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SOME REMARKS ON APPROXIMATION OF
PLURISUBHARMONIC FUNCTIONS

NGUYEN QUANG DIEU

1. Introduction

Let Ω be a domain in Cn. An upper semicontinuous function u : Ω → [−∞,∞)
is said to be plurisubharmonic if the restriction of u to each complex line is sub-
harmonic (we allow the function identically −∞ to be plurisubharmonic). We
say that u is strictly plurisubharmonic if for every z0 ∈ Ω there is a neigbourhood
U of z0 and λ > 0 such that u(z) − λ|z|2 is plurisubharmonic on U . We write
PSH(Ω) for the set of plurisubharmonic functions on Ω,PSH−(Ω) for the subset
of bounded from above and PSHc(Ω) for the set of continuous functions on Ω
which are plurisubharmonic on Ω. It is a natural question whether it is possible to
approximate elements of one of these classes by elements of a smaller one. It may
be useful to recall some known facts regarding this problem. Richberg [5] showed
that for every strictly plurisubharmonic continuous function u on Ω and every
positive continuous function ε on Ω, there exists a C∞ smooth strictly plurisub-
harmonic ũ on Ω such that 0 < u− ũ < ε on Ω. Later, Fornaess and Narasimhan
proved that every plurisubharmonic function u on a pseudoconvex domain Ω can
be approximated from above by a sequence of C∞ smooth strictly plurisubhar-
monic functions. A remarkable example of Fornaess [1] shows that the above con-
clusion fails without the assumption on pseudoconvexity of Ω. In fact, the domain
Ω in Fornaess’example is a smoothly bounded Hartogs domain in C2. Recall that
Ω is said to be Hartogs if (z,w) ∈ Ω ⇒ (z,w′) ∈ Ω provided that |w| = |w′|. Re-
garding approximation on smoothly bounded domain, Fornaess and Wiegerinck
[2] proved that every continuous function on Ω which is plurisubharmonic on
Ω, can be approximated uniformly on Ω by C∞ smooth plurisubharmonic func-
tions on neigbourhoods of Ω. Besides, Fornaess and Wiegerinck show that every
plurisubharmonic function u on a bounded Reinhardt domain Ω can be approx-
imated from above by a sequence of smooth strictly plurisubharmonic functions
on Ω. Recall that Ω is said to be Reinhardt if (z1, · · · , zn) ∈ Ω ⇒ (z′1, · · · , z′n) ∈ Ω
provided that |z′i| = |zi| for every 1 � i � n. This result is very interesting in
comparison with the mentioned above example of Fornaess.

The aim of the present paper is to study the problem of approximation on Ω
of the upper regularization u∗ of a given function u ∈ PSH−(Ω) by elements in
PSHc(Ω), where u∗(z) = limsup

ξ→z
u(ξ). This problem has been considered by in [7]
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and then in [3] and [4]. One of the results in [7] which is relevant to our note is the
following: If Ω is a bounded B−regular domains in Cn and u ∈ PSH−(Ω) then
there is a sequence {uj} of functions in PSHc(Ω) decreasing to u∗ on Ω. (See
the next section for the definition of B−regular domains.) The first result of the
present work is a variant of Wikstrom’s theorem where the domain Ω is assumed
to be strictly pseudoconvex. Under this stronger assumption, we show that the
approximating functions uj can be chosen to be smooth and plurisubharmonic
on a fixed neigbourhood of Ω. The next result deals with the case where Ω is
an arbitrary Reinhardt domain. Then using some ideas from [2], we show that
the same conclusion as in Wikstrom’s theorem holds if u∗ is continuous at every
point of ∂Ω.

This work may be considered as an addendum to [3] and [4]. Those papers deal
with the same problem of approximation by using more technical tools. The most
important one is a duality theorem of Edwards that allows one to express the
upper envelope of a family of plurisubharmonic functions as the lower envelope
of a family of integrals.

2. Preliminaries

We first recall the general process of smoothing plurisubharmonic functions.
Let ρ be a C∞ smooth function with compact support in the unit ball B(0, 1),
and

∫
Cn

ρdλ = 1. We put ρε(z) = ρ(z/ε). It is well known that

(u ∗ ρε)(z) =
∫
Ω

u(z − w)ρ(w)dλ(w),

where λ denotes the Lebesugue measure, is C∞ and plurisubharmonic on the

domain Ωε = {z : dist (z, ∂Ω) > ε}. Moreover, u ∗ ρε decreases to u as ε tends to
0. Observe that u ∗ρε is defined on a strictly smaller domain than Ω. Now if Ω is
a bounded domain in Cn, then following Sibony [6], we say that Ω is B−regular
if for every continuous function ϕ on ∂Ω, there is a continuous function ϕ̂ on Ω
which is plurisubharmonic on Ω such that ϕ̂ = ϕ on ∂Ω. It is well known that if Ω
is B−regular then we can choose such a function ϕ̂ with the additional property
that

(1) ϕ̂ = sup{u : u ∈ PSH(Ω), u∗ � ϕ on ∂Ω}.
A special but important class of B−regular domains is that of strictly pseudo-

convex domains. Recall that a bounded domain Ω in Cn is said to be strictly
pseudoconvex if there is a strictly plurisubharmonic function ϕ on a neigbourhood
of Ω such that

Ω = {z : ϕ(z) < 0}, ∂Ω = {z : ϕ(z) = 0}.
Observe that we allow strictly pseudoconvex domains with possibly non smooth
boundaries.
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3. Results

We start with the following result, which is similar to Theorem 4.1 in [7]

Theorem 3.1. Let Ω be a bounded strictly pseudoconvex domain in Cn such
that Ω = {z ∈ U : ϕ(z) < 0}, ∂Ω = {z ∈ U : ϕ(z) = 0}, where ϕ is strictly
plurisubharmonic on a neigbourhood U of Ω. Then for every u ∈ PSH−(Ω) and
every neigbourhood V of Ω relatively compact in U we can find a neigbourhood
U ′ of V and a sequence

{uj}j 1 ⊂ PSH(U ′) ∩ C∞(U ′)

satisfying
(i) limj→∞ uj = u∗ on Ω.
(ii) For each compact subset E of Ω and every ε > 0 there exists j(E) so that
uj � uj+1 for all j � j(E).

Notice that under such a strong assumption on Ω, we get a fixed neigbourhood
U ′ for all function u and that the approximation occurs everywhere on ∂Ω. It is
desirable to know whether the sequence can be chosen to be decreasing on Ω.

Proof of Theorem 3.1. Since u is bounded from above, the function u∗ is upper
semicontinuous and bounded from above on ∂Ω. So we can choose a sequence
ϕj ∈ C(∂Ω) decreasing to u∗ on ∂Ω. Set

max
∂Ω

(u∗ − ϕj) := −εj < 0.

For each j, choose ϕ̃j ∈ C2(U) such that |ϕj − ϕ̃j | < εj/2 on ∂Ω. As Ω is strictly
pseudoconvex, according to (1) we may extend ϕj to a continuous function ϕ̂j

on Ω which is plurisubharmonic on Ω. Since ϕ is strictly plurisubharmonic on U ,
we can choose λj large enough so that the function λjϕ+ ϕ̃j is plurisubharmonic
on some neigbourhood Ṽ of Ω such that V ⊂ Ṽ ⊂⊂ U . It follows from (1) that

ψj =

{
ϕ̂j on Ω
λjϕ+ ϕ̃j on U ′\Ω

is plurisubharmonic on V. From (1) and the inequality u∗ � ϕj − εj � ϕ̃j −
εj/2 on ∂Ω we get

u∗ � ϕ̂j − εj on Ω.

Now we claim that there exists a decreasing sequence {rj} such that

0 < rj < dj := dist
({
ϕ(z) < − 1

2j2
}
, ∂Ω

)
,

and that u ∗ ρrj � ϕ̂j − εj/2 on Ωrj , |ϕ(z)| < 1
2j2 if dist (z, ∂Ω) < rj , where

Ωδ = {z ∈ Ω : dist (z, ∂Ω) > δ}. The first condition on rj can be fulfilled because
the sequence dj converges to 0. For the second one, observe that ϕ is upper
semicontinuous and

u ∗ ρδ � (ϕ̂j − εj) ∗ ρδ = (ϕ̂j ∗ ρδ) − εj < ϕ̂j − εj/2
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if δ is chosen sufficiently small, as ϕ̂j ∗ ρδ converges uniformly to ϕ̂j as δ goes to
0.

Define

ũj =

{
max{u ∗ ρrj , j(ϕ ∗ ρrj) + ϕ̂j + 1/j} on Ωrj

j(ϕ ∗ ρrj ) + ϕ̂j + 1/j on Ṽ \Ωrj .

Notice that on ∂Ωrj we have ϕ ≡ − 1
2j2 , so

u ∗ ρrj � ϕ̂j − εj/2 � jϕ+ ϕ̂j + 1/j � j(ϕ ∗ ρrj ) + ϕ̂j + 1/j.

This implies ũj ∈ PSH(Ṽ ) ∩ C(Ṽ ). Since {u ∗ ρrj} decreases to u on Ω and
|ϕ ∗ ρrj | � 1

2j2 on ∂Ω we deduce {ũj} → u∗ pointwise on Ω. Since each function

ũj is continuous on Ṽ , by convolving with a suitable standard regularizing kernel,
we can find a neigbourhood U ′ of Ω and uj ∈ PSH(U ′) ∩ C∞(U ′) such that
|ũj − u′j | < 1/j on Ω. The proof is thereby completed. �

Now we turn to Reinhardt domains.

Theorem 3.2. Let Ω be a bounded Reinhardt domain in Cn and u ∈ PSH−(Ω).
Assume that limξ→z u(ξ) = u∗(z) > −∞ for every z ∈ ∂Ω. Then there exists a
sequence {uj}j 1 ∈ PSHc(Ω) such that u∗j ↓ u∗ on Ω.

The proof relies heavily on ideas given in Section 4 in [2]. First recall that if u
is a plurisubharmonic function on a Reinhardt domain Ω then, as in [2] (p. 264),
for ε = (ε1, · · · , εn), εi > 0 we put

(2) uε(z) =
1

2nε1 · · · εn

ε1∫
−ε1

· · ·
εn∫

−εn

u(eiθ1z1, · · · , eiθnzn)dθ1 · · · dθn.

We first check that uε is plurisubharmonic on Ω. It is true if u is C2, since in this
case we can differentiate under the integral sign of (2) to find out that uε is a
C2 smooth function which is subharmonic on every complex line cutting Ω. The
general case follows by considering a smoothing sequence {uδ} of u and observing
that (uδ)ε ↓ uε when δ tends to 0. The continuity of uε is a bit more delicate and
this fact was proved in Lemma 4 of [2].

The following lemma is crucial in the proof.

Lemma 3.1. Let Ω be a bounded Reinhardt domain in Cn and u ∈ PSH−(Ω),
u � 0. Then we have
(a) If limz→a u(z) = u∗(a) > −∞, a ∈ ∂Ω then

lim
(ε,z)→(0,a)

uε(z) = u∗(a), lim
z→a

uε(z) = (uε)∗(a) > −∞.

(b) For each compact subsetK of Ω, there exists a sequence {εj}j 1 ={(ε1j , · · · , εnj )},
εij > 0 converging to 0 such that the sequence uεj + 1/j decreases to u on K.

Proof. (a) follows from (2) and the Lebesgue dominated convergence theorem,
(b) is precisely Lemma 5 in [2]. �
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Proof of Theorem 3.2. Let {Km}m 1 be a sequence of compact subsets of Ω such
that Km ⊂ int Km+1,∪Km = Ω, where int K denotes the interior of K. For each
m, by Lemma 3.1(b), there exists a sequence {uk,m}k 1 ⊂ PSH(Ω)∩C(Ω) which
decreases to max(u,−m) on Km, where

(3) uk,m = (max(u,−m))εk,m + 1/k

and {εk,m}k 1 = {(ε1k,m, · · · , εnk,m)}k 1 is a sequence in Rn satisfying
0 < εik,m < min(1/k, 1/m). It follows that the sequence max(up,m, um,l) de-
creases to um,l on Kl for all 1 � l � m as p → ∞. By Dini’s lemma, for each m,
we can choose k(m) > m large enough so that

(4) uk(m),m � um,l + 1/m on Kl, 1 � l � m.

Let
vj = sup

m j
uk(m),m.

Being the upper envelope of a uniformly bounded from above family of continuous
functions, vj is real valued, lower semicontinuous on Ω. We claim that vj is upper
semicontinuous on Ω. Fix z0 ∈ Ω, ε > 0. Choose p > j so that z0 ∈ int Kp and
1/p < ε. For m � k(p) and w ∈ Kp, using (4) we have

uk(m),m(w) � um,p(w) + 1/m � uk(p),p(w) + ε.

It follows that
limsup

w→z
vj(w) � vj(z0) + ε.

The claim is valid. Thus vj ∈ PSH−(Ω) ∩ C(Ω). We infer also from (4) that vj

decreases to u on Ω. Next we show that limz→a vj(z) = v∗j (a) for all a ∈ ∂Ω. If
not, then we could find ε > 0 and two sequences {zq}q 1 and {z̃q}q 1 tending
to a ∈ ∂Ω such that vj(zq) � vj(z̃q) + ε for all q. Thus there exists a sequence
{mq}q 1 so that

uk(mq),mq
(zq) � uk(mq),mq

(z̃q) + 2ε, ∀q.
As limz→a u(z) = u∗(a) > −∞, u is locally bounded from below near a. Combin-
ing (3) and Lemma 3.1(a), we arrive at a contradiction. Next we show that v∗j ↓ u∗
on ∂Ω. For this, we argue by contradiction. Assume otherwise, then there exist
ε > 0, a ∈ ∂Ω and a sequence {zj}j 1 tending to a such that vj(aj) > u∗(a) + ε
for all j. Thus there exists a sequence {mj} tending to ∞ such that

uk(mj),mj
(aj) > u∗(a) + ε/2, ∀j.

Applying again Lemma 3.1(a) and (3) we also reach a contradiction. The proof
is complete. �

Remark. The following simple example of Wikstrom (see Section 4 in [7]) shows
that the assumption on continuity of u∗ at boundary points in Theorem 3.2 can
not be removed. Let Ω be the Hartogs triangle, Ω = {(z,w) : |z| < |w| < 1}
and u(z,w) = |z/w|. Then Ω is a bounded pseudoconvex Reinhardt domain in
C2 and u ∈ PSH−(Ω), u∗ is continuous everywhere on Ω except at the origin.
Assume that there is a sequence uj ∈ PSHc(Ω) such that uj ↓ u∗ on Ω. Observe
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that the “disk” K = {(z,w) : z = 0, |w| = 1/2} is included in Ω and u ≡ 0 on
K. By Dini’s lemma, uj converges uniformly to 0 on K. Applying the maximum
principle, we get u∗ = 0. This is absurd.
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