SOME REMARKS ON APPROXIMATION OF PLURISUBHARMONIC FUNCTIONS

NGUYEN QUANG DIEU

1. INTRODUCTION

Let Ω be a domain in \mathbb{C}^n . An upper semicontinuous function $u: \Omega \to [-\infty, \infty)$ is said to be *plurisubharmonic* if the restriction of u to each complex line is subharmonic (we allow the function identically $-\infty$ to be plurisubharmonic). We say that u is strictly plurisubharmonic if for every $z_0 \in \Omega$ there is a neighbourhood U of z_0 and $\lambda > 0$ such that $u(z) - \lambda |z|^2$ is plurisubharmonic on U. We write $\mathcal{PSH}(\Omega)$ for the set of plurisubharmonic functions on $\Omega, \mathcal{PSH}^{-}(\Omega)$ for the subset of bounded from above and $\mathcal{PSH}^{c}(\Omega)$ for the set of continuous functions on $\overline{\Omega}$ which are plurisubharmonic on Ω . It is a natural question whether it is possible to approximate elements of one of these classes by elements of a smaller one. It may be useful to recall some known facts regarding this problem. Richberg [5] showed that for every strictly plurisubharmonic continuous function u on Ω and every positive continuous function ε on Ω , there exists a \mathcal{C}^{∞} smooth strictly plurisubharmonic \tilde{u} on Ω such that $0 < u - \tilde{u} < \varepsilon$ on Ω . Later, Fornaess and Narasimhan proved that every plurisubharmonic function u on a pseudoconvex domain Ω can be approximated from above by a sequence of \mathcal{C}^{∞} smooth strictly plurisubharmonic functions. A remarkable example of Fornaess [1] shows that the above conclusion fails without the assumption on pseudoconvexity of Ω . In fact, the domain Ω in Fornaess'example is a smoothly bounded Hartogs domain in \mathbb{C}^2 . Recall that Ω is said to be Hartogs if $(z, w) \in \Omega \Rightarrow (z, w') \in \Omega$ provided that |w| = |w'|. Regarding approximation on smoothly bounded domain, Fornaess and Wiegerinck [2] proved that every continuous function on $\overline{\Omega}$ which is plurisubharmonic on Ω , can be approximated uniformly on $\overline{\Omega}$ by \mathcal{C}^{∞} smooth plurisubharmonic functions on neighbourhoods of $\overline{\Omega}$. Besides, Fornaess and Wiegerinck show that every plurisubharmonic function u on a bounded Reinhardt domain Ω can be approximated from above by a sequence of smooth strictly plurisubharmonic functions on Ω . Recall that Ω is said to be Reinhardt if $(z_1, \dots, z_n) \in \Omega \Rightarrow (z'_1, \dots, z'_n) \in \Omega$ provided that $|z'_i| = |z_i|$ for every $1 \leq i \leq n$. This result is very interesting in comparison with the mentioned above example of Fornaess.

The aim of the present paper is to study the problem of approximation on $\overline{\Omega}$ of the upper regularization u^* of a given function $u \in \mathcal{PSH}^-(\Omega)$ by elements in $\mathcal{PSH}^c(\Omega)$, where $u^*(z) = \limsup_{\xi \to z} u(\xi)$. This problem has been considered by in [7]

Received May 10, 2005.

and then in [3] and [4]. One of the results in [7] which is relevant to our note is the following: If Ω is a bounded B-regular domains in \mathbb{C}^n and $u \in \mathcal{PSH}^-(\Omega)$ then there is a sequence $\{u_j\}$ of functions in $\mathcal{PSH}^c(\Omega)$ decreasing to u^* on $\overline{\Omega}$. (See the next section for the definition of B-regular domains.) The first result of the present work is a variant of Wikstrom's theorem where the domain Ω is assumed to be strictly pseudoconvex. Under this stronger assumption, we show that the approximating functions u_j can be chosen to be smooth and plurisubharmonic on a fixed neigbourhood of $\overline{\Omega}$. The next result deals with the case where Ω is an arbitrary Reinhardt domain. Then using some ideas from [2], we show that the same conclusion as in Wikstrom's theorem holds if u^* is continuous at every point of $\partial\Omega$.

This work may be considered as an addendum to [3] and [4]. Those papers deal with the same problem of approximation by using more technical tools. The most important one is a duality theorem of Edwards that allows one to express the upper envelope of a family of plurisubharmonic functions as the lower envelope of a family of integrals.

2. Preliminaries

We first recall the general process of smoothing plurisubharmonic functions. Let ρ be a \mathcal{C}^{∞} smooth function with compact support in the unit ball B(0,1), and $\int_{\mathbf{C}^n} \rho d\lambda = 1$. We put $\rho_{\varepsilon}(z) = \rho(z/\varepsilon)$. It is well known that

$$(u * \rho_{\varepsilon})(z) = \int_{\Omega} u(z - w)\rho(w)d\lambda(w),$$

where λ denotes the Lebesugue measure, is \mathcal{C}^{∞} and plurisubharmonic on the domain $\Omega_{\varepsilon} = \{z : \text{dist} (z, \partial \Omega) > \varepsilon\}$. Moreover, $u * \rho_{\varepsilon}$ decreases to u as ε tends to 0. Observe that $u * \rho_{\varepsilon}$ is defined on a strictly smaller domain than Ω . Now if Ω is a bounded domain in \mathbb{C}^n , then following Sibony [6], we say that Ω is B-regular if for every continuous function φ on $\partial\Omega$, there is a continuous function $\hat{\varphi}$ on $\overline{\Omega}$ which is plurisubharmonic on Ω such that $\hat{\varphi} = \varphi$ on $\partial\Omega$. It is well known that if Ω is B-regular then we can choose such a function $\hat{\varphi}$ with the additional property that

(1)
$$\hat{\varphi} = \sup\{u : u \in \mathcal{PSH}(\Omega), u^* \leqslant \varphi \text{ on } \partial\Omega\}.$$

A special but important class of B-regular domains is that of strictly pseudoconvex domains. Recall that a bounded domain Ω in \mathbb{C}^n is said to be strictly pseudoconvex if there is a strictly plurisubharmonic function φ on a neighbourhood of $\overline{\Omega}$ such that

$$\Omega = \{z : \varphi(z) < 0\}, \partial \Omega = \{z : \varphi(z) = 0\}.$$

Observe that we allow strictly pseudoconvex domains with possibly non smooth boundaries.

3. Results

We start with the following result, which is similar to Theorem 4.1 in [7]

Theorem 3.1. Let Ω be a bounded strictly pseudoconvex domain in \mathbb{C}^n such that $\Omega = \{z \in U : \varphi(z) < 0\}, \partial\Omega = \{z \in U : \varphi(z) = 0\}$, where φ is strictly plurisubharmonic on a neigbourhood U of $\overline{\Omega}$. Then for every $u \in \mathcal{PSH}^-(\Omega)$ and every neigbourhood V of $\overline{\Omega}$ relatively compact in U we can find a neigbourhood U' of \overline{V} and a sequence

$$\{u_j\}_{j\geq 1} \subset \mathcal{PSH}(U') \cap \mathcal{C}^{\infty}(U')$$

satisfying

(i) $\lim_{j\to\infty} u_j = u^*$ on $\overline{\Omega}$.

(ii) For each compact subset E of Ω and every $\varepsilon > 0$ there exists j(E) so that $u_j \ge u_{j+1}$ for all $j \ge j(E)$.

Notice that under such a strong assumption on Ω , we get a fixed neigbourhood U' for all function u and that the approximation occurs everywhere on $\partial\Omega$. It is desirable to know whether the sequence can be chosen to be decreasing on $\overline{\Omega}$.

Proof of Theorem 3.1. Since u is bounded from above, the function u^* is upper semicontinuous and bounded from above on $\partial\Omega$. So we can choose a sequence $\varphi_j \in \mathcal{C}(\partial\Omega)$ decreasing to u^* on $\partial\Omega$. Set

$$\max_{\partial\Omega}(u^* - \varphi_j) := -\varepsilon_j < 0.$$

For each j, choose $\tilde{\varphi}_j \in C^2(U)$ such that $|\varphi_j - \tilde{\varphi}_j| < \varepsilon_j/2$ on $\partial\Omega$. As Ω is strictly pseudoconvex, according to (1) we may extend φ_j to a continuous function $\hat{\varphi}_j$ on $\overline{\Omega}$ which is plurisubharmonic on Ω . Since φ is strictly plurisubharmonic on U, we can choose λ_j large enough so that the function $\lambda_j \varphi + \tilde{\varphi}_j$ is plurisubharmonic on some neigbourhood \tilde{V} of $\overline{\Omega}$ such that $\overline{V} \subset \tilde{V} \subset \subset U$. It follows from (1) that

$$\psi_j = \begin{cases} \hat{\varphi}_j & \text{on } \Omega\\ \lambda_j \varphi + \tilde{\varphi}_j & \text{on } U' \backslash \overline{\Omega} \end{cases}$$

is plurisubharmonic on V. From (1) and the inequality $u^* \leq \varphi_j - \varepsilon_j \leq \tilde{\varphi}_j - \varepsilon_j/2$ on $\partial\Omega$ we get

$$u^* \leq \hat{\varphi}_j - \varepsilon_j \text{ on } \overline{\Omega}.$$

Now we claim that there exists a decreasing sequence $\{r_j\}$ such that

$$0 < r_j < d_j := \text{dist}\left(\left\{\varphi(z) < -\frac{1}{2j^2}\right\}, \partial\Omega\right).$$

and that $u * \rho_{r_j} \leq \hat{\varphi}_j - \varepsilon_j/2$ on $\Omega_{r_j}, |\varphi(z)| < \frac{1}{2j^2}$ if dist $(z, \partial\Omega) < r_j$, where $\Omega_{\delta} = \{z \in \Omega : \text{dist} (z, \partial\Omega) > \delta\}$. The first condition on r_j can be fulfilled because the sequence d_j converges to 0. For the second one, observe that φ is upper semicontinuous and

$$u * \rho_{\delta} \leqslant (\hat{\varphi}_{j} - \varepsilon_{j}) * \rho_{\delta} = (\hat{\varphi}_{j} * \rho_{\delta}) - \varepsilon_{j} < \hat{\varphi}_{j} - \varepsilon_{j}/2$$

if δ is chosen sufficiently small, as $\hat{\varphi}_j * \rho_\delta$ converges uniformly to $\hat{\varphi}_j$ as δ goes to 0.

Define

$$\tilde{u}_j = \begin{cases} \max\{u * \rho_{r_j}, j(\varphi * \rho_{r_j}) + \hat{\varphi}_j + 1/j\} & \text{on } \Omega_{r_j} \\ j(\varphi * \rho_{r_j}) + \hat{\varphi}_j + 1/j & \text{on } \tilde{V} \backslash \overline{\Omega_{r_j}}. \end{cases}$$

Notice that on $\partial \Omega_{r_j}$ we have $\varphi \equiv -\frac{1}{2j^2}$, so

$$u * \rho_{r_j} \leq \hat{\varphi}_j - \varepsilon_j/2 \leq j\varphi + \hat{\varphi}_j + 1/j \leq j(\varphi * \rho_{r_j}) + \hat{\varphi}_j + 1/j.$$

This implies $\tilde{u}_j \in \mathcal{PSH}(\tilde{V}) \cap \mathcal{C}(\tilde{V})$. Since $\{u * \rho_{r_j}\}$ decreases to u on Ω and $|\varphi * \rho_{r_j}| \leq \frac{1}{2j^2}$ on $\partial\Omega$ we deduce $\{\tilde{u}_j\} \to u^*$ pointwise on $\overline{\Omega}$. Since each function \tilde{u}_j is continuous on \tilde{V} , by convolving with a suitable standard regularizing kernel, we can find a neigbourhood U' of $\overline{\Omega}$ and $u_j \in \mathcal{PSH}(U') \cap \mathcal{C}^{\infty}(U')$ such that $|\tilde{u}_j - u'_j| < 1/j$ on $\overline{\Omega}$. The proof is thereby completed. \Box

Now we turn to Reinhardt domains.

Theorem 3.2. Let Ω be a bounded Reinhardt domain in \mathbb{C}^n and $u \in \mathcal{PSH}^-(\Omega)$. Assume that $\lim_{\xi \to z} u(\xi) = u^*(z) > -\infty$ for every $z \in \partial \Omega$. Then there exists a sequence $\{u_j\}_{j \ge 1} \in \mathcal{PSH}^c(\Omega)$ such that $u_j^* \downarrow u^*$ on $\overline{\Omega}$.

The proof relies heavily on ideas given in Section 4 in [2]. First recall that if u is a plurisubharmonic function on a Reinhardt domain Ω then, as in [2] (p. 264), for $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n), \varepsilon_i > 0$ we put

(2)
$$u^{\varepsilon}(z) = \frac{1}{2^{n}\varepsilon_{1}\cdots\varepsilon_{n}} \int_{-\varepsilon_{1}}^{\varepsilon_{1}}\cdots\int_{-\varepsilon_{n}}^{\varepsilon_{n}} u(e^{i\theta_{1}}z_{1},\cdots,e^{i\theta_{n}}z_{n})d\theta_{1}\cdots d\theta_{n}.$$

We first check that u^{ε} is plurisubharmonic on Ω . It is true if u is C^2 , since in this case we can differentiate under the integral sign of (2) to find out that u^{ε} is a C^2 smooth function which is subharmonic on every complex line cutting Ω . The general case follows by considering a smoothing sequence $\{u_{\delta}\}$ of u and observing that $(u_{\delta})^{\varepsilon} \downarrow u^{\varepsilon}$ when δ tends to 0. The continuity of u^{ε} is a bit more delicate and this fact was proved in Lemma 4 of [2].

The following lemma is crucial in the proof.

Lemma 3.1. Let Ω be a bounded Reinhardt domain in \mathbb{C}^n and $u \in \mathcal{PSH}^{-}(\Omega)$, $u \ge 0$. Then we have

(a) If $\lim_{z\to a} u(z) = u^*(a) > -\infty, a \in \partial\Omega$ then

$$\lim_{(\varepsilon,z)\to(0,a)} u^{\varepsilon}(z) = u^*(a), \quad \lim_{z\to a} u^{\varepsilon}(z) = (u^{\varepsilon})^*(a) > -\infty.$$

(b) For each compact subset K of Ω , there exists a sequence $\{\varepsilon_j\}_{j \ge 1} = \{(\varepsilon_j^1, \cdots, \varepsilon_j^n)\}, \varepsilon_j^i > 0$ converging to 0 such that the sequence $u_{\varepsilon_j} + 1/j$ decreases to u on K.

Proof. (a) follows from (2) and the Lebesgue dominated convergence theorem, (b) is precisely Lemma 5 in [2]. \Box

106

Proof of Theorem 3.2. Let $\{K_m\}_{m\geq 1}$ be a sequence of compact subsets of Ω such that $K_m \subset \text{int } K_{m+1}, \cup K_m = \Omega$, where int K denotes the interior of K. For each m, by Lemma 3.1(b), there exists a sequence $\{u_{k,m}\}_{k\geq 1} \subset \mathcal{PSH}(\Omega) \cap \mathcal{C}(\Omega)$ which decreases to $\max(u, -m)$ on K_m , where

(3)
$$u_{k,m} = (\max(u, -m))^{\varepsilon_{k,m}} + 1/k$$

and $\{\varepsilon_{k,m}\}_{k\geq 1} = \{(\varepsilon_{k,m}^1, \cdots, \varepsilon_{k,m}^n)\}_{k\geq 1}$ is a sequence in \mathbf{R}^n satisfying $0 < \varepsilon_{k,m}^i < \min(1/k, 1/m)$. It follows that the sequence $\max(u_{p,m}, u_{m,l})$ decreases to $u_{m,l}$ on K_l for all $1 \leq l \leq m$ as $p \to \infty$. By Dini's lemma, for each m, we can choose k(m) > m large enough so that

(4)
$$u_{k(m),m} \leqslant u_{m,l} + 1/m \text{ on } K_l, \ 1 \leqslant l \leqslant m$$

Let

$$v_j = \sup_{m \ge j} u_{k(m),m}.$$

Being the upper envelope of a uniformly bounded from above family of continuous functions, v_j is real valued, lower semicontinuous on Ω . We claim that v_j is upper semicontinuous on Ω . Fix $z_0 \in \Omega, \varepsilon > 0$. Choose p > j so that $z_0 \in \text{int } K_p$ and $1/p < \varepsilon$. For $m \ge k(p)$ and $w \in K_p$, using (4) we have

$$u_{k(m),m}(w) \leq u_{m,p}(w) + 1/m \leq u_{k(p),p}(w) + \varepsilon.$$

It follows that

$$\limsup_{w \to z} v_j(w) \leqslant v_j(z_0) + \varepsilon.$$

The claim is valid. Thus $v_j \in \mathcal{PSH}^-(\Omega) \cap \mathcal{C}(\Omega)$. We infer also from (4) that v_j decreases to u on Ω . Next we show that $\lim_{z\to a} v_j(z) = v_j^*(a)$ for all $a \in \partial \Omega$. If not, then we could find $\varepsilon > 0$ and two sequences $\{z_q\}_{q \ge 1}$ and $\{\tilde{z}_q\}_{q \ge 1}$ tending to $a \in \partial \Omega$ such that $v_j(z_q) \le v_j(\tilde{z}_q) + \varepsilon$ for all q. Thus there exists a sequence $\{m_q\}_{q \ge 1}$ so that

$$u_{k(m_q),m_q}(z_q) \leqslant u_{k(m_q),m_q}(\tilde{z}_q) + 2\varepsilon, \quad \forall q$$

As $\lim_{z\to a} u(z) = u^*(a) > -\infty$, u is locally bounded from below near a. Combining (3) and Lemma 3.1(a), we arrive at a contradiction. Next we show that $v_j^* \downarrow u^*$ on $\partial\Omega$. For this, we argue by contradiction. Assume otherwise, then there exist $\varepsilon > 0, a \in \partial\Omega$ and a sequence $\{z_j\}_{j \ge 1}$ tending to a such that $v_j(a_j) > u^*(a) + \varepsilon$ for all j. Thus there exists a sequence $\{m_j\}$ tending to ∞ such that

$$u_{k(m_j),m_j}(a_j) > u^*(a) + \varepsilon/2, \quad \forall j$$

Applying again Lemma 3.1(a) and (3) we also reach a contradiction. The proof is complete. $\hfill \Box$

Remark. The following simple example of Wikstrom (see Section 4 in [7]) shows that the assumption on continuity of u^* at boundary points in Theorem 3.2 can not be removed. Let Ω be the Hartogs triangle, $\Omega = \{(z, w) : |z| < |w| < 1\}$ and u(z, w) = |z/w|. Then Ω is a bounded pseudoconvex Reinhardt domain in \mathbf{C}^2 and $u \in \mathcal{PSH}^-(\Omega), u^*$ is continuous everywhere on $\overline{\Omega}$ except at the origin. Assume that there is a sequence $u_i \in \mathcal{PSH}^c(\Omega)$ such that $u_i \downarrow u^*$ on $\overline{\Omega}$. Observe

NGUYEN QUANG DIEU

that the "disk" $K = \{(z, w) : z = 0, |w| = 1/2\}$ is included in Ω and $u \equiv 0$ on K. By Dini's lemma, u_j converges uniformly to 0 on K. Applying the maximum principle, we get $u^* = 0$. This is absurd.

References

- J. Fornaess, Plurisubharmonic functions on smooth domains, Math. Scand. 53 (1983), 33-38.
- [2] J. Fornaess and J. Wiegerinck, Approximation of plurisubharmonic functions, Arkiv för Mat. 27 (1989), 257-272.
- [3] Q. D. Nguyen and F. Wikstrom, Jensen measures and approximation of plurisubharmonic functions, Michigan Math. J. 53 (2005), 529-544.
- [4] Q. D. Nguyen, Approximation of plurisubharmonic functions on bounded domains in Cⁿ (accepted for publication in Michigan Math. J.), preprint 4.2005.
- [5] Richberg, Stetige streng pseudoconvexe funktionen, Math. Ann. 175 (1968), 275-286.
- [6] N. Sibony, Une classe des domaines pseudoconvexe, Duke Math. J. 55 (1987), 299-319.
- [7] F. Wikstrom, Jensen measures and boundary values of plurisubharmonic functions, Arkiv för Mat. 39 (2000), 181-200.

DEPARTMENT OF MATHEMATICS HANOI UNIVERSITY OF EDUCATION VIETNAM *E-mail address*: dieu_vn@yahoo.com