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CYCLIC MODULES OVER SIMPLE GOLDIE RINGS

DINH VAN HUYNH AND DINH DUC TAI

Abstract. In [10, Theorem A] it was shown that if every cyclic singular right
module over a simple ring R is CS, then R is right noetherian. In this note
we extend this result to cyclic modules over a simple right Goldie ring, and
apply it to characterize simple noetherian rings and simple SI rings by using
a single nonzero principal one-sided ideal of the ring.

1. Introduction

All rings are associative with identity, and all modules are unitary modules.
For a module M (over a ring R) we consider the following conditions.

(C1) Every submodule of M is essential in a direct summand of M ,
(C2) Every submodule isomorphic to a direct summand of M is itself a direct

summand of M , and
(C3) For any direct summands A, B ⊆ M with A ∩ B = 0, A ⊕ B is also a

direct summand of M .

A module is called a CS (or extending) module if it satisfies (C1). A ring R is
defined to be a right CS ring if the module RR is CS.

If M satisfies (C1) and (C2), then M is said to be a continuous module.

M is defined to be quasi-continuous, if it satisfies (C1) and (C3).

A ring R is said to be right (quasi-) continuous if RR is (quasi)-continuous.
For the basic properties of CS-modules and (quasi)-continuous rings and modules
we refer to the books [3] and [13], respectively.

The composition length of a module M is denoted by l(M); Soc(M) denotes
the socle of M . Let n be a positive integer, then the direct sum of n copies of
a module M is denoted by Mn. For a module M , by σ[M ] we denote the full
subcategory of Mod-R whose objects are submodules of M -generated modules
(see Wisbauer [15]).

For the general backgrounds of modules and rings we refer to [1], [4], [12], and
[15].
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By [10, Theorem A], if every cyclic singular right module over a simple ring
R is CS, then R is right noetherian. Note that this theorem is not correct for
non-simple rings. In this note we extend this result to cyclic modules over a
simple right Goldie ring, and apply it to characterize simple noetherian rings and
simple SI rings by using a single nonzero principal one-sided ideal of the ring.
For obtaining our results we develop techniques presented in [10] and [11].

2. Results

First we list some lemmas that are important in our proofs. The first lemma
is due to B. Osofsky and P.F. Smith [14], the second is a result of J.T. Stafford
(see [1, Theorem 14.1] and also [10, Lemma 3.1]).

Lemma 2.1. Let M be a cyclic module. If every cyclic submodule in σ[M ] is
CS, then M has finite uniform dimension.

Lemma 2.2. Let M be a singular module over a simple right Goldie ring R that
is not artinian. If M = aR ⊕ bR, a, b ∈ M such that bR has finite composition
length, then M = (a + bx)R for some x ∈ R, in particular, M is cyclic.

The following lemma is taken from [9]:

Lemma 2.3. Let M be a module such that every factor module of M has finite
uniform dimension. If every simple module in σ[M ] is M -injective, then M is
noetherian.

Let NR be a module. A module XR is defined to be N -singular if there is a
module A ∈ σ[N ] containing an essential submodule E such that X ∼= A/E. The
class of N -singular modules is closed under submodules, factors, direct sums and
essential extensions. Hence if X is N -singular, then every module in σ[X] is also
N -singular. For N = R we obtain the usual concept of the singularity of modules
in Mod-R.

We are now able to prove the following:

Theorem 2.4. Let M be a cyclic right module over a simple right Goldie ring R.
If every cyclic M -singular module in σ[M ] is CS, then M/Soc(M) is noetherian.

Proof. Assume that M is a cyclic right module over a simple right Goldie ring
R. If Soc(RR) 6= 0, then as R is simple, R = Soc(RR), i.e. R is a simple artinian
ring. In this case M is noetherian and artinian. Hence, throughout the proof, we
assume that Soc(RR) = 0.

Let E ⊆ M be an essential submodule. Then N = M/E is a cyclic M -singular
module in σ[M ]. Being M -singular, every cyclic module in σ[N ] ⊆ σ[M ] is CS.
By Lemma 2.1, N has finite uniform dimension. Let α be an ordinal. We define
the socle series of N as follows:

S1 = Soc(N), Sα/Sα−1 = Soc(N/Nα−1),

and
Sα = ∪β<αSβ



CYCLIC MODULES OVER SIMPLE GOLDIE RINGS 331

if α is a limit ordinal. Then for the submodule S = ∪αSα, V = N/S has zero
socle.

Since V is CS and has finite uniform dimension (by Lemma 2.1), V is a direct
sum of finitely many uniform submodules. Hence we may assume (without loss
of generality) that V is a uniform module. Let U be a simple M -singular module
in σ[M ], then by Lemma 2.2, T = V ⊕ U is a cyclic M -singular module in
σ[M ]. Hence T is CS. It is clear that Soc(T ) = U . Next we show that U is V -
injective. Let A be an arbitrary nonzero submodule of V and let f : A → U be a
homomorphism. Define B = {a − f(a)| a ∈ A}. Then B is contained essentially
in a direct summand B∗ ⊆ T , i.e. we have T = B∗ ⊕ C for some submodule
C ⊆ T . But B∗ ∩ U = 0 and Soc(T ) = U , a fully invariant submodule, we must
have U ⊆ C. Since U is closed in T , and C is uniform (because, the uniform
dimension of T is 2), we have U = C. Thus,

T = B∗ ⊕ U.

From this decomposition, let π be the projection of T onto U . Then we can check
that the mapping π′ = (π|V ) is an extension of f from V to U . We conclude that
every simple module in σ[V ] is V -injective. On the other hand, using Lemma
2.1, we see that every factor module of V has finite uniform dimension. Thus, by
Lemma 2.3, the module V is noetherian.

As V = N/S, to show that N is noetherian we have to show that SR is
noetherian, or equivalently, that SR has finite composition length. Since S1 and
each Sα+1/Sα have finite composition lengths, it is enough to show that S = S2.
If S2 6= S3 there is an y ∈ S3 with yR * S2. We can choose y so that (yR+S2)/S2

is a simple module. Since yR is CS, we have

yR = H1 ⊕ · · · ⊕ Hm,

where each Hi is uniform. By the choice of y, there is some Hi, say H1 with
H1 * S2. Again since H1/Soc(K1) is CS, there are finitely many submodules
K1, · · · ,Kt of H1 such that

H1/Soc(H1) = (K1/Soc(H1)) ⊕ · · · ⊕ (Kt/Soc(H1)),

where each Kj/Soc(H1) is simple or uniform with l[Kj/Soc(H1)] = 2. It is sure
that there is some Kj, say K1 with l[K1/Soc(H1)] = 2. Since H1 is uniform,
it follows that K1 is then a uniserial module with the unique composition series
Soc(H1) ⊂ K ⊂ K1. Notice that K1 is cyclic, hence by Lemma 2.2, K1 ⊕
(H/Soc(H1)) is cyclic, moreover it is M -singular. Hence K1 ⊕ (H/Soc(H1)) is
CS by our hypothesis. But this is a contradiction to a result by Osofsky (see
[3, Corollary 7.4]) that this module cannot be CS. This contradiction means we
must have S2 = S3, thus S = S2 which has finite composition length.

So far we have shown that M is noetherian modulo each of its essential sub-
modules. Hence by [3, 5.15], M/Soc(M) is noetherian. �

The singular submodule of a right R-module M is denoted by Z(M), i.e.,
Z(M) is the set of those elements x ∈ M such that the right annihilator rR(x)
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of x in R is an essential right ideal of R. As a consequence of Theorem 2.4 we
obtain the following result.

Remark. As observed in [2, Lemma 2.1], if R is a simple ring and A ⊆ R is
a nonzero right ideal, then there are elements a1, · · · , an ∈ A such that RR =
a1A+· · ·+anA for some positive integer n. It follows that RR is a direct summand
of An.

Corollary 2.5. For a simple ring R the following conditions are equivalent:
(i) Every cyclic singular right R-module is CS,
(ii) There exists a cyclic right R-module X with X 6= Z(X) such that every

cyclic X-singular module in σ[X] is CS.
In this case, R is right noetherian.

Proof. (i)⇒(ii) is clear. Now assume that (ii) holds. For Soc(RR) 6= 0 the
statement is clear. Hence we assume that Soc(RR) = 0. There is x ∈ X such
that X = xR. Since X 6= Z(X) the annihilator rR(x) in R is not an essential right
ideal of R. As X = xR ∼= RR/rR(x), X contains a nonzero cyclic submodule Y
that is isomorphic to a principal right ideal of R. Hence Y is nonsingular and
Soc(YR) = 0. It is clear that σ[Y ] ⊆ σ[X]. Using the above remark we see that
RR is isomorphic to a direct summand of Y k for some positive integer k. Hence
RR is isomorphic to an object from σ[Y ] ⊆ σ[X]. It follows that σ[X] = Mod-R.
Hence (ii) ⇒ (i).

In case of (ii) we have Soc(Y ) = 0. Applying condition (ii) for σ[Y/E] for each
essential submodule E ⊆ Y we see that (Y/E)R has finite uniform dimension by
Lemma 2.1. Hence, by [3. 5.14], Y/Soc(Y ) (= Y ) has finite uniform dimension.
In particular R has a uniform right ideal. Hence R is right Goldie by Hart [7].
Now we can apply Theorem 2.4 to see that YR is noetherian. Thus, as a direct
summand of Y k, the ring R is right noetherian. �

Theorem 2.6. Let R be a simple right Goldie ring, and Y be a (nonzero) cyclic
right R-module. If every cyclic Y -singular module in σ[Y ] is quasi-continuous,
then Y/E is semisimple for any essential submodule E ⊆ Y .

Proof. If Soc(RR) 6= 0, then R is a semisimple artinian ring, and hence the
statement is obvious. We consider the case that Soc(RR) = 0.

Assume that Y is a nonzero cyclic right R-module such that every cyclic Y -
singular module in σ[Y ] is quasi-continuous. By Theorem 2.4, Y/Soc(Y ) is right
noetherian. We aim to show that

(*) for every essential submodule E ⊆ Y, Y/E is semisimple.

First consider the case that X = Y/E is artinian. As Soc(XR) has finite
length, using Lemma 2.2 we can inductively show that X ⊕ Soc(X) is cyclic.
Since X⊕Soc(X) ∈ σ[Y ] and Y -singular it is quasi-continuous by our hypothesis.
Hence Soc(X) is X-injective, and so Soc(X) splits in X. This shows that X =
Soc(X), i.e., X is semisimple whenever it is artinian. Thus to prove (*) we need
to show that Y/E is artinian for any essential submodule E ⊆ Y .
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Assume on the contrary that for some essential submodule E ⊆ Y, Y/E is not
artinian. As YR is noetherian modulo its socle, there is an essential submodule
F ⊆ Y which is maximal with respect to the condition that V = Y/F is not
artinian. If V is not uniform then there are nonzero submodules V1, V2 ⊆ V with
V1 ∩ V2 = 0. Let Ui, (i = 1, 2) be the preimage of Vi in Y with respect to the
canonical homomorphism Y → Y/F (= V ). Then by the maximality of F, Y/Ui

is artinian. It follows that V (= Y/F ) is artinian, a contradiction. Thus V must
be uniform. Moreover, by the same reason and by the choice of F we can show
that Soc(V ) = 0.

Also by the choice of F , for any nonzero submodule T ⊆ V, V/T is artinian,
hence semisimple. Therefore there exist submodules T and U of V with 0 6= T ⊂
U ⊂ V such that U/T is a direct sum of finitely many simple modules. Consider
the module Q = V ⊕ U . Since V is cyclic and Q/(0, T ) ∼= V ⊕ (U/T ) we can use
Lemma 2.2 to see that Q/(0, T ) is cyclic. Let x ∈ Q so that the coset x + (0, T )
generates Q/(0, T ), i.e., [xR+(0, T )]/(0, T ) = Q/(0, T ). Obviously we can choose
x so that xR contains (V, 0). Hence xR = V ⊕ W where (0,W ) = xR ∩ (0, U).
Since xR is quasi-continuous, W is V -injective. As xR is not uniform, W 6= 0.
Thus U contains a nonzero submodule that is V -injective, and so that submodule
must split in V . This is a contradiction to the fact that V is uniform. Hence for
any essential submodule E of Y , the factor module Y/E is artinian. This proves
(*). �

Remark. It is still unknown if Theorems 2.4 and 2.6 hold without the assumption
that R is right Goldie.

SI-rings, i.e., rings over which every singular module is injective, were intro-
duced and studied by Goodearl in [6]. The concept of SI-modules were defined
and investigated in [8]. A module M is called SI if every M -singular module in
σ[M ] is M -injective. In [11] it was shown that a simple ring R is right SI if and
only if every cyclic singular right R-module is quasi-continuous. Also this theo-
rem doesn’t hold for non-simple rings. We obtain the same result by considering
only one single principal right ideal of a simple ring as a consequence of the result
bellow.

For detailed discussions on SI-rings we refer to Goodearl [6]. Using the main
theorem of [14] we can show that a ring is a right SI domain if and only if it is a
right PCI domain. PCI domains are introduced and investigated by Faith in [5].

Corollary 2.7. For a simple ring R the following conditions are equivalent:
(i) Every cyclic singular right R-module is quasi-continuous,
(ii) There exists a cyclic right R-module X with X 6= Z(X) such that every

cyclic X-singular module in σ[X] is quasi-continuous.
In this case, R is right SI.

Proof. We need to show (ii)⇒(i). With the same argument as that in the proof of
Corollary 2.5 we obtain Mod-R = σ[X]. Hence (ii)⇒(i). Under either (i) or (ii),
Theorem 2.5 says that R/E is semisimple for each essential right ideal E ⊆ R.
Since R is nonsingular, R is right SI by [6, 3.1]. �
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[10] D. V. Huynh, S.K. Jain and S. R. López-Permouth, When is a simple ring noetherian?

J. Algebra 184 (1996), 786-794.
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