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ON THE RATIONAL RECURSIVE TWO SEQUENCES

xn+1 = axn−k + bxn−k/ (cxn + δdxn−k)

E. M. E. ZAYED AND M. A. EL-MONEAM

Abstract. The main objective of this paper is to study some qualitative
behavior of the solutions of the two difference equations

xn+1 = axn−k + bxn−k/ (cxn + δdxn−k) , n = 0, 1, 2, . . . ,

where the initial conditions x−k, . . . , x−1, x0 are arbitrary positive real num-
bers and the coefficients a, b, c and d are positive constants, while k is a positive
integer number and δ = ±1. Some numerical examples are given to illustrate
our results.

1. Introduction

The qualitative study of difference equations is a fertile research area and in-
creasingly attracts many mathematicians. This topic draws its importance from
the fact that many real life phenomena are modeled using difference equations.
Examples from economy, biology, etc. can be found in [2, 16, 19, 28] . It is known
that nonlinear difference equations are capable of producing a complicated behav-
ior regardless its order. This can be easily seen from the family xn+1 = gµ (xn) ,
µ > 0, n ≥ 0. This behavior is ranging according to the value of µ, from the
existence of a bounded number of periodic solutions to chaos.

There has been a great interest in studying the global attractivity, the bound-
edness character and the periodicity nature of nonlinear difference equations. For
example, in the articles [9, 29–31] closely related global convergence results were
obtained which can be applied to nonlinear difference equations in proving that
every solution of these equations converges to a period two solution. For other
closely related results, see [3–5, 11, 14, 15] and the references cited therein. The
study of these equations is challenging and rewarding and is still in its infancy.
We believe that the nonlinear rational difference equations are of paramount
importance in their own right. Furthermore the results about such equations
offer prototypes for the development of the basic theory of the global behavior of
nonlinear difference equations.
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Our goal in this paper is to investigate some qualitative behavior of the solu-
tions of the two difference equations

(1.1) xn+1 = axn−k +
bxn−k

cxn − dxn−k
, n = 0, 1, 2, . . .

and

(1.2) xn+1 = axn−k +
bxn−k

cxn + dxn−k
, n = 0, 1, 2, . . . ,

where the initial conditions x−k,..., x−1, x0 are arbitrary positive real numbers and
the coefficients a, b, c and d are positive constants, while k is a positive integer
number. The case where any of a, c, d is allowed to be zero gives different special
cases of the two difference equations (1.1) and (1.2) which are studied by many
authors, (see for example [3, 9, 12, 14, 18, 31]). For the related work see [1, 2,
4, 5, 7, 9-11, 13-15, 17, 19-30, 32–40]. Note that Eqs. (1.1) and (1.2) can be
considered as a generalization of that obtained in [8, 36].

Definition 1. A difference equation of order (k + 1) is of the form

(1.3) xn+1 = F (xn, xn−1, . . . , xn−k), n = 0, 1, 2, . . . ,

where F is a continuous function which maps some set Jk+1 into J and J is a set
of real numbers. An equilibrium point x̃ of this equation is a point that satisfies
the condition x̃ = F (x̃, x̃, . . . , x̃). That is, the constant sequence {xn}

∞

n=−k with
xn = x̃ for all n ≥ −k is a solution of that equation.

Definition 2. Let x̃ ∈ (0,∞) be an equilibrium point of the difference equation
(1.3). Then

(i) An equilibrium point x̃ of the difference equation (1.3) is called locally
stable if for every ε > 0 there exists δ > 0 such that, if x−k, . . . , x−1, x0 ∈ (0,∞)
with |x−k − x̃| + . . . + |x−1 − x̃| + |x0 − x̃| < δ, then |xn − x̃| < ε for all n ≥ −k.

(ii) An equilibrium point x̃ of the difference equation (1.3) is called locally
asymptotically stable if it is locally stable and there exists γ > 0 such that, if
x−k, . . . , x−1, x0 ∈ (0,∞) with |x−k − x̃| + . . . + |x−1 − x̃|+ |x0 − x̃| < γ, then

lim
n→∞

xn = x̃.

(iii) An equilibrium point x̃ of the difference equation (1.3) is called a global
attractor if for every x−k, . . . , x−1, x0 ∈ (0,∞) we have

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of the equation (1.3) is called globally asymptoti-
cally stable if it is locally stable and a global attractor.

(v) An equilibrium point x̃ of the difference equation (1.3) is called unstable if
it is not locally stable.

Definition 3. A sequence {xn}
∞

n=−k is said to be periodic with period p if xn+p =
xn for all n ≥ −k. A sequence {xn}

∞

n=−k is said to be periodic with prime period
p if p is the smallest positive integer having this property.
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The linearized equation of the difference equation (1.3) about the equilibrium
point x̃ is the linear difference equation

(1.4) yn+1 =
k∑

i=0

∂F (x̃, x̃, . . . , x̃)

∂xn−i

yn−i.

Now assume that the characteristic equation associated with (1.4) is

(1.5) p (λ) = p0λ
k + p1λ

k−1 + ... + pk−1λ + pk = 0,

where pi = ∂F (x̃, x̃, . . . , x̃) /∂xn−i.

Theorem 1. [19]. Assume that pi ∈ R, i = 1, 2, . . . , and k ∈ {0, 1, 2, . . .}. Then

(1.6)

k∑

i=1

|pi| < 1

is a sufficient condition for the asymptotic stability of the difference equation

(1.7) xn+k + p1xn+k−1 + . . . + pkxn = 0, n = 0, 1, 2, . . .

Theorem 2 (See [15, 19, 20] The linearized stability theorem). Suppose F is

a continuously differentiable function defined on an open neighborhood of the

equilibrium x̃. Then the following statements are true.

(i) If all roots of the characteristic equation (1.5) of the linearized equation

(1.4) have absolute value less than one, then the equilibrium point x̃ is locally

asymptotically stable.

(ii) If at least one root of equation (1.5) has absolute value greater than one,

then the equilibrium point x̃ is unstable.

The following theorem will be useful for the proof of our main results in this
paper.

Theorem 3 (See [15, p. 18]). Let F : [a, b]k+1 −→ [a, b] be a continuous function,

where k is a positive integer, and where [a, b] is an interval of real numbers and

consider the difference equation (1.3). Suppose that F satisfies the following

conditions:

(i) For each integer i with 1 ≤ i ≤ k + 1, the function F (z1, z2, ..., zk+1) is

weakly monotonic in zi for fixed z1, z2, ..., zi−1, zi+1, . . . , zk+1.

(ii) If (m, M) is a solution of the system

m = F (m1, m2, . . . , mk+1) and M = F (M1, M2, . . . , Mk+1),

then m = M, where for each i = 1, 2, . . . , k + 1, we set

mi =





m if F nondecreasing in zi,

M if F nonincreasing in zi,
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and

Mi =





M if F nondecreasing in zi,

m if F nonincreasing in zi.

Then there exists exactly one equilibrium point x̃ of the difference equation (1.3),
and every solution of (1.3) converges to x̃.

2. Periodic solutions of equation (1.1)

Theorem 4. If k is an even positive integer and c 6= d, then equation (1.1) has

no positive solutions of prime period two.

Proof. Assume that there exists distinctive positive solution

. . . , P, Q, P, Q, . . .

of prime period two of the difference equation (1.1).

If k is an even positive integer, then xn = xn−k. It follows from equation (1.1)
that

(2.1) P = aQ +
bQ

cQ− dQ
and Q = aP +

bP

cP − dP
,

provided that c 6= d. Hence we deduce from (2.1) that (P − Q) (a + 1) = 0.Thus
P = Q. This is a contradiction. Therefore, the proof of Theorem 4 is complete.

�

Theorem 5. If k is an odd positive integer and a 6= 1, then equation (1.1) has

no positive solutions of prime period two.

Proof. Assume that there exists distinctive positive solution

. . . , P, Q, P, Q, . . .

of prime period two of the difference equation (1.1).

If k is an odd positive integer, then xn+1 = xn−k. It follows from the difference
equation (1.1) that

P = aP +
bP

cQ − dP
and Q = aQ +

bQ

cP − dQ
.

Consequently, we obtain

(2.2) cPQ − dP 2 = acPQ − adP 2 + bP,

and

(2.3) cPQ − dQ2 = acPQ − adQ2 + bQ.

By adding (2.2) and (2.3) we deduce after some reduction that

2 (1− a) (c + d)PQ = 0.

Since a 6= 1, then

(2.4) PQ = 0.
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Since P, Q are both positive, then we have a contradiction. Therefore, the proof
of Theorem 5 is now complete. �

3. The stability of the equilibrium point of equation (1.1)

In this section we study the local stability character of the solutions of the
difference equation (1.1). The equilibrium points of the difference equation (1.1)
are given by the relation

(3.1) x̃ = ax̃ +
bx̃

cx̃ − dx̃
.

If (a − 1) (d − c) > 0, then the only positive equilibrium point x̃ of the difference
equation (1.1) is given by

(3.2) x̃ =
b

(a − 1) (d − c)
.

Let F : (0,∞)2 −→ (0,∞) be a continuous function defined by

(3.3) F (u0, u1) = au1 +
bu1

cu0 − du1
,

provided that cu0 6= du1. Therefore,

(3.4)
∂F (u0, u1)

∂u0
= −

bcu1

(cu0 − du1)
2 and

∂F (u0, u1)

∂u1
= a +

bcu0

(cu0 − du1)
2 .

Then we see that

(3.5)
∂F (x̃, x̃)

∂u0
= −

c (a − 1)

(d − c)
= ρ0 and

∂F (x̃, x̃)

∂u1
= a +

c (a − 1)

(d − c)
= ρ1,

provided that d 6= c. Then the linearized equation of the difference equation (1.1)
about x̃ is

(3.6) yn+1 − ρ0 yn − ρ1 yn−k = 0.

Theorem 6. Assume that a 6= 1, d 6= c and

(3.7) |c − ac| + |ad − c| < |d − c| ,

Then the equilibrium point x̃ of the difference equation (1.1) is locally asymptot-

ically stable.

Proof. From (3.5) we deduce for d 6= c and a 6= 1 that

|ρ0| + |ρ1| =

∣∣∣∣−
c (a − 1)

(d − c)

∣∣∣∣ +

∣∣∣∣a +
c (a − 1)

(d − c)

∣∣∣∣

=
|c − ac|

|d − c|
+

|ad − c|

|d − c|
.(3.8)

From (3.7) and (3.8), we deduce that

(3.9) |ρ0|+ |ρ1| < 1.
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It follows by Theorems 1, 2 that equation (1.1) is locally asymptotically stable.
Thus, the proof of Theorem 6 is complete. �

4. Global attractor of the equilibrium point of equation (1.1)

In this section we investigate the global attractivity character of the solutions
of the difference equation (1.1).

Theorem 7. The equilibrium point x̃ of the difference equation (1.1) is a global

attractor if a 6= 1.

Proof. By using (3.4), we can see that the function F (u0, u1) which is defined by
(3.3) is decreasing in u0 and increasing in u1. Suppose that (m, M) is a solution
of the system

(4.1) m = F (M, m) and M = F (m, M).

Then we get

m = F (M, m) = am +
bm

cM − dm
,

and

M = F (m, M) = aM +
bM

cm − dM
.

Consequently, we have

(4.2)
1

cM − dm
=

1

cm − dM
= (1 − a) /b.

Since a 6= 1, we deduce from (4.2) that M = m. It follows by Theorem 3 that x̃
is a global attractor of the difference equation (1.1). Thus, the proof of Theorem
7 is complete. �

5. Periodic solutions of equation (1.2)

Theorem 8. If k is an even positive integer, then equation (1.2) has no positive

solutions of prime period two.

Proof. Assume that there exists distinctive positive solution

. . . , P, Q, P, Q, . . .

of prime period two of the difference equation (1.2).

If k is an even positive integer, then xn = xn−k. It follows from equation (1.2)
that

(5.1) P = aQ +
bQ

cQ + dQ
and Q = aP +

bP

cP + dP
.

Consequently, we deduce from (5.1) that

(5.2) (P − Q) (a + 1) = 0.

Then, we have P = Q. This is a contradiction. Hence, the proof of Theorem 8 is
complete. �
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Theorem 9. If k is an odd positive integer, then the neceessary and insufficient

condition for equation (1.2) to have positive solutions of prime period two is that

(5.3) c > 5d,

provided that 0 < a < 1 and c > d.

Proof. Assume that there exists distinctive positive solution

. . . , P, Q, P, Q, . . .

of prime period two of the difference equation (1.2).

If k is an odd positive integer, then xn+1 = xn−k. It follows from the difference
equation (1.2) that

P = aP +
bP

cQ + dP
and Q = aQ +

bQ

cP + dQ
.

Consequently, we have

(5.4) cPQ + dP 2 = acPQ − adP 2 + bP,

and

(5.5) cPQ + dQ2 = acPQ − adQ2 + bQ.

By subtracting (5.4) from (5.5), we deduce that

(5.6) P + Q =
b

d (1 − a)
,

while, by adding (5.4) and (5.5), we have

(5.7) PQ =
b2

d (1 − a)2 (c − d)
,

where 0 < a < 1 and c > d. Assume that P and Q are two positive distinct real
roots of the quadratic equation

(5.8) t2 − ( P + Q) t + PQ = 0.

Thus, we deduce that

(5.9)

(
b

d (1 − a)

)2

>
4b2

d (1 − a)2 (c − d)
.

From (5.9), we obtain the condition (5.3). Thus, the necessary condition is sat-
isfied. Conversely, suppose that the condition (5.3) is valid. Then, we deduce
immediately from (5.3) that the inequality (5.9) holds. Consequently, there exist
two positive distinct real numbers P and Q such that

(5.10) P =
b + β

2d (1 − a)
and Q =

b − β

2d (1 − a)
,

where β =
√

b2 − 4b2d/ (c − d). Thus, P and Q represent two positive distinct
real roots of the quadratic equation (5.8). Now, we are going to prove that P
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and Q are not positive solutions of prime period two of the difference equation
(1.2). To this end, we assume that

x−k = P, x−k+1 = Q, . . . , x−1 = P, and x0 = Q.

We shall show that x1 6= P. To this end, we deduce from the difference equation
(1.2) that

(5.11) x1 = ax−k +
bx−k

cx0 + dx−k
= aP +

bP

cQ + dP
.

Thus, we deduce from (5.10) and (5.11) that

x1 − P =
c (a − 1)PQ + d (a − 1)P 2 + bP

cQ + dP

=
c (a − 1)

[
b2−β2

4d2(1−a)2

]
+ d (a − 1)

[
b+β

2d(1−a)

]2
+ b

[
b+β

2d(1−a)

]

c
[

b−β
2d(1−a)

]
+ d

[
b+β

2d(1−a)

] .(5.12)

Multiplying the denominator and numerator of (5.12) by 4d2 (1− a)2 we get

x1 − P =
2bd (b + β) − c

(
b2 − β2

)
− d (b + β)2

2d [c (b − β) + d (b + β)]

=
b2 (d − c) + (c − d)

[
b2 − 4b2d

c−d

]

2d [c (b − β) + d (b + β)]

=
−2b2

c (b − β) + d (b + β)
6= 0.(5.13)

Thus x1 6= P. This shows that equation (1.2) has no positive solutions of prime
period two. Hence the proof of Theorem 9 is now complete. �

From Theorem 9, we have the following result:

Theorem 10. If either a > 1 or c < d and if both a > 1 and c < d hold, then if

k is an odd positive integer, then the equation (1.2) has no positive solutions of

prime period two.

6. The stability of the equilibrium point of equation (1.2)

In this section we study the local stability character of the solutions of the
difference equation (1.2). The equilibrium points of the difference equation (1.2)
are given by the relation

(6.1) x̃ = ax̃ +
bx̃

cx̃ + dx̃
.

If 0 < a < 1, then the only positive equilibrium point x̃ of the difference equation
(1.2) is given by

(6.2) x̃ =
b

(1 − a) (c + d)
.
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Let F : (0,∞)2 −→ (0,∞) be a continuous function defined by

(6.3) F (u0, u1) = au1 +
bu1

cu0 + du1
.

Therefore,

(6.4)
∂F (u0, u1)

∂u0
= −

bcu1

(cu0 + du1)
2

and
∂F (u0, u1)

∂u1
= a +

bcu0

(cu0 + du1)
2
.

Then, we see that

(6.5)
∂F (x̃, x̃)

∂u0
= −

c (1 − a)

(c + d)
= ρ0 and

∂F (x̃, x̃)

∂u1
= a +

c (1 − a)

(c + d)
= ρ1.

Then, the linearized equation of the difference equation (1.2) about x̃ is

(6.6) yn+1 − ρ0 yn − ρ1 yn−k = 0.

Theorem 11. Assume that 0 < a < 1 and

(6.7) c (1 − a) + ad + c < c + d.

Then the equilibrium point x̃ of the difference equation (1.2) is locally asymptot-

ically stable.

Proof. From (6.5) we deduce for 0 < a < 1 that

|ρ0| + |ρ1| =

∣∣∣∣−
c (1 − a)

c + d

∣∣∣∣ +

∣∣∣∣a +
c (1 − a)

c + d

∣∣∣∣

=
c (1 − a)

c + d
+

ad + c

c + d
.(6.8)

From (6.7) and (6.8), we have

(6.9) |ρ0|+ |ρ1| < 1.

It follows from Theorems 1, 2 that x̃ of equation (1.2) is locally asymptotically
stable. Hence, the proof of Theorem 11 is complete. �

7. Global attractor of the equilibrium point of equation (1.2)

In this section we investigate the global attractivity character of the solutions
of the difference equation (1.2).

Theorem 12. The equilibrium point x̃ of the difference equation (1.2) is a global

attractor if 0 < a < 1 and c > d.

Proof. By using (6.4), we can see that the function F (u0, u1) which is defined by
(6.3) is decreasing in u0 and increasing in u1. Suppose that (m, M) is a solution
of the system

(7.1) m = F (M, m) and M = F (m, M).
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Then we get

(7.2) m = F (M, m) = am +
bm

cM + dm
,

and

(7.3) M = F (m, M) = aM +
bM

cm + dM
.

We deduce from (7.2) and (7.3) that

(7.4)
1

cM + dm
=

1

cm + dM
= (1 − a) /b.

Since, 0 < a < 1, then the relation (7.4) gives (M − m) (c− d) = 0. Since, c > d,
then M = m. It follows by Theorem 3 that x̃ is a global attractor of the difference
equation (2) . Thus, the proof of Theorem 12 is complete. �

8. Numerical examples

For confirming the results of this paper, we consider numerical examples which
represent different types of solutions to equation (1.1) and (1.2).

Example 1. Figure 1 shows that equation (1.1) has no prime period two solution
if k = 2, x−2 = 1, x−1 = 2, x0 = 3, a = 500, b = 5, c = 10, d = 30.
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Figure 1.
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10xn − 30xn−2

)
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Example 2. Figure 2 shows that Eq. (1.1) has no prime period two solution if
k = 1, x−1 = 1, x0 = 2,a = 2000, b = 5, c = 100, d = 300.
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plot of X(n+1)= a*X(n−1)+(b*X(n−1)/(c*X(n)−d*X(n−1)))

Figure 2.

(
xn+1 = 2000xn−1 +
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100xn − 300xn−1

)

Example 3. Figure 3 shows that the solution of equation (1.1) is global attractor
if k = 1, x−1 = 1, x0 = 2, a = 0.01, b = 5, c = 100, d = 300.
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Figure 3
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Example 4. Figure 4 shows that Eq. (1.2) has no prime period two solution if
k = 2, x−2 = 1, x−1 = 2, x0 = 3, a = 0.5, b = 5, c = 300, d = 1000.
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Figure 4.

(
xn+1 = 0.5xn−2 +

5xn−2

300xn + 1000xn−2

)

Example 5. Figure 5 shows that equation (1.2) has prime period two solution
if k = 1, x−1 = 0.036, x0 = 0.96, a = 0.5, b = 5, c = 300, d = 10.
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Figure 5.
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)
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Figure 6.
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)

Example 6. Figure 6 shows that the solution of Eq. (1.2) is global stability if
k = 1, x−1 = 1, x0 = 2, a = 0.5, b = 5, c = 300, d = 1000.

Note that Example 1 verifies Theorem 4 which shows that equation (1.1) has
no prime period two solution, while Example 2 verifies Theorem 5 which shows
that equation (1.1) has no prime period two solution. But Example 3 verifies
Theorem 7 which shows that if a 6= 1, then the solution of equation (1.1) is a
global attractor. Example 4 verifies Theorem 8 which shows that equation (1.2)
has no prime period two solution, while Example 5 verifies Theorem 9 which
shows that equation (1.2) has prime period two solution. But Example 6 verifies
Theorem 12 which shows that the solution of equation (1.2) is a global attractor.

References

[1] M. T. Aboutaleb, M. A. El-Sayed and A. E. Hamza, Stability of the recursive sequence
xn+1 = (α − βxn)/(γ + xn−1), J. Math. Anal. Appl. 261 (2001), 126–133.

[2] R. Agarwal, Difference equations and inequalities. Theory, Methods and Applications,Mar-
cel Dekker Inc, New York, 1992.

[3] A. M. Amleh, E. A. Grove, G. Ladas and D. A. Georgiou, On the recursive sequence
xn+1 = α + (xn−1/xn), J. Math. Anal. Appl. 233 (1999), 790–798.

[4] C. W. Clark, A delayed recruitment model of population dynamics with an application to
baleen whale populations, J. Math. Biol. 3 (1976), 381–391.

[5] R. Devault, W. Kosmala, G. Ladas and S. W. Schultz, Global behavior of yn+1 = (p +
yn−k)/(qyn + yn−k), Nonlinear Analysis 47 (2001), 4743–4751.

[6] R. Devault, G. Ladas and S. W. Schultz, On the recursive sequence xn+1 = α+(xn/xn−1),
Proc. Amer. Math. Soc. 126 (11) (1998), 3257–3261.

[7] R. Devault and S. W. Schultz, On the dynamics of xn+1 = (βxn+γxn−1)/(Bxn+Dxn−2),
Comm. Appl. Nonlinear Analysis 12 (2005), 35–40.



368 E. M. E. ZAYED AND M. A. EL-MONEAM

[8] E. M. Elabbasy, H. El- Metwally and E. M. Elsayed, On the difference equation xn+1 =
axn − bxn/ (cxn − dxn−1), Advances in Difference Equations Volume 2006, Article ID
82579, 10 pages.

[9] H. El- Metwally, E. A. Grove and G. Ladas, A global convergence result with applications
to periodic solutions, J. Math. Anal. Appl. 245 (2000), 161–170.

[10] H. El- Metwally, G. Ladas, E. A. Grove and H. D. Voulov, On the global attractivity and
the periodic character of some difference equations, J. Difference Equations and Appl 7

(2001), 837–850.
[11] H. A. El-Morshedy, New explicit global asymptotic stability criteria for higher order dif-

ference equations, J. Math. Anal. Appl. 336 (2007), 262–276.
[12] H. M. EL- Owaidy, A. M. Ahmed and M. S. Mousa, On asymptotic behavior of the

difference equation xn+1 = α + (xp
n−1/xp

n), J. Appl. Math. Computing 12 (2003), 31–37.
[13] H. M. EL- Owaidy, A. M. Ahmed and Z. Elsady, Global attractivity of the recursive

sequence xn+1 = (α − βxn−k)/(γ + xn), J. Appl. Math. Computing 16 (2004), 243–249.
[14] C. H. Gibbons, M. R. S. Kulenovic and G. Ladas, On the recursive sequence xn+1 =

(α + βxn−1)/(γ + xn), Math. Sci. Res. Hot-Line 4 (2) (2000), 1–11.
[15] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Vol. 4, Chap-

man & Hall / CRC, 2005.
[16] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applica-

tions, Clarendon, Oxford, 1991.
[17] G. Karakostas, Convergence of a difference equation via the full limiting sequences method,

Diff. Equations and Dynamical. System 1 (1993), 289–294.
[18] G. Karakostas and S. Stevic′, On the recursive sequences xn+1 = A +

f(xn, ..., xn−k+1)/xn−1, Comm. Appl. Nonlinear Analysis 11 (2004), 87–100.
[19] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher

Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
[20] M. R. S. Kulenovic and G. Ladas, Dynamics of second order rational difference equations

with open problems and conjectures, Chapman & Hall / CRC, Florida, 2001.
[21] M. R. S. Kulenovic, G. Ladas and W. S. Sizer, On the recursive sequence xn+1 = (αxn +

βxn−1)/(γxn + δxn−1), Math. Sci. Res. Hot-Line 2 (5) (1998), 1–16.
[22] S. A. Kuruklis, The asymptotic stability of xn+1 − axn + bxn−k = 0, J. Math. Anal. Appl.

188 (1994), 719–731.
[23] G. Ladas, C. H. Gibbons, M. R. S. Kulenovic and H. D. Voulov, On the trichotomy

character of xn+1 = (α + βxn + γxn−1)/(A + xn),J. Difference Equations and Appl. 8

(2002 ), 75–92.
[24] G. Ladas, C. H. Gibbons and M. R. S. Kulenovic, On the dynamics of xn+1 = (α +

βxn + γxn−1)/(A + Bxn), Proceeding of the Fifth International Conference on Difference

Equations and Applications, Temuco, Chile, Jan. 3-7, 2000, Taylor and Francis, London
(2002), 141-158.

[25] G. Ladas, E. Camouzis and H. D. Voulov, On the dynamic of xn+1 = (α + γxn−1 +
δxn−2)/(A + xn−2), J. Difference Equations and Appl. 9 (2003), 731–738.

[26] G. Ladas, On the rational recursive sequence xn+1 = (α+βxn+γxn−1)/(A+Bxn+Cxn−1),
J. Difference Equations and Appl. 1 (1995), 317–321.

[27] W. T. Li and H. R. Sun, Global attractivity in a rational recursive sequence, Dynamical

Systems. Appl. 11 (2002), 339–346.
[28] R. E. Mickens, Difference Equations, Theory and Applications, Van Nostrand, New York,

1990.
[29] S. Stevic′, On the recursive sequences xn+1 = xn−1/g(xn), Taiwanese J. Math. 6 (2002),

405–414.
[30] S. Stevic′, On the recursive sequences xn+1 = g(xn, xn−1)/(A + xn), Appl. Math. Letter

15 (2002), 305–308.
[31] S. Stevic′, On the recursive sequences xn+1 = α + (xp

n−1/xp
n), J. Appl. Math. Computing

18 (2005), 229–234.



ON THE RATIONAL RECURSIVE TWO SEQUENCES... 369

[32] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 = (D +
αxn + βxn−1 + γxn−2)/(Axn + Bxn−1 + Cxn−2), Comm. Appl. Nonlinear Analysis 12

(2005), 15–28.
[33] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 = (αxn +

βxn−1 + γxn−2 + δxn−3)/(Axn + Bxn−1 + Cxn−2 + Dxn−3), J. Appl. Math. Computing

22 (2006), 247–262.
[34] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 =

“

A +
Pk

i=0
αixn−i

”

/
Pk

i=0
βixn−i, Mathematica Bohemica 133 (3) (2008), 225–239.

[35] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 =
“

A +
Pk

i=0
αixn−i

”

/
“

B +
Pk

i=0
βixn−i

”

, Int. J. Math. Math. Sci. Voulme 2007, Arti-

cle ID 23618, 12 pages.
[36] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 = axn −

bxn/ (cxn − dxn−k), Comm. Appl. Nonlinear Analysis 15 (2008), 47–57.
[37] E. M. E. Zayed and M. A. El-Moneam, On the Rational Recursive Sequence xn+1 =

(α + βxn−k) / (γ − xn), J. Appl. Math. Computing 31 (2009), 229–237.
[38] E. M. E. Zayed and M. A. El-Moneam, On the Rational Recursive Sequence xn+1 =

(axn + bxn−k) / (cxn − dxn−k), Comm. Appl. Nonlinear Analysis 15 (2008), 67–76.
[39] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 =

γxn−k + (axn + bxn−k) / (cxn − dxn−k), Bulletin of the Iranian Mathematical Society 36

(2010), 103–115.
[40] E. M. E. Zayed and M. A. El-Moneam, On the global attractivity of two nonlinear differ-

ence equations, Journal of Mathematical Sciences (to appear).

Mathematics Department, Faculty of Science

Zagazig University, Zagazig, Egypt

E-mail address : e.m.e.zayed@hotmail.com, eme zayed@yahoo.com

Present address: Mathematics Department, Faculty of Science and Arts

Jazan University, Farasan, Jazan, Kingdom of Saudi Arabia

E-mail address : mabdelmeneam2004@yahoo.com


