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MINIMUM L1-NORM ESTIMATION FOR MIXED
FRACTIONAL ORNSTEIN-UHLENBECK TYPE PROCESS

YU MIAO

Abstract. In the present paper, the asymptotic properties of the minimum
L1-norm estimator of the drift parameter for mixed fractional Ornstein-Uhlenbeck
type process satisfying a linear stochastic differential equation driven by a
mixed fractional Brownian motion are obtained.

1. Introduction

Let WH = {WH
t , t ≥ 0} be a fractional Brownian motion with Hurst index H

defined on the probability space (Ω,F ,P), which is a continuous Gaussian process
with the following properties:

(I) WH
0 = 0, P-almost surely;

(II) EWH
t = 0, EWH

t W
H
s =

1
2

(t2H + s2H − |s− t|2H) for all s, t ≥ 0;

(III) the increments of WH are stationary and self-similar with order H, and
the trajectories of WH are almost surely continuous and not differentiable.

Note that the standard Brownian motion W is a fractional Brownian motion
with Hurst index H = 1/2. Let us take a and b as two real constants such that
(a, b) 6= (0, 0).

Definition 1.1. A mixed fractional Brownian motion (MFBM) of parameters a,
b, and H is a process ZH = {ZHt (a, b); t ≥ 0} = {ZHt ; t ≥ 0}, defined on the
probability space (Ω,F ,P) by

(1.1) ∀t ∈ R+, ZHt = ZHt (a, b) = aWt + bWH
t ,

where (Wt)t∈R+ is a Brownian motion, and (WH
t )t∈R+ is a fractional Brown-

ian motion of Hurst parameter H, and processes (Wt)t∈R+ and (WH
t )t∈R+ are

independent.

Received December 4, 2008.
2000 Mathematics Subject Classification. Primary 62M09, Secondary 60G15.
Key words and phrases. Minimum L1-norm estimation; mixed fractional Ornstein-Uhlenbeck

process; mixed fractional Brownian motion.
This work is supported by the Foundation of Henan Educational Committee (Grant No.

2009B110010) and Foundation of Henan Normal University (Grant No. 080102).



380 Y. MIAO

This process has been introduced by Cheridito [1] to present a stochastic model
of the discounted stock price in some arbitrage-free and complete financial mar-
kets. This model is the process

(1.2) XH
t (a, b) = XH

0 (a, b) exp
(
νt+ σZHt (a, b)

)
,

where ν, σ are constants, a is a strictly positive constant, b = 1, and ZH(a, b) is
a MFBM of parameters a, b, and H.

On account of the possibility of long run non-periodic statistical dependence
in stock price returns, it is necessary to study the properties of MFBM. Zili [16]
obtained some general stochastic properties of the mixed fractional Brownian
motion and treat the Hölder continuity of the sample paths and α-differentiability
of the trajectories of MFBM. The author et al. [6] generalized Zili’s works from
MFBM to fractional mixed fractional Brownian motion.

Diffusion processes and diffusion type processes satisfying stochastic differen-
tial equations driven by Wiener processes are used for stochastic modeling in wide
variety of sciences such as population genetics, economic processes, signal process-
ing as well as for modeling sunspot activity and more recently in mathematical
finance. Statistical inference for diffusion type processes satisfying stochastic dif-
ferential equations driven by Wiener processes have been studied earlier and a
comprehensive survey of various methods is given in Prakasa Rao [13]. There has
been a recent interest to study similar problems for stochastic processes driven
by a fractional Brownian motion to model processes involving long range de-
pendence. Le Breton [5] studied parameter estimation and filtering in a simple
linear model driven by a fractional Brownian motion. The author and Wang [7]
obtained the Large deviation inequalities for MLE and Bayes estimator in SDE
with fractional Brownian motion. In a recent paper, Kleptsyna and Le Breton
[4] studied parameter estimation problems for fractional Ornstein-Uhlenbeck pro-
cess. This is a fractional analogue of the Ornstein-Uhlenbeck process, that is, a
continuous time first order autoregressive process X = {Xt, t ≥ 0} which is the
solution of a one-dimensional homogeneous linear stochastic differential equation
driven by a fractional Brownian motion WH = {WH

t , t ≥ 0} with Hurst param-
eter H ∈ (1/2, 1). Such a process is the unique Gaussian process satisfying the
linear integral equation

Xt = X0 + θ

∫ t

0
Xsds+ σWH

t , t ≥ 0.

In the present paper, our aim is to obtain the minimum L1-norm estimates of the
drift parameter of a fraction Ornstein-Uhlenbeck type process and investigate the
asymptotic properties of such estimators following the work of Prakasa Rao [14].

2. Preliminaries and elementary lemmas

From Zili [16], we know that MFBM is a mixed-self-similar process: {ZHht(a, b)} =d

{ZHt (ah1/2, bhH)}, where h > 0 is a constant and the notation {Xt} =d {Yt}
means that the (Xt)t∈R+ and (Yt)t∈R+ have the same law. For any process X
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denote by X∗ the supremum process: X∗t = sups≤t |Xs|. Therefore even more
is true: from the self-similarity it follows for the supremum process Z∗ that
ZH∗ht (a, b) =d ZH∗t (ah1/2, bhH). For any p > 0 we have then the following result
by self-similarity:

Lemma 2.1. Let T > 0 be a constant and Z a MFBM with parameters a, b,H.
Then for any p > 0,

(2.1) E(ZH∗T (a, b))p = E(ZH∗1 (aT 1/2, bTH))p = E(sup
t≤1
|aT 1/2Wt + bTHWH

t |)p.

The value of (2.1) is not known to us. However it is fortunately that we
have the classical Burkholder-Davis-Gundy (B-D-G) inequalities for the standard
Brownian motion:

B-D-G Inequalities (Brownian case) For any stopping time τ with respect to
the filtration generated by the Brownian motion W and p > 0 we have

(2.2) c(p)E(τp/2) ≤ E((W ∗τ )p) ≤ C(p)E(τp/2),

where the constants c(p), C(p) > 0 depend only upon the parameter p.

Recall that Novikov and Valkeila [9] gave the following bounds for fractional
Brownian motion.

Theorem NV Let τ be a stopping time with respect to the filtration generated
by the fraction Brownian motion WH . Then for any p ≥ 0 and H ∈ (1/2, 1) we
have

(2.3) c(p,H)E(τpH) ≤ E((WH∗
τ )p) ≤ C(p,H)E(τpH),

and for any p > 0 and H ∈ (0, 1/2) we have

(2.4) c(p,H)E(τpH) ≤ E((WH∗
τ )p),

where the constants c(p,H), C(p,H) > 0 depend only upon the parameters p,H.

From Theorem NV and B-D-G inequality it is easy to obtain the upper bound
of (2.1).

Let us consider a stochastic process {Xt, t ≥ 0} defined by the stochastic
integral equation

(2.5) Xt = x0 + θ

∫ t

0
Xsds+ εZHt , X0 = x0, 0 ≤ t ≤ T,

where θ is an unknown drift parameter and ZHt is a MFBM.

By the Hölder continuity of the fractional Brownian motion BH , the integrals
below can be defined by integration by parts, where the singularities of the kernel
do not cause problems (see Norros et al., [8] Lemma 2.1).

Put K(t, s) := (c/C)s−r(t− s)−r for s ∈ (0, t) and K(t, s) = 0 for s > t, where
r = H − 1/2,

C :=

√
H

(H − 1/2)B(H − 1/2, 2− 2H)
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and

c :=
1

B(H + 1/2, 3/2−H)
,

where the beta coefficient B(µ, ν) for µ, ν > 0 is defined by

B(µ, ν) :=
Γ(µ)Γ(ν)
Γ(µ+ ν)

.

From Proposition 2.1 in Norros et al. [8], we have

Proposition 2.2. For H ∈ (0, 1) define M by

Mt =
∫ t

0
K(t, s)dWH

s .

Then M is a Gaussian martingale with variance 〈M〉t = (C2/4H2(2−2H))t2−2H

with respect to filtration Ft = σ(WH
s : s ≤ t).

For further discussions of fractional Brownian motion, the readers are referred
to Gripenberg and Norros [3], Kleptsyna et al. [4] and Norros et al. [8].

3. Main results

In the section, we will give the minimum L1-norm estimation and its asymp-
totic properties which are analogous with Prakasa Rao [14].

3.1. Minimum L1-norm estimation. We now discuss the problem of estima-
tion of the unknown parameter θ based on the observation of mixed fractional
Ornstein-Uhlenbeck type process X = {Xt, 0 ≤ t ≤ T} satisfying the stochastic
differential equation

(3.1) dXt = θXtdt+ εdZHt , X0 = x0, 0 ≤ t ≤ T,

for a fixed time T where θ ∈ Θ ⊂ R and study its asymptotic properties as ε→ 0.

Let xt(θ) be the solution of the above differential equation with ε = 0. It is
obvious that

(3.2) xt(θ) = x0e
θt, 0 ≤ t ≤ T.

Let

(3.3) ST (θ) =
∫ T

0
|Xt − xt(θ)|dt.

We define θ∗ε to be a minimum L1-norm estimator if there exists a measurable
selection θ∗ε such that

(3.4) ST (θ∗ε) = inf
θ∈Θ

ST (θ).

Conditions for the existence of a measurable selection are given in Lemma 3.1.2
in Prakasa Rao [12]. We assume that there exists a measurable selection θ∗ε
satisfying the above equation.
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3.2. Consistency. Let θ0 denote the true parameter and for any δ > 0 define

(3.5) g(δ) = inf
|θ−θ0|>δ

∫ T

0
|xt(θ)− xt(θ0)|dt.

Then it is easy to see that g(δ) > 0 for any δ > 0.

Theorem 3.1. For any p > 0, there exist constants C1(p,H), C2(p) > 0 such
that for every δ > 0,

(3.6)
P(ε)
θ0

(|θ∗ε − θ0| > δ) ≤2pεpT p(g(δ))−pep|θ0T |(C1(p,H)THp + C2(p)T p/2)

=O((g(δ)−p)εp).

Proof. Let ‖ · ‖ denote the L1-norm. Then
(3.7)

P(ε)
θ0

(|θ∗ε − θ0| > δ) =P(ε)
θ0

( inf
|θ−θ0|≤δ

‖X − x(θ)‖ > inf
|θ−θ0|>δ

‖X − x(θ)‖ > δ)

≤P(ε)
θ0

( inf
|θ−θ0|≤δ

(‖X − x(θ0)‖+ ‖x(θ0)− x(θ)‖)

> inf
|θ−θ0|>δ

(‖x(θ0)− x(θ)‖ − ‖X − x(θ0)‖) > δ)

=P(ε)
θ0

(‖X − x(θ0)‖ > g(δ)/2).

Since xt(θ) = x0e
θt and from (3.1), we have

(3.8)
Xt − xt(θ0) =x0 + θ0

∫ t

0
Xsds+ εZt − xt(θ)

=θ0

∫ t

0
(Xs − xs(θ0))ds+ εZt.

Let Vt = |Xt − xt(θ0)|. The above relation implies that

Vt = |Xt − xt(θ0)| ≤ |θ0|
∫ t

0
Vsds+ ε|Zt|.

By the Gronwall’s inequality, we have

sup
0≤t≤T

|Vt| ≤ εe|θ0T | sup
0≤t≤T

|Zt|.

Hence, from (3.7) and applying Lemma 2.1, B-D-G inequalities and Theorem
NV, we have

P(ε)
θ0

(|θ∗ε − θ0| > δ) ≤P(ε)
θ0

(‖X − x(θ0)‖ > g(δ)/2)

≤P(ε)
θ0

(Z∗T >
e−|θ0t|g(δ)

2εT
)

≤2pεpT p(g(δ))−pep|θ0T |(C1(p,H)THp + C2(p)T p/2)

=O((g(δ)−p)εp).

�
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Remark 3.2. As a consequence of the above theorem, we obtain that θ∗ε con-
verges in probability to θ0 under P(ε)

θ0
-measure as ε→ 0. Furthermore the rate of

convergence is of the order O(εp) for every p > 0.

3.3. Asymptotic distribution. One can check that

(3.9) Xt = eθ0t(x0 +
∫ t

0
e−θ0sεdZs)

or equivalently

Xt − xt(θ0) = εeθ0T
∫ t

0
e−θ0sεdZs.

Let

Yt = eθ0t
∫ t

0
e−θ0sdZs = aeθ0t

∫ t

0
e−θ0sdWs + beθ0t

∫ t

0
e−θ0sdWH

s =: aY 1
t + bY 2

t .

Then Y is a Gaussian process and can be interpreted as the ”derivative” of the
process X with respect to ε. From the discussions in Prakasa Rao [14] (or cf.
Kleptsyna et al. [4] and Gripenberg and Norros [3]), we know that for any h ≥ 0,

Cov(Y 2
t , Y

2
t+h) = e2θ0t+θ0hγH(t),

where

γH(t) = H(2H − 1)
∫ t

0

∫ t

0
e−θ0(u+v)|u− v|2H−2dudv.

And it is obvious that

Cov(Y 1
t , Y

1
t+h) = e2θ0t+θ0h

∫ t

0
e−2θ0sds.

Hence Y is a zero mean Gaussian. Let

ξ = arg inf
−∞<u<∞

∫ T

0
|Yt − utx0e

θ0t|dt.

Note that it is not clear what the distribution of ξ is.

Theorem 3.3. The random variable u∗ = ε−1(θ∗ε − θ0) converges in probability
to a random variable whose probability distribution is the same as that of ξ under
Pθ0.

Proof. Let x
′
t(θ) = x0te

θt and let

Nε(u) = ‖Y − ε−1(x(θ0 + εu)− x(θ0))‖
and

N0(u) = ‖Y − ux′
(θ0)‖.

Furthermore, let

Aε = {ω : |θ∗ε − θ0| < δε}, δε = ετ , τ ∈ (1/2, 1) Lε = ετ−1.

Note that the random variable u∗ satisfies the equation

Nε(u∗ε) = inf
|u|<Lε

Zε(u), ω ∈ Aε.
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Define
ξε = arg inf

|u|<Lε

Z0(u).

Observe that with probability one,

sup
|u|<Lε

‖Nε(u)−N0(u)‖ =|‖Y − ux′
(θ0)− 1

2
εu2x

′′
(θ̃)‖ − ‖Y − ux′

(θ0)‖|

≤ε
2
L2
ε sup
|θ−θ0|<δε

∫ T

0
|x′′

(θ)|dt

≤Cε2τ−1,

where θ̃ = θ0 + α(θ − θ0) for some α ∈ (0, 1). Note that the last term in the
above inequality tends to zero as ε→ 0. Furthermore the process {Z0(u),−∞ <
u < ∞} has a unique minimum u∗ with probability one. This follows from the
arguments given in Theorem 2 of Kutoyants and Pilibossian [11]. In addition, we
can choose the interval [−L,L] such that

P(ε)
θ0

(u∗ε ∈ (−L,L)) ≥ 1− βg(L)−p

and
P(ε)
θ0

(u∗ ∈ (−L,L)) ≥ 1− βg(L)−p

where β > 0. Note that g(L) increases as L increases. The processes Zε(u), u ∈
[−L,L] and Z0(u), u ∈ [−L,L] satisfy the Lipschitz conditions and Zε(u) con-
verges uniformly to Z0(u) over u ∈ [−L,L]. Hence the minimizer of Zε(·) con-
verges to the minimizer of Z0(u). This completes the proof. �
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