
ACTA MATHEMATICA VIETNAMICA 55
Volume 35, Number 3, 2010, pp. 55–60

RELATION BETWEEN THE HARDNESS OF A PROBLEM

AND THE NUMBER OF ITS SOLUTIONS

THAN QUANG KHOAT

Abstract. In this note, we survey the effect of the number of solutions on
solving problems. Theoretically, the number of solutions to a problem cannot
help the problem to be easier in the sense of computation. That is, a problem
having few solutions may be as easy as the one having many solutions. For the
aim of giving some evidences, we show that the Subset sum problem, Knapsack
problem and Bounded Integer Programming problem under the assumption
that the problem has either no solution or exponentially many solutions are
NP-hard. On the other hand, the Knapsack Optimization problem having at
most one solution is also NP-hard.

1. Introduction

For a certain problem, studying its structure is usually the first step in solving
it. The more thoroughly we study, the more efficient algorithm we can hope to
obtain. Virtually, some special structures of the problem could lead to an efficient
algorithm. However, some others may reveal the hardness of the problem, such
as discrete structure, non-linear structure.

In this note, we consider the effects of a special structure on solving the given
problem, the number of solutions. By intuition, one may believe that a problem
having many solutions may be easier to solve than the one having fewer solutions;
a problem having unique solution may be harder than the others.1 However,
whether or not the situation remains true in other cases is unclear.

Valiant and Vazirani [9] are the first authors considering this question. They
gave a strong evidence for the conjecture that solving NP problems is as hard as
solving problems with unique solution. Specifically, they showed that if Unique
SAT is in P then RP=NP. Another similar result holds for the Unique Shortest
Vector problem [5]. These results leave an interesting question for researchers:
whether solving a problem having unique solution is equivalent to solving an NP
problem. In this note, we give another evidence for the affirmative answer. More
concretely, we show that Knapsack optimization problem (KOP) is still NP-hard
even under the assumption that it has at most one solution.

Received July 7, 2008; in revised form December 3, 2009.
2000 Mathematics Subject Classification. 68Q17, 68Q25.
1By saying “easy” (or “hard”) we mean that, in the same model of computation, the upper

time bound of a problem is less (or greater) than the one of other problem.



56 THAN QUANG KHOAT

We should remark that the hardness of problems having at most one solution
closely relates to cryptography. In the area of cryptography, many well-known
public key cryptosystems were built based on the hope that some problems having
at most one solution are hard. For example, the security of both the Ajtai-
Dwork [1] and Regev cryptosystem [7] is based on the harness of some certain
approximating version of the unique shortest vector problem. Therefore, if one
can establish the proper hardness (e.g., NP-hard) of this problem, it would imply
that one-way functions exist - the desire of cryptographers. In view of that, our
result here and the result in [4] can be considered as being on the way towards
supporting the existence of some one-way function.

Another interesting question is whether the situation remains true for problems
having many solutions. A negative evidence comes from a result of Calabro et al.
[2]. They proposed a randomized algorithm in expected time poly(n)(2n/s)1−1/k

for k-SAT, where n and s are the number of variables and solutions, respectively.
Their algorithm clearly runs faster as the number of solutions is large. This
result leads to the hope that the more solutions a problem has, the more efficient
algorithm we may have to solve it. It also raises another question of whether a
problem having many solutions is strictly easier than NP problems. More strongly,
can we assert that a problem having exponentially many solutions are strictly
easier than NP problems?

In this note, we give a negative answer for these questions by showing that the
number of solutions to a problem cannot theoretically help the problem to be eas-
ier. Specifically, we show that Subset sum problem (SSP) under the assumption
that it has either no solution or exponentially many solutions is still NP-hard.
Moreover, with the same assumption, the Knapsack problem (KP), the Bounded
Knapsack problem (BKP), the Bounded Integer programming problem (BIP), and
the Integer programming problem (IP) are still NP-hard. To obtain these results,
we propose a reduction from SSP to a new SSP, whose number of solutions is as
twice as that of the old one. And if we use consecutively k reductions, then the
number of solutions of the final SSP is as 2k times as that of the original SSP.

The property of exponentially many solutions of a problem has been recently
exploited in the cryptographic community. For instance, the cryptosystem pro-
posed in [10] relates to a Knapsack-type problem having exponentially many so-
lutions. In a certain sense, the security of the cryptosystem is partially based on
the hardness of finding one exactly expected from exponentially many solutions.
Thus, problems with (exponentially) many solutions may be good candidates for
cryptographers in building secure cryptosystems. Our result here does provide
some such problems which are guaranteed to be NP-hard.

2. Main results

2.1. Many solutions. We consider some problems having many solutions, and
show that they are not easier than NP problems. Starting point of our argument
is the Subset sum problem (SSP). First of all, we should recall it (see [3] for its
decision version).



HARDNESS OF A PROBLEM AND NUMBER OF ITS SOLUTIONS 57

Find a vector x ∈ Z
n satisfying

(2.1)

{

a1x1 + · · · + anxn = b
0 ≤ xi ≤ 1, ∀i

where the coefficients are positive integers.
It is well-known that SSP (2.1) is NP-hard (see [3], [8]). The input of the

problem consists of only the coefficients and the number of variables. If there
is some more information, the problem may be easier to be solved. Here, we
consider the hardness of the problem when we are given some information on the
number of solutions.

Theorem 2.1. Any SSP is polynomial-computationally equivalent to a SSP with
either no solution or 2Θ(n) solutions, where n is the number of variables of the
problem.

This theorem immediately yields the following corollary.

Corollary 2.2. SSP (2.1) under the assumption that the number of its solutions
is either zero or exponentially many is NP-hard.

We can prove Theorem 2.1 by reducing SSP to a new SSP satisfying the given
assumption. First, we reduce SSP (2.1) to a new one such that:

If SSP (2.1) has no solution then neither is the new one.(2.2)

If SSP (2.1) has solutions then the number of solutions of the new SSP(2.3)

is as twice as that of the old one.

Applying this reduction, m times to SSP will yield a new SSP having many
solutions, Ω(2m).

Now we are going to present a reduction from SSP (2.1) to a new one satisfying
(2.2) and (2.3). Without loss of generality, we assume that ai < b, ∀i. The new
SSP is as follows:

Find a vector x ∈ Z
n+2 satisfying

(2.4)

{
∑n

i=1 aixi + txn+1 + txn+2 = b + t
0 ≤ xi ≤ 1, ∀i

where t is an optional integer such that if (x1, ..., xn+2) is a solution to (2.4) then
(x1, ..., xn) is also a solution to (2.1).

It is clear that, with the above assumption on t, if x∗ is a solution to (2.1), then
(x∗, 1, 0) and (x∗, 0, 1) are solutions to (2.4). That is, the number of solutions to
(2.4) is at least as twice as that to (2.1).

Lemma 2.3. Assume that t is an integer greater than (n + 1)b. Then SSP (2.4)
has a solution (x∗

1, ..., x
∗

n+2) if and only if (x∗

1, ..., x
∗

n) is a solution to SSP (2.1).
Moreover, the number of solutions of (2.4) is as twice as that of (2.1).

Proof. It is easy to see that if (x∗

1, ..., x
∗

n) is a solution to (2.1), then (x∗

1, ..., x
∗

n, 1, 0)
and (x∗

1, ..., x
∗

n, 0, 1) are solutions to (2.4).



58 THAN QUANG KHOAT

Now we assume that (x∗

1, ..., x
∗

n+2) is a solution to (2.4), then we have the
equation

n
∑

i=1

aix
∗

i + t.(x∗

n+1 + x∗

n+2) = b + t

or, equivalently,

(2.5)

n
∑

i=1

aix
∗

i = b + t.(1 − x∗

n+1 − x∗

n+2)

Assuming that 1 − x∗

n+1 − x∗

n+2 6= 0, then |b + t.(1 − x∗

n+1 − x∗

n+2)| > nb. By
the hypothesis ai < b for all i, we immediately have

∑n
i=1 aix

∗

i < nb (due to
0 ≤ x∗

i ≤ 1). Combining (2.5) with these observations yields a contrary. Thus, if
(x∗

1, ..., x
∗

n+2) is a solution to (2.4), then 1− x∗

n+1 − x∗

n+2 = 0. As a consequence,
we have

∑n
i=1 aix

∗

i = b; that is, (x∗

1, ..., x
∗

n) is a solution to SSP (2.1).
The second statement is straightforward. �

This lemma reveals a reduction from a SSP with n variables to a new one with
n + 2 variables satisfying (2.2) and (2.3). Applying consecutively the reduction
m times to SSP would yield a new SSP which has n + 2m variables. The new
SSP has Ω(2m) solutions, provided that the original SSP has solutions. It has no
solution if the original SSP has no solution. Consequently, a suitable value of m
would lead to the result of Theorem 2.1. �

In short, Theorem 2.1 implies that, theoretically, a problem having many so-
lutions can not be easier than the one having few solutions. Despite having ex-
ponentially many solutions, the problem can remain hard. The above technique
can be easily applied to the BKP, KP and BIP.

BKP can be stated similarly to (2.1), provided that the variable xi has an
upper bound ci (i = 1, ..., n). In KP, there is no upper bound on xi’s. BIP is a
generalized version of the above problems. Specifically, in BIP, we are asked to
find a vector x ∈ Z

n satisfying some constraints Ax = b and 0 ≤ x ≤ c, where
some coefficients may be negative integers. These problems are known to be NP-
hard [3]. However, they remain NP-hard even if we know some more information,
e.g. a promise of the lower bound on the number of solutions. Indeed,

Theorem 2.4. BKP, KP and BIP under the assumption that the number of
solutions is either zero or exponentially large are NP-hard.

We can prove the NP-hardness of BKP with the given assumption by the same
technique as the one used for SSP. KP can be reduced to BKP by adding upper
bound db/aie on xi, for all i. Similarly, BIP can be reduced to BKP by using the
technique of Kannan [3]. Thus, Theorem 2.4 follows. �

2.2. Unique solution. We have just considered the hardness of some problems
with many solutions. In this subsection, we continue to examine the hardness of
the problems with at most one solution. To treat this issue, we use Knapsack
optimization problem (KOP) [3] as a tool to assert the claim that a problem with
at most one solution may not be easier than NP problems.



HARDNESS OF A PROBLEM AND NUMBER OF ITS SOLUTIONS 59

Now we consider the Knapsack problem [10], [6] (see its decision version in
[3]):

Find a vector x ∈ Z
n satisfying

(2.6)

{

a · x = b
x ≥ 0,

where the coefficients are positive integers.
It is not hard to see that (2.6) is NP-hard. We are going to reduce (2.6) to

KOP which has at most one solution. The new KOP is as follows:
Find a solution x to

(2.7)
f(x) = d1x1 + · · · + dnxn → min
{

a · x = b
x ∈ Z

n, x ≥ 0,

where di’s are optional integers such that:
+ d1 > 0,
+ di > w

∑i−1
j=1 dj , w = max

k
{db/ake}, i > 1

It is clear that if x0 is a solution to (2.7), then x0 is also a solution to (2.6);
if (2.7) has no solution, then neither has (2.6). Moreover, (2.7) has at most one
solution. Indeed, assume that x1 and x2 are different solutions to (2.7). There
exists j, x1

j 6= x2
j . Let r be the greatest index such that x1

r 6= x2
r. Without loss

of generality, we assume that x1
r < x2

r. Then we have

f(x1) = d · x1 =
∑

j<r

djx
1
j + drx

1
r +

∑

k>r

dkx
1
k,

f(x2) = d · x2 =
∑

j<r

djx
2
j + drx

2
r +

∑

k>r

dkx
2
k

= f(x1) +
∑

j<r

djx
2
j + dr(x

2
r − x1

r) −
∑

j<r

djx
1
j .

Note that 0 ≤ x1
j ≤ w, ∀j. Thus,

∑

j<r djx
1
j < w

∑

j<r dj < dr due to the

hypothesis on di’s. Combining this with the fact that x1, x2 ∈ Z
n
+ would lead to

∑

j<r djx
1
j < dr(x

2
r − x1

r). Therefore, from the above representation of f(x2), we

conclude that f(x1) < f(x2). That is, (2.7) has at most one solution. From these
arguments, we obtain the following.

Theorem 2.5. Any knapsack problem can be polynomial-computationally reduced
to a knapsack optimization problem having at most one solution.

Note that KP is NP-hard. Thus, we obtain the following.

Corollary 2.6. The Knapsack Optimization problem under the assumption that
it has at most one solution is NP-hard.



60 THAN QUANG KHOAT

References

[1] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case equiva-
lence, In Proc. of the 29th annual ACM symposium on Theory of Computing, pp. 284-293,
1997.

[2] C. Calabro, R. Impagliazzo, V. Kabanets and R. Paturi, The complexity of Unique k-SAT:
An Isolation lemma for k-CNFS, In Proc. of the 18th IEEE annual Conf. on Computational

Complexity, pp. 135-141, 2003.
[3] R. Kannan, Polynomial-time aggregation of Integer programming problems, Journal of the

ACM 30(1) (1983), 133-145.
[4] T. Q. Khoat and N. H. Tan, Unique shortest vector problem for max norm is NP-hard, Viet-

nam Journal of Science and Technology 46 (5A) (2008), 86-100. Special issue on the Second
International Conference on Theories and Applications of Computer Science - ICTACS’09.

[5] R. Kumar and D. Silvakumar, A note on the shortest lattice vector problem, In Proc. of

the 14th annual IEEE Conf. on Computational Complexity, pp. 200-204, 1999.
[6] P. Q. Nguyen and J. Stern, Adapting Density Attacks to Low-Weight Knapsacks, Advances

in Cryptology - ASIACRYPT05, Springer-Verlag, pp. 41-58, 2005.
[7] O. Regev, New lattice-based cryptographic constructions, Journal of the ACM 51 (6)

(2004), 899-942.
[8] A. Schrijver, Theory of Linear and Integer Programming, John Wiley, Chichester 1999.
[9] L. Valiant and V. Vazirani, NP is as easy as detecting unique solutions, Theoretical Com-

puter Science 47 (1986), pp. 85-93.
[10] B. Wang, Q. Wu and Y. Hu, A knapsack-based probabilistic encryption scheme, Information

Sciences 177 (2007), 3981-3994.

Faculty of Information Technology, Thái Nguyên University

Thái Nguyên city, Vietnam

Current address: School of Knowledge Science

Japan Advanced Institute of Science and Technology

E-mail address: tqkhoat@jaist.ac.jp


