ∀x ∈ R, ∀y ≥ 1,

then we would have x̄ = 2ȳ and ȳ(y − ȳ) ≤ 0 for all y ∈ L, which is impossible.
It is easy to see that

〈F1(x, y) − F1(u, y), x − u〉 = (x − u)2 ∀x, u ∈ K, ∀y ∈ L,
−〈F2(x, y) − F2(x, v), y − v〉 = (y − v)2 ∀y, v ∈ L, ∀x ∈ K.
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Thus, a “uniform partial strong monotonicity” holds. Since

〈F1(x, y) − F1(u, v), x − u〉 − 〈F2(x, y) − F2(u, v), y − v〉
= (x − u)2 + (y − v)2 − 3(x − u)(y − v),

one cannot find any α > 0 satisfying the strong monotonicity condition (1.11).
Concerning “uniform partial coercivity”, note that for any (x0, y0) ∈ K × L we
have

lim
‖x‖→∞

x∈K

〈F1(x, y) − F1(x0, y), x − x0〉
‖x − x0‖

= lim
|x|→∞
x∈K

(x − x0)(x − x0)

|x − x0|
= +∞

uniformly on y ∈ L, and

lim
‖y‖→∞

y∈L

〈F2(x, y) − F2(x, y0), y − y0〉
‖y − y0‖

= lim
|y|→∞

y∈L

−(y − y0)(y − y0)

|y − y0|
= −∞

uniformly on x ∈ K. Meanwhile, the coercivity condition (1.9) fails to hold.
Indeed, for any fixed point (x0, y0) ∈ K × L we have

∆(x, y, x0, y0) :=
〈F1(x, y) − F1(x0, y0), x − x0〉 − 〈F2(x, y) − F2(x0, y0), y − y0〉

‖x − x0‖ + ‖y − y0‖
=

(x − x0)
2 + (y − y0)

2 − 3(x − x0)(y − y0)

|x − x0| + |y − y0|
.

Choosing xk = x0 + k, yk = y0 + k for every k ∈ N, we have ∆(xk, yk, x0, y0) =
−1

2
k → −∞ as k → ∞. Thus the condition lim

‖(x,y)‖→∞
(x,y)∈K×L

∆(x, y, x0, y0) = +∞ is not

fulfilled.

We know that a strictly monotone VI can have at most one solution. Let us
show that a “partially strictly monotone” MVI may have two solutions, or more.

Example 5.3. Consider (MV I) with L = K = [0, 1] ⊂ R and F2(x, y) =
F1(x, y) = x2 − y2. We have

〈F1(x, y) − F1(u, y), x − u〉 = (x2 − u2)(x − u)

= (x + u)(x − u)2 > 0

for all y ∈ L and x, u ∈ K with x 6= u. Besides,

〈F2(x, y) − F2(x, v), y − v〉 = −(y2 − v2)(y − v)

= −(y + v)(y − v)2 < 0

for all x ∈ K and y, v ∈ L with y 6= v. Hence (MV I) satisfies a “partial strict
monotonicity” condition. It is not difficult to show that Sol(MV I) = {(t, t) : t ∈
[0, 1]}.

The forthcoming example shows that even a “partially strongly monotone”
MVI satisfying the Lipschitz condition (4.5) may have two solutions, or more.
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Example 5.4. Consider (MV I) with L = K = [1, γ] ⊂ R, γ > 1, and F1(x, y) =
F2(x, y) = x2 − y2. We have Sol(MV I) = {(t, t) : t ∈ [1, γ]}. The calculations
given in the preceding example show that

〈F1(x, y) − F1(u, y), x − u〉 ≥ 2(x − u)2

for all y ∈ L and x, u ∈ K. In addition,

〈F2(x, y) − F2(x, v), y − v〉 ≤ −2(y − v)2

for all x ∈ K and y, v ∈ L. Note, however, that the strong monotonicity condition
(1.11) is not satisfied, because

〈F1(x, y) − F1(u, v), x − u〉 − 〈F2(x, y) − F2(u, v), y − v〉
= [(x2 − y2) − (u2 − v2)](x − u − y + v)
= 0

for (x, y) = (γ, γ), (u, v) = (1, 1) ∈ K × L.

The pair (F1, F2) in each of the last three examples does not satisfy the con-
dition

∂F1(x, y)

∂y
=

∂F2(x, y)

∂x
∀(x, y) ∈ K × L.

Hence, due to Clairaut’s theorem, one cannot find any twice continuously differ-
entiable function f : Ω → R, where Ω is an open set containing K ×L, such that
F1(u, v) = ∇xf(u, v) and F2(u, v) = ∇yf(u, v). This means that the correspond-
ing MVIs cannot be obtained from twice continuously differentiable minimax
problems of the form (1.1) by differentiation.
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